1
|
Hewavisenti RV, Arena J, Ahlenstiel CL, Sasson SC. Human papillomavirus in the setting of immunodeficiency: Pathogenesis and the emergence of next-generation therapies to reduce the high associated cancer risk. Front Immunol 2023; 14:1112513. [PMID: 36960048 PMCID: PMC10027931 DOI: 10.3389/fimmu.2023.1112513] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/03/2023] [Indexed: 03/09/2023] Open
Abstract
Human papillomavirus (HPV), a common sexually transmitted virus infecting mucosal or cutaneous stratified epithelia, is implicated in the rising of associated cancers worldwide. While HPV infection can be cleared by an adequate immune response, immunocompromised individuals can develop persistent, treatment-refractory, and progressive disease. Primary immunodeficiencies (PIDs) associated with HPV-related disease include inborn errors of GATA, EVER1/2, and CXCR4 mutations, resulting in defective cellular function. People living with secondary immunodeficiency (e.g. solid-organ transplants recipients of immunosuppression) and acquired immunodeficiency (e.g. concurrent human immunodeficiency virus (HIV) infection) are also at significant risk of HPV-related disease. Immunocompromised people are highly susceptible to the development of cutaneous and mucosal warts, and cervical, anogenital and oropharyngeal carcinomas. The specific mechanisms underlying high-risk HPV-driven cancer development in immunocompromised hosts are not well understood. Current treatments for HPV-related cancers include surgery with adjuvant chemotherapy and/or radiotherapy, with clinical trials underway to investigate the use of anti-PD-1 therapy. In the setting of HIV co-infection, persistent high-grade anal intraepithelial neoplasia can occur despite suppressive antiretroviral therapy, resulting in an ongoing risk for transformation to overt malignancy. Although therapeutic vaccines against HPV are under development, the efficacy of these in the setting of PID, secondary- or acquired- immunodeficiencies remains unclear. RNA-based therapeutic targeting of the HPV genome or mRNA transcript has become a promising next-generation therapeutic avenue. In this review, we summarise the current understanding of HPV pathogenesis, immune evasion, and malignant transformation, with a focus on key PIDs, secondary immunodeficiencies, and HIV infection. Current management and vaccine regimes are outlined in relation to HPV-driven cancer, and specifically, the need for more effective therapeutic strategies for immunocompromised hosts. The recent advances in RNA-based gene targeting including CRISPR and short interfering RNA (siRNA), and the potential application to HPV infection are of great interest. An increased understanding of both the dysregulated immune responses in immunocompromised hosts and of viral persistence is essential for the design of next-generation therapies to eliminate HPV persistence and cancer development in the most at-risk populations.
Collapse
Affiliation(s)
- Rehana V. Hewavisenti
- Immunovirology and Pathogenesis Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Joshua Arena
- Immunovirology and Pathogenesis Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
- UNSW RNA Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Chantelle L. Ahlenstiel
- Immunovirology and Pathogenesis Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
- UNSW RNA Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Sarah C. Sasson
- Immunovirology and Pathogenesis Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
2
|
Li F, Zhang Y, Lin Z, Yan L, Liu Q, Li Y, Pei X, Feng Y, Han X, Yang J, Zheng F, Li T, Zhang Y, Fu Z, Shao D, Yu J, Li C. Targeting SPHK1/S1PR3-regulated S-1-P metabolic disorder triggers autophagic cell death in pulmonary lymphangiomyomatosis (LAM). Cell Death Dis 2022; 13:1065. [PMID: 36543771 PMCID: PMC9772321 DOI: 10.1038/s41419-022-05511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Lymphangioleiomyomatosis (LAM), a progressive pulmonary disease exclusively affecting females, is caused by defects or mutations in the coding gene tuberous sclerosis complex 1 (TSC1) or TSC2, causing the mammalian target of rapamycin complex 1 (mTORC1) activation and autophagy inhibition. Clinically, rapamycin shows limited cytocidal effects, and LAM recurs after drug withdrawal. In this study, we demonstrated that TSC2 negatively regulated the sphingolipid metabolism pathway and the expressions of sphingosine kinase 1 (SPHK1) and sphingosine-1-phosphate receptor 3 (S1PR3) were significantly elevated in LAM patient-derived TSC2-deficient cells compared to TSC2-addback cells, insensitive to rapamycin treatment and estrogen stimulation. Knockdown of SPHK1 showed reduced viability, migration and invasion in TSC2-deficient cells. Selective SPHK1 antagonist PF543 potently suppressed the viability of TSC2-deficient cells and induced autophagy-mediated cell death. Meanwhile, the cognate receptor S1PR3 was identified to mediating the tumorigenic effects of sphingosine-1-phosphate (S1P). Treatment with TY52156, a selective antagonist for S1PR3, or genetic silencing using S1PR3-siRNA suppressed the viability of TSC2-deficient cells. Both SPHK1 and S1PR3 inhibitors markedly exhibited antitumor effect in a xenograft model of TSC2-null cells, restored autophagy level, and triggered cell death. Together, we identified novel rapamycin-insensitive sphingosine metabolic signatures in TSC2-null LAM cells. Therapeutic targeting of aberrant SPHK1/S1P/S1PR3 signaling may have potent therapeutic benefit for patients with TSC/LAM or other hyperactive mTOR neoplasms with autophagy inhibition.
Collapse
Affiliation(s)
- Fei Li
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| | - Yifan Zhang
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| | - Zhoujun Lin
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| | - Lizhong Yan
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| | - Qiao Liu
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| | - Yin Li
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| | - Xiaolin Pei
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| | - Ya Feng
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| | - Xiao Han
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| | - Juan Yang
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| | - Fangxu Zheng
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| | - Tianjiao Li
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| | - Yupeng Zhang
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| | - Zhenkun Fu
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China ,grid.410736.70000 0001 2204 9268Department of Immunology & Wu Lien-Teh Institute & Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University & Heilongjiang Academy of Medical Science, Harbin, China
| | - Di Shao
- grid.414287.c0000 0004 1757 967XChongqing University Central Hospital, Chongqing Emergency Medical Center, 400000 Chongqing, China ,Chonggang General Hospital, 400000 Chongqing, China
| | - Jane Yu
- grid.24827.3b0000 0001 2179 9593Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA
| | - Chenggang Li
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| |
Collapse
|
3
|
Lau P, Zhang G, Zhao S, Liang L, Zhang H, Zhou G, Hung MC, Chen X, Liu H. Sphingosine kinase 1 promotes tumor immune evasion by regulating the MTA3-PD-L1 axis. Cell Mol Immunol 2022; 19:1153-1167. [PMID: 36050478 PMCID: PMC9508236 DOI: 10.1038/s41423-022-00911-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 07/21/2022] [Indexed: 11/10/2022] Open
Abstract
Immune checkpoint blockade (ICB) exhibits considerable benefits in malignancies, but its overall response rate is limited. Previous studies have shown that sphingosine kinases (SPHKs) are critical in the tumor microenvironment (TME), but their role in immunotherapy is unclear. We performed integrative analyses including bioinformatics analysis, functional study, and clinical validation to investigate the role of SPHK1 in tumor immunity. Functionally, we demonstrated that the inhibition of SPHK1 significantly suppressed tumor growth by promoting antitumor immunity in immunocompetent melanoma mouse models and tumor T-cell cocultures. A mechanistic analysis revealed that MTA3 functions as the downstream target of SPHK1 in transcriptionally regulating tumor PD-L1. Preclinically, we found that anti-PD-1 monoclonal antibody (mAb) treatment significantly rescued tumor SPHK1 overexpression or tumor MTA3 overexpression-mediated immune evasion. Significantly, we identified SPHK1 and MTA3 as biological markers for predicting the efficacy of anti-PD-1 mAb therapy in melanoma patients. Our findings revealed a novel role for SPHK1 in tumor evasion mediated by regulating the MTA3-PD-L1 axis, identified SPHK1 and MTA3 as predictors for assessing the efficacy of PD-1 mAb treatment, and provided a therapeutic possibility for the treatment of melanoma patients.
Collapse
Affiliation(s)
- Poyee Lau
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Guanxiong Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Long Liang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Hailun Zhang
- Department of Research and Development, Beijing GAP Biotechnology Co., Ltd, Beijing, 102600, China
| | - Guowei Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan, China
- Department of Biotechnology, Asia University, Taichung, Taiwan, China
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China.
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China.
| |
Collapse
|
4
|
Massaro C, Sgueglia G, Frattolillo V, Baglio SR, Altucci L, Dell’Aversana C. Extracellular Vesicle-Based Nucleic Acid Delivery: Current Advances and Future Perspectives in Cancer Therapeutic Strategies. Pharmaceutics 2020; 12:pharmaceutics12100980. [PMID: 33081417 PMCID: PMC7589909 DOI: 10.3390/pharmaceutics12100980] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) are sophisticated and sensitive messengers released by cells to communicate with and influence distant and neighboring cells via selective transfer of bioactive content, including protein lipids and nucleic acids. EVs have therefore attracted broad interest as new and refined potential therapeutic systems in many diseases, including cancer, due to their low immunogenicity, non-toxicity, and elevated bioavailability. They might serve as safe and effective vehicles for the transport of therapeutic molecules to specific tissues and cells. In this review, we focus on EVs as a vehicle for gene therapy in cancer. We describe recent developments in EV engineering to achieve efficient intracellular delivery of cancer therapeutics and avoid off-target effects, to provide an overview of the potential applications of EV-mediated gene therapy and the most promising biomedical advances.
Collapse
Affiliation(s)
- Crescenzo Massaro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy; (C.M.); (G.S.); (V.F.)
| | - Giulia Sgueglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy; (C.M.); (G.S.); (V.F.)
| | - Victoria Frattolillo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy; (C.M.); (G.S.); (V.F.)
| | - S. Rubina Baglio
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081HV Amsterdam, The Netherlands;
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy; (C.M.); (G.S.); (V.F.)
- Correspondence: (L.A.); (C.D.); Tel.: +39-081-5667569 (L.A.); +39-081-5667564 (C.D.)
| | - Carmela Dell’Aversana
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy; (C.M.); (G.S.); (V.F.)
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS)-National Research Council (CNR), Via Sergio Pansini 5, 80131 Naples, Italy
- Correspondence: (L.A.); (C.D.); Tel.: +39-081-5667569 (L.A.); +39-081-5667564 (C.D.)
| |
Collapse
|