1
|
Luo C, Wen B, Liu J, Yang W. HDAC6-mediated deacetylation of FLOT2 maintains stability and tumorigenic function of FLOT2 in nasopharyngeal carcinoma. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:687-697. [PMID: 39174882 PMCID: PMC11341221 DOI: 10.11817/j.issn.1672-7347.2024.240077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVES Flotillin-2 (FLOT2) is a prototypical oncogenic and a potential target for cancer therapy. However, strategies for targeting FLOT2 remain undefined. Post-translational modifications are crucial for regulating protein stability, function, and localization. Understanding the mechanisms and roles of post-translational modifications is key to developing targeted therapies. This study aims to investigate the regulation and function of lysine acetylation of FLOT2 in nasopharyngeal carcinoma, providing new insights for targeting FLOT2 in cancer intervention. METHODS The PhosphoSitePlus database was used to analyze the lysine acetylation sites of FLOT2, and a lysine acetylation site mutation of FLOT2 [FLOT2 (K211R)] was constructed. Nasopharyngeal carcinoma cells were treated with histone deacetylase (HDAC) inhibitor trichostatin A (TSA) and Sirt family deacetylase inhibitor nicotinamide (NAM). TSA-treated human embryonic kidney (HEK)-293T were transfected with FLOT2 mutant plasmids. Co-immunoprecipitation (Co-IP) was used to detect total acetylation levels of FLOT2 and the effects of specific lysine (K) site mutations on FLOT2 acetylation. Western blotting was used to detect FLOT2/FLAG-FLOT2 protein expression in TSA-treated nasopharyngeal carcinoma cells transfected with FLOT mutant plasmids, and real-time reverse transcription PCR (real-time RT-PCR) was used to detect FLOT2 mRNA expression. Nasopharyngeal carcinoma cells were treated with TSA combined with MG132 or chloroquine (CQ) to analyze FLOT2 protein expression. Cycloheximide (CHX) was used to treat HEK-293T cells transfected with FLAG-FLOT2 (WT) or FLAG-FLOT2(K211R) plasmids to assess protein degradation rates. The BioGrid database was used to identify potential interactions between FLOT2 and HDAC6, which were validated by Co-IP. HEK-293T cells were co-transfected with FLAG-FLOT2 (WT)/FLAG-FLOT2 (K211R) and Vector/HDAC6 plasmids, and grouped into FLAG-FLOT2 (WT)+Vector, FLAG-FLOT2 (WT)+HDAC6, FLAG-FLOT2 (K211R)+Vector, and FLAG-FLOT2 (K211R)+HDAC6 to analyze the impact of K211R mutation on total lysine acetylation levels. In 6-0B cells, overexpression of FLOT2 (WT) and FLOT2 (K211R) was performed, and the biological functions of FLOT2 acetylation site mutants were assessed using cell counting kit-8 (CCK-8), colony formation, and Transwell invasion assays. RESULTS The PhosphoSitePlus database indicated that FLOT2 has an acetylation modification at the K211 site. Co-IP confirmed significant acetylation of FLOT2, with TSA significantly increasing overall FLOT2 acetylation levels, while NAM had no effect. Mutation at the K211 site significantly reduced overall FLOT2 acetylation, unaffected by TSA. TSA decreased FLOT2 protein expression in nasopharyngeal carcinoma cells without affecting FLOT2 mRNA levels or FLOT2 (K211R) protein expression in transfected cells. The degradation rate of FLOT2 (K211R) protein was significantly slower than that of FLOT2 (WT). The proteasome inhibitor MG132 prevented TSA-induced FLOT2 degradation, while the lysosome inhibitor CQ did not. BioGrid data suggested a potential interaction between FLOT2 and HDAC6, confirmed by Co-IP. Knockdown of HDAC6 in nasopharyngeal carcinoma cells significantly increased FLOT2 acetylation; co-transfection of HDAC6 and FLAG-FLOT2 (WT) significantly decreased total lysine acetylation levels, whereas co-transfection of HDAC6 and FLAG-FLOT2 (K211R) had no effect. Knockdown of HDAC6 significantly reduced FLOT2 protein levels without affecting mRNA levels. MG132 prevented HDAC6-knockdown-induced FLOT2 degradation. Knockdown of HDAC6 significantly accelerated FLOT2 degradation. Nasopharyngeal carcinoma cells transfected with FLOT2 (K211R) showed significantly higher proliferation and invasion than those transfected with FLOT2 (WT). CONCLUSIONS The K211 site of FLOT2 undergoes acetylation modification, and HDAC6 mediates deacetylation at this site, inhibiting proteasomal degradation of FLOT2 and maintaining its stability and tumor-promoting function in nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Chenhua Luo
- Xiangya School of Medicine, Central South University, Changsha 410013.
| | - Binbin Wen
- Xiangya School of Nursing, Central South University, Changsha 410013
| | - Jie Liu
- Department of Pathology, Affiliated Changsha Central Hospital, University of South China, Changsha 410004
| | - Wenlong Yang
- Department of Gastrointestinal Surgery II, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
2
|
Xu M, Hou Y, Li N, Yu W, Chen L. Targeting histone deacetylases in head and neck squamous cell carcinoma: molecular mechanisms and therapeutic targets. J Transl Med 2024; 22:418. [PMID: 38702756 PMCID: PMC11067317 DOI: 10.1186/s12967-024-05169-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/05/2024] [Indexed: 05/06/2024] Open
Abstract
The onerous health and economic burden associated with head and neck squamous cell carcinoma (HNSCC) is a global predicament. Despite the advent of novel surgical techniques and therapeutic protocols, there is an incessant need for efficacious diagnostic and therapeutic targets to monitor the invasion, metastasis and recurrence of HNSCC due to its substantial morbidity and mortality. The differential expression patterns of histone deacetylases (HDACs), a group of enzymes responsible for modifying histones and regulating gene expression, have been demonstrated in neoplastic tissues. However, there is limited knowledge regarding the role of HDACs in HNSCC. Consequently, this review aims to summarize the existing research findings and explore the potential association between HDACs and HNSCC, offering fresh perspectives on therapeutic approaches targeting HDACs that could potentially enhance the efficacy of HNSCC treatment. Additionally, the Cancer Genome Atlas (TCGA) dataset, CPTAC, HPA, OmicShare, GeneMANIA and STRING databases are utilized to provide supplementary evidence on the differential expression of HDACs, their prognostic significance and predicting functions in HNSCC patients.
Collapse
Affiliation(s)
- Mengchen Xu
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Shandong Provincial Clinical Research Center for Oral Diseases, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yiming Hou
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Shandong Provincial Clinical Research Center for Oral Diseases, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Na Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, Shandong, China
- Center of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, 250022, Shandong, China
| | - Wenqian Yu
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Lei Chen
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Shandong Provincial Clinical Research Center for Oral Diseases, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
3
|
Baran M, Miziak P, Stepulak A, Cybulski M. The Role of Sirtuin 6 in the Deacetylation of Histone Proteins as a Factor in the Progression of Neoplastic Disease. Int J Mol Sci 2023; 25:497. [PMID: 38203666 PMCID: PMC10779230 DOI: 10.3390/ijms25010497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
SIRT6 is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, predominantly located in the nucleus, that is involved in the processes of histone modification, DNA repair, cell cycle regulation, and apoptosis. Disturbances in SIRT6 expression levels have been observed in the development and progression of various types of cancer. Therefore, it is important to better understand the role of SIRT6 in biochemical pathways and assign it specific biological functions. This review aims to summarize the role of SIRT6 in carcinogenesis and tumor development. A better understanding of the factors influencing SIRT6 expression and its biological role in carcinogenesis may help to develop novel anti-cancer therapeutic strategies. Moreover, we discuss the anti-cancer effects and mechanism of action of small molecule SIRT6 modulators (both activators and inhibitors) in different types of cancer.
Collapse
Affiliation(s)
| | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (P.M.); (M.C.)
| | | |
Collapse
|
4
|
Siak PY, Heng WS, Teoh SSH, Lwin YY, Cheah SC. Precision medicine in nasopharyngeal carcinoma: comprehensive review of past, present, and future prospect. J Transl Med 2023; 21:786. [PMID: 37932756 PMCID: PMC10629096 DOI: 10.1186/s12967-023-04673-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an aggressive malignancy with high propensity for lymphatic spread and distant metastasis. It is prominent as an endemic malignancy in Southern China and Southeast Asia regions. Studies on NPC pathogenesis mechanism in the past decades such as through Epstein Barr Virus (EBV) infection and oncogenic molecular aberrations have explored several potential targets for therapy and diagnosis. The EBV infection introduces oncoviral proteins that consequently hyperactivate many promitotic pathways and block cell-death inducers. EBV infection is so prevalent in NPC patients such that EBV serological tests were used to diagnose and screen NPC patients. On the other hand, as the downstream effectors of oncogenic mechanisms, the promitotic pathways can potentially be exploited therapeutically. With the apparent heterogeneity and distinct molecular aberrations of NPC tumor, the focus has turned into a more personalized treatment in NPC. Herein in this comprehensive review, we depict the current status of screening, diagnosis, treatment, and prevention in NPC. Subsequently, based on the limitations on those aspects, we look at their potential improvements in moving towards the path of precision medicine. The importance of recent advances on the key molecular aberration involved in pathogenesis of NPC for precision medicine progression has also been reported in the present review. Besides, the challenge and future outlook of NPC management will also be highlighted.
Collapse
Affiliation(s)
- Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Win Sen Heng
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Sharon Siew Hoon Teoh
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Yu Yu Lwin
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Medicine, Mandalay, Myanmar
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
5
|
Podyacheva E, Toropova Y. The Role of NAD+, SIRTs Interactions in Stimulating and Counteracting Carcinogenesis. Int J Mol Sci 2023; 24:ijms24097925. [PMID: 37175631 PMCID: PMC10178434 DOI: 10.3390/ijms24097925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The World Health Organization has identified oncological diseases as one of the most serious health concerns of the current century. Current research on oncogenesis is focused on the molecular mechanisms of energy-biochemical reprogramming in cancer cell metabolism, including processes contributing to the Warburg effect and the pro-oncogenic and anti-oncogenic roles of sirtuins (SIRTs) and poly-(ADP-ribose) polymerases (PARPs). However, a clear understanding of the interaction between NAD+, SIRTs in cancer development, as well as their effects on carcinogenesis, has not been established, and literature data vary greatly. This work aims to provide a summary and structure of the available information on NAD+, SIRTs interactions in both stimulating and countering carcinogenesis, and to discuss potential approaches for pharmacological modulation of these interactions to achieve an anticancer effect.
Collapse
Affiliation(s)
- Ekaterina Podyacheva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Yana Toropova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| |
Collapse
|
6
|
Gaál Z. Targeted Epigenetic Interventions in Cancer with an Emphasis on Pediatric Malignancies. Biomolecules 2022; 13:61. [PMID: 36671446 PMCID: PMC9855367 DOI: 10.3390/biom13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Over the past two decades, novel hallmarks of cancer have been described, including the altered epigenetic landscape of malignant diseases. In addition to the methylation and hyd-roxymethylation of DNA, numerous novel forms of histone modifications and nucleosome remodeling have been discovered, giving rise to a wide variety of targeted therapeutic interventions. DNA hypomethylating drugs, histone deacetylase inhibitors and agents targeting histone methylation machinery are of distinguished clinical significance. The major focus of this review is placed on targeted epigenetic interventions in the most common pediatric malignancies, including acute leukemias, brain and kidney tumors, neuroblastoma and soft tissue sarcomas. Upcoming novel challenges include specificity and potential undesirable side effects. Different epigenetic patterns of pediatric and adult cancers should be noted. Biological significance of epigenetic alterations highly depends on the tissue microenvironment and widespread interactions. An individualized treatment approach requires detailed genetic, epigenetic and metabolomic evaluation of cancer. Advances in molecular technologies and clinical translation may contribute to the development of novel pediatric anticancer treatment strategies, aiming for improved survival and better patient quality of life.
Collapse
Affiliation(s)
- Zsuzsanna Gaál
- Department of Pediatric Hematology-Oncology, Institute of Pediatrics, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
7
|
Liberale L, Ministrini S, Arnold M, Puspitasari YM, Pokorny T, Beer G, Scherrer N, Schweizer J, Christ-Crain M, Montecucco F, Camici GG, Katan Kahles M. Serum circulating sirtuin 6 as a novel predictor of mortality after acute ischemic stroke. Sci Rep 2022; 12:20513. [PMID: 36443316 PMCID: PMC9705558 DOI: 10.1038/s41598-022-23211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022] Open
Abstract
In a murine model of acute ischemic stroke, SIRT6 knockdown resulted in larger cerebral infarct size, worse neurological outcome, and higher mortality, indicating a possible neuro-protective role of SIRT6. In this study, we aimed at evaluating the prognostic value of serum SIRT6 levels in patients with acute ischemic stroke (AIS). Serum levels of SIRT6, collected within 72 h from symptom-onset, were measured in 317 consecutively enrolled AIS patients from the COSMOS cohort. The primary endpoint of this analysis was 90-day mortality. The independent prognostic value of SIRT6 was assessed with multivariate logistic and Cox proportional regression models. 35 patients (11%) deceased within 90-day follow-up. After adjustment for established risk factors (age, NIHSS, heart failure, atrial fibrillation, and C reactive protein), SIRT6 levels were negatively associated with mortality. The optimal cut-off for survival was 634 pg/mL. Patients with SIRT6 levels below this threshold had a higher risk of death in multivariable Cox regression. In this pilot study, SIRT6 levels were significantly associated with 90-day mortality after AIS; these results build on previous molecular and causal observations made in animal models. Should this association be confirmed, SIRT6 could be a potential prognostic predictor and therapeutic target in AIS.
Collapse
Affiliation(s)
- Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Internal Medicine, Angiology and Atherosclerosis, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Markus Arnold
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | | | - Thomas Pokorny
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Georgia Beer
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Natalie Scherrer
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Juliane Schweizer
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Mirjam Christ-Crain
- Department of Endocrinology, University Hospital of Basel, Basel, Switzerland
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Mira Katan Kahles
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.
- Department of Neurology University Hospital of Basel, Basel, Switzerland.
| |
Collapse
|
8
|
Yin WM, Cao XB, Li SX, Zhang F, Guan YF. Brassinin inhibits proliferation and induces cell cycle arrest and apoptosis in nasopharyngeal cancer C666-1 cells. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
9
|
Li Y, Jin J, Wang Y. SIRT6 Widely Regulates Aging, Immunity, and Cancer. Front Oncol 2022; 12:861334. [PMID: 35463332 PMCID: PMC9019339 DOI: 10.3389/fonc.2022.861334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
SIRT6 is a member of the Sir2-like family in mammals. Recent structural and biochemical studies have characterized SIRT6 as having deacetylation, defatty-acylation, and mono-ADP-ribosylation activities, which determine its important regulatory roles during physiological and pathological processes. This review focuses mainly on the regulatory functions of SIRT6 in aging, cancer, and, especially, immunity. Particular attention is paid to studies illustrating the critical role of SIRT6 in the regulation of immune cells from the viewpoints of immunesenescence, immunometabolism, and tumor immunology. Owing to its role in regulating the function of the immune system, SIRT6 can be considered to be a potential therapeutic target for the treatment of diseases.
Collapse
Affiliation(s)
- Yunjia Li
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, China
| | - Jing Jin
- Institute of Immunology and the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, China
| | - Yi Wang
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, China.,Institute of Immunology and the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, China
| |
Collapse
|
10
|
Otsuka R, Hayano K, Matsubara H. Role of sirtuins in esophageal cancer: Current status and future prospects. World J Gastrointest Oncol 2022; 14:794-807. [PMID: 35582109 PMCID: PMC9048530 DOI: 10.4251/wjgo.v14.i4.794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/02/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Esophageal cancer (EC) is a malignant cancer that still has a poor prognosis, although its prognosis has been improving with the development of multidisciplinary treatment modalities such as surgery, chemotherapy and radiotherapy. Therefore, identifying specific molecular markers that can be served as biomarkers for the prognosis and treatment response of EC is highly desirable to aid in the personalization and improvement of the precision of medical treatment. Sirtuins are a family of nicotinamide adenine dinucleotide (NAD+)-dependent proteins consisting of seven members (SIRT1-7). These proteins have been reported to be involved in the regulation of a variety of biological functions including apoptosis, metabolism, stress response, senescence, differentiation and cell cycle progression. Given the variety of functions of sirtuins, they are speculated to be associated in some manner with cancer progression. However, while the role of sirtuins in cancer progression has been investigated over the past few years, their precise role remains difficult to characterize, as they have both cancer-promoting and cancer-suppressing properties, depending on the type of cancer. These conflicting characteristics make research into the nature of sirtuins all the more fascinating. However, the role of sirtuins in EC remains unclear due to the limited number of reports concerning sirtuins in EC. We herein review the current findings and future prospects of sirtuins in EC.
Collapse
Affiliation(s)
- Ryota Otsuka
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Koichi Hayano
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
11
|
Cai Y, Zhao F. Fluvastatin suppresses the proliferation, invasion, and migration and promotes the apoptosis of endometrial cancer cells by upregulating Sirtuin 6 (SIRT6). Bioengineered 2021; 12:12509-12520. [PMID: 34927546 PMCID: PMC8810182 DOI: 10.1080/21655979.2021.2009415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fluvastatin, the first fully synthesized 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMGCR) inhibitor, has been reported to inhibit the development and metastasis of multiple cancers. The present study aimed to explore the effects of fluvastatin on endometrial cancer (EC) as well as reveal its potential mechanism. After exposure to fluvastatin, the cell viability, proliferation, migration, and invasion of EC cells were measured by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2ʹ-deoxyuridine (EDU), wound healing, and invasion assays, respectively. The apoptosis and its related proteins of fluvastatin-treated EC cells were detected by TUNEL and Western blot, separately. In order to figure out the effects of SIRT6 silence on EC cells, a series of cellular activities were performed again. Fluvastatin suppressed the proliferation, migration, and invasion of EC cells, but induced the apoptosis. The expression of SIRT6 was elevated in EC cells upon fluvastatin exposure. After silencing SIRT6 in fluvastatin-treated EC cells, the proliferation, migration, and invasion were promoted whereas the apoptosis was decreased. To sum up, this study firstly evidenced that fluvastatin suppresses the proliferation, invasion, and migration and promotes the apoptosis of endometrial cancer cells by regulating SIRT6 expression.
Collapse
Affiliation(s)
- Yu Cai
- Gynecology Department, The Third People's Hospital of Da Lian, Da Lian, China
| | - Feng Zhao
- Obstetrics and Gynecology Department, Hankou Hospital, Wuhan, Hubei, China
| |
Collapse
|
12
|
Abstract
![]()
Sirtuin 6 (SIRT6)
is an NAD+-dependent protein deacylase
and mono-ADP-ribosyltransferase of the sirtuin family with a wide
substrate specificity. In vitro and in vivo studies have indicated that SIRT6 overexpression or activation has
beneficial effects for cellular processes such as DNA repair, metabolic
regulation, and aging. On the other hand, SIRT6 has contrasting roles
in cancer, acting either as a tumor suppressor or promoter in a context-specific
manner. Given its central role in cellular homeostasis, SIRT6 has
emerged as a promising target for the development of small-molecule
activators and inhibitors possessing a therapeutic potential in diseases
ranging from cancer to age-related disorders. Moreover, specific modulators
allow the molecular details of SIRT6 activity to be scrutinized and
further validate the enzyme as a pharmacological target. In this Perspective,
we summarize the current knowledge about SIRT6 pharmacology and medicinal
chemistry and describe the features of the activators and inhibitors
identified so far.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Antonello Mai
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, P.le A Moro 5, 00185 Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, P.le A Moro 5, 00185 Rome, Italy
| |
Collapse
|
13
|
The Two-Faced Role of SIRT6 in Cancer. Cancers (Basel) 2021; 13:cancers13051156. [PMID: 33800266 PMCID: PMC7962659 DOI: 10.3390/cancers13051156] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Cancer therapy relies on the employment of different strategies aimed at inducing cancer cell death through different mechanisms, including DNA damage and apoptosis induction. One of the key regulators of these pathways is the epigenetic enzyme SIRT6, which has been shown to have a dichotomous function in cell fate determination and, consequently, cancer initiation and progression. In this review, we aim to summarize the current knowledge on the role of SIRT6 in cancer. We show that it can act as both tumor suppressor and promoter, even in the same cancer type, depending on the biological context. We then describe the most promising modulators of SIRT6 which, through enzyme activation or inhibition, may impair tumor growth. These molecules can also be used for the elucidation of SIRT6 function, thereby advancing the current knowledge on this crucial protein. Abstract Sirtuin 6 (SIRT6) is a NAD+-dependent nuclear deacylase and mono-ADP-ribosylase with a wide spectrum of substrates. Through its pleiotropic activities, SIRT6 modulates either directly or indirectly key processes linked to cell fate determination and oncogenesis such as DNA damage repair, metabolic homeostasis, and apoptosis. SIRT6 regulates the expression and activity of both pro-apoptotic (e.g., Bax) and anti-apoptotic factors (e.g., Bcl-2, survivin) in a context-depending manner. Mounting evidence points towards a double-faced involvement of SIRT6 in tumor onset and progression since the block or induction of apoptosis lead to opposite outcomes in cancer. Here, we discuss the features and roles of SIRT6 in the regulation of cell death and cancer, also focusing on recently discovered small molecule modulators that can be used as chemical probes to shed further light on SIRT6 cancer biology and proposed as potential new generation anticancer therapeutics.
Collapse
|
14
|
Liu G, Chen H, Liu H, Zhang W, Zhou J. Emerging roles of SIRT6 in human diseases and its modulators. Med Res Rev 2021; 41:1089-1137. [PMID: 33325563 PMCID: PMC7906922 DOI: 10.1002/med.21753] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
The biological functions of sirtuin 6 (SIRT6; e.g., deacetylation, defatty-acylation, and mono-ADP-ribosylation) play a pivotal role in regulating lifespan and several fundamental processes controlling aging such as DNA repair, gene expression, and telomeric maintenance. Over the past decades, the aberration of SIRT6 has been extensively observed in diverse life-threatening human diseases. In this comprehensive review, we summarize the critical roles of SIRT6 in the onset and progression of human diseases including cancer, inflammation, diabetes, steatohepatitis, arthritis, cardiovascular diseases, neurodegenerative diseases, viral infections, renal and corneal injuries, as well as the elucidation of the related signaling pathways. Moreover, we discuss the advances in the development of small molecule SIRT6 modulators including activators and inhibitors as well as their pharmacological profiles toward potential therapeutics for SIRT6-mediated diseases.
Collapse
Affiliation(s)
- Gang Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Hua Liu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| |
Collapse
|
15
|
Chen F, Ma X, Liu Y, Ma D, Gao X, Qian X. SIRT6 inhibits metastasis by suppressing SNAIL expression in nasopharyngeal carcinoma cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:63-74. [PMID: 33532024 PMCID: PMC7847487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a head and neck cancer with severe local invasion and early distant metastasis. SIRT6 serves as a critical modulator of the development and metastasis of multiple types of cancer; however, the roles and underlying mechanisms of SIRT6 in regulating NPC metastasis remain largely unknown. Here, the expression of SIRT6 in high metastatic 5-8F cells and low metastatic 6-10B cells was analyzed. SIRT6 expression was found to be negatively associated with the metastatic capability of NPC cells. Moreover, we identified that SIRT6 inhibited NPC cell metastasis through suppression of SNAIL expression. Mechanistically, we demonstrated that SIRT6 interacted with transcription factor p65 (NF-kB subunit) and deacetylated histone H3 lysine 9 (H3K9) and lysine 56 (H3K56) at the promoter of SNAIL, leading to reduced transcription of SNAIL. In summary, SIRT6 functions as a metastasis suppressor in NPC cells through epigenetic regulation of SNAIL gene expression.
Collapse
Affiliation(s)
- Feng Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityChina
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)China
- Research Institution of OtorhinolaryngologyNanjing 210008, Jiangsu, China
| | - Xiaofeng Ma
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)China
- Research Institution of OtorhinolaryngologyNanjing 210008, Jiangsu, China
| | - Yongze Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)China
- Research Institution of OtorhinolaryngologyNanjing 210008, Jiangsu, China
| | - Dengbin Ma
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)China
- Research Institution of OtorhinolaryngologyNanjing 210008, Jiangsu, China
| | - Xia Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityChina
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)China
- Research Institution of OtorhinolaryngologyNanjing 210008, Jiangsu, China
| | - Xiaoyun Qian
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)China
- Research Institution of OtorhinolaryngologyNanjing 210008, Jiangsu, China
| |
Collapse
|
16
|
Kang Y, He W, Ren C, Qiao J, Guo Q, Hu J, Xu H, Jiang X, Wang L. Advances in targeted therapy mainly based on signal pathways for nasopharyngeal carcinoma. Signal Transduct Target Ther 2020; 5:245. [PMID: 33093441 PMCID: PMC7582884 DOI: 10.1038/s41392-020-00340-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant epithelial carcinoma of the head and neck region which mainly distributes in southern China and Southeast Asia and has a crucial association with the Epstein-Barr virus. Based on epidemiological data, both incidence and mortality of NPC have significantly declined in recent decades grounded on the improvement of living standard and medical level in an endemic region, in particular, with the clinical use of individualized chemotherapy and intensity-modulated radiotherapy (IMRT) which profoundly contributes to the cure rate of NPC patients. To tackle the challenges including local recurrence and distant metastasis in the current NPC treatment, we discussed the implication of using targeted therapy against critical molecules in various signal pathways, and how they synergize with chemoradiotherapy in the NPC treatment. Combination treatment including targeted therapy and IMRT or concurrent chemoradiotherapy is presumably to be future options, which may reduce radiation or chemotherapy toxicities and open new avenues for the improvement of the expected functional outcome for patients with advanced NPC.
Collapse
Affiliation(s)
- Yuanbo Kang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Weihan He
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Caiping Ren
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China.
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| | - Jincheng Qiao
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Qiuyong Guo
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Jingyu Hu
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Hongjuan Xu
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Xingjun Jiang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Lei Wang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China.
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
17
|
Abstract
IMPACT STATEMENT NAD is a central metabolite connecting energy balance and organismal growth with genomic integrity and function. It is involved in the development of malignancy and has a regulatory role in the aging process. These processes are mediated by a diverse series of enzymes whose common focus is either NAD's biosynthesis or its utilization as a redox cofactor or enzyme substrate. These enzymes include dehydrogenases, cyclic ADP-ribose hydrolases, mono(ADP-ribosyl)transferases, poly(ADP-ribose) polymerases, and sirtuin deacetylases. This article describes the manifold pathways that comprise NAD metabolism and promotes an increased awareness of how perturbations in these systems may be important in disease prevention and/or progression.
Collapse
Affiliation(s)
- John Wr Kincaid
- Department of Nutrition, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,151230Case Comprehensive Cancer Center, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Nathan A Berger
- 151230Case Comprehensive Cancer Center, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Biochemistry, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Genetics and Genome Sciences, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Medicine, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Center for Science, Health and Society, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
18
|
Nie J, Yu Z, Yao D, Wang F, Zhu C, Sun K, Aweya JJ, Zhang Y. Litopenaeus vannamei sirtuin 6 homolog (LvSIRT6) is involved in immune response by modulating hemocytes ROS production and apoptosis. FISH & SHELLFISH IMMUNOLOGY 2020; 98:271-284. [PMID: 31968265 DOI: 10.1016/j.fsi.2020.01.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
The histone deacetylase, sirtuin 6 (SIRT6), plays an essential role in the regulation of oxidative stress, mitochondrial function and inflammation in mammals. However, the specific role of SIRT6 in invertebrate immunity has not been reported. Here, we characterized for the first time, a sirtuin 6 homolog in Litopenaeus vannamei (LvSIRT6), with full-length cDNA of 2919 bp and 1536 bp open reading frame (ORF) encoding a putative protein of 511 amino acids, which contains a typical SIR2 domain. Sequence and phylogenetic analysis revealed that LvSIRT6 shares a close evolutionary relationship with SIRT6 from invertebrates. Real-time quantitative PCR analysis of LvSIRT6 transcripts revealed that they were ubiquitously expressed in shrimp and induced in hepatopancreas and hemocytes upon challenge with Vibrio parahaemolyticus, Streptococcus iniae, lipopolysaccharide (LPS), and white spot syndrome virus (WSSV), suggesting the involvement of LvSIRT6 in shrimp immune response. Moreover, knockdown of LvSIRT6 decreased mitochondrial membrane potential and increased total ROS level in hemocytes, especially upon V. parahaemolyticus challenge. Depletion of LvSIRT6 also increased hemocytes apoptosis in terms of decreased expression of pro-survival LvBcl-2, but increased expression of pro-apoptotic LvBax and LvCytochrome C, coupled with high LvCaspase3/7 activity. Shrimp were rendered more susceptible to V. parahaemolyticus infection upon LvSIRT6 knockdown. Taken together, our present data suggest that LvSIRT6 plays an important role in shrimp immune response by modulating hemocytes ROS production and apoptosis during pathogen challenge.
Collapse
Affiliation(s)
- Junjie Nie
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Zhixue Yu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Fan Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Chunhua Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Kaihui Sun
- Guangdong Yuequn Marine Biological Research and Development Co., Ltd., Jieyang, 515200, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|