1
|
Yong J, He J, Ning F. Hsa_circ_0093741 competes with FRS2 for miR-562 binding sites to promote nephroblastoma progression. Histol Histopathol 2023; 38:559-570. [PMID: 36286392 DOI: 10.14670/hh-18-539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
BACKGROUND Circular RNA (circRNA) has been shown to play an essential role in cancer progression, including nephroblastoma. Hsa_circ_0093741 was discovered to be highly expressed in nephroblastoma. However, its function and mechanism in nephroblastoma development are still vague. METHODS The expression levels of hsa_circ_0093741, miR-562 and FRS2 (Fibroblast Growth Factor Receptor Substrate 2) were detected using western blotting and quantitative real-time polymerase chain reaction. Functional experiments were performed by using cell counting kit-8, colony formation, 5-ethynyl-2'-deoxyuridine (EdU), transwell, scratch assays in vitro and animal experiments in vivo. The interaction analysis was conducted using dual-luciferase reporter assay and RIP assay. RESULTS Hsa_circ_0093741 was highly expressed in nephroblastoma tissues and cells. Functionally, hsa_circ_0093741 silencing significantly suppressed the growth, invasion, and migration of nephroblastoma cells in vitro. MiR-562 was decreased in nephroblastoma, and was validated to be a target of hsa_circ_0093741. Inhibition of miR-562 reversed the anticancer functions of hsa_circ_0093741 silencing on nephroblastoma cells. FRS2 expression was increased in nephroblastoma and served as a target of miR-562, moreover, FRS2 overexpression attenuated the inhibitory functions of miR-562 on the nephroblastoma cell malignant phenotypes mentioned above. Pre-clinically, lentivirus-mediated hsa_circ_0093741 silencing also impeded nephroblastoma tumor growth and metastasis in vivo. CONCLUSION Knockdown of hsa_circ_0093741 suppresses nephroblastoma cell growth, migration and invasion by regulating the miR-562/FRS2 axis, suggesting the potential involvement of hsa_circ_0093741 in nephroblastoma progression.
Collapse
Affiliation(s)
- Jiang Yong
- Department of Urology, Hunan Children's Hospital, the Paediatric Academy of University of South China Changsha, Hunan, PR China.
| | - Jun He
- Department of Urology, Hunan Children's Hospital, the Paediatric Academy of University of South China Changsha, Hunan, PR China
| | - Feng Ning
- Department of Urology, Hunan Children's Hospital, the Paediatric Academy of University of South China Changsha, Hunan, PR China
| |
Collapse
|
2
|
Ghaffarian Zirak R, Tajik H, Asadi J, Hashemian P, Javid H. The Role of Micro RNAs in Regulating PI3K/AKT Signaling Pathways in Glioblastoma. IRANIAN JOURNAL OF PATHOLOGY 2022; 17:122-136. [PMID: 35463721 PMCID: PMC9013863 DOI: 10.30699/ijp.2022.539029.2726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/02/2022] [Indexed: 12/21/2022]
Abstract
Glioblastoma is a type of brain cancer with aggressive and invasive nature. Such features result from increased proliferation and migration and also poor apoptosis of glioma cells leading to resistance to current treatments such as chemotherapy and radiotherapy. In recent studies, micro RNAs have been introduced as a novel target for treating glioblastoma via regulation of apoptotic signaling pathway, remarkably PI3K/AKT, which affect cellular functions and blockage or progression of the tumor. In this review, we focus on PI3K/AKT signaling pathway and other related apoptotic processes contributing to glioblastoma and investigate the role of micro RNAs interfering in apoptosis, invasion and proliferation of glioma through such apoptotic processes pathways. Databases NCBI, PubMed, and Web of Science were searched for published English articles using keywords such as 'miRNA OR microRNA', 'Glioblastoma', 'apoptotic pathways', 'PI3K and AKT', 'Caspase signaling Pathway' and 'Notch pathway'. Most articles were published from 7 May 2015 to 16 June 2020. This study focused on PI3K/AKT signaling pathway affecting glioma cells in separated subparts. Also, other related apoptotic pathways as the Caspase cycle and Notch have been also investigated. Nearly 40 miRNAs were found as tumor suppressors or onco-miRNA, and their targets, which regulated subcomponents participating in proliferation, invasion, and apoptosis of the tumoral cells. Our review reveals that miRNAs affect key molecules in signaling apoptotic pathways, partly PI3K/AKT, making them potential therapeutic targets to overcome the tumor. However, their utility as a novel treatment for glioblastoma requires further examination and investigation.
Collapse
Affiliation(s)
- Roshanak Ghaffarian Zirak
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hurie Tajik
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Science, Shahrekord, Iran.,Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Jahanbakhsh Asadi
- Department of Clinical Biochemistry, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pedram Hashemian
- Jahad Daneshgahi Research Committee, Jahad Daneshgahi Institute, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Uzuner E, Ulu GT, Gürler SB, Baran Y. The Role of MiRNA in Cancer: Pathogenesis, Diagnosis, and Treatment. Methods Mol Biol 2022; 2257:375-422. [PMID: 34432288 DOI: 10.1007/978-1-0716-1170-8_18] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer is also determined by the alterations of oncogenes and tumor suppressor genes. These gene expressions can be regulated by microRNAs (miRNA). At this point, researchers focus on addressing two main questions: "How are oncogenes and/or tumor suppressor genes regulated by miRNAs?" and "Which other mechanisms in cancer cells are regulated by miRNAs?" In this work we focus on gathering the publications answering these questions. The expression of miRNAs is affected by amplification, deletion or mutation. These processes are controlled by oncogenes and tumor suppressor genes, which regulate different mechanisms of cancer initiation and progression including cell proliferation, cell growth, apoptosis, DNA repair, invasion, angiogenesis, metastasis, drug resistance, metabolic regulation, and immune response regulation in cancer cells. In addition, profiling of miRNA is an important step in developing a new therapeutic approach for cancer.
Collapse
Affiliation(s)
- Erez Uzuner
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Gizem Tugçe Ulu
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Sevim Beyza Gürler
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Yusuf Baran
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey.
| |
Collapse
|
4
|
Halle MK, Sundaresan A, Zhang J, Pedamallu CS, Srinivasasainagendra V, Blair J, Brooke D, Bertelsen BI, Woie K, Shrestha S, Tiwari H, Wong YF, Krakstad C, Ojesina AI. Genomic alterations associated with mutational signatures, DNA damage repair and chromatin remodeling pathways in cervical carcinoma. NPJ Genom Med 2021; 6:82. [PMID: 34620846 PMCID: PMC8497615 DOI: 10.1038/s41525-021-00244-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/23/2021] [Indexed: 11/08/2022] Open
Abstract
Despite recent advances in the prevention of cervical cancer, the disease remains a leading cause of cancer-related deaths in women worldwide. By applying the GISTIC2.0 and/or the MutSig2CV algorithms on 430 whole-exome-sequenced cervical carcinomas, we identified previously unreported significantly mutated genes (SMGs) (including MSN, GPX1, SPRED3, FAS, and KRT8), amplifications (including NFIA, GNL1, TGIF1, and WDR87) and deletions (including MIR562, PVRL1, and NTM). Subset analyses of 327 squamous cell carcinomas and 86 non-squamous cell carcinomas revealed previously unreported SMGs in BAP1 and IL28A, respectively. Distinctive copy number alterations related to tumors predominantly enriched for *CpG- and Tp*C mutations were observed. CD274, GRB2, KRAS, and EGFR were uniquely significantly amplified within the Tp*C-enriched tumors. A high frequency of aberrations within DNA damage repair and chromatin remodeling genes were detected. Facilitated by the large sample size derived from combining multiple datasets, this study reveals potential targets and prognostic markers for cervical cancer.
Collapse
Affiliation(s)
- Mari K Halle
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aishwarya Sundaresan
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianqing Zhang
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Jessica Blair
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dewey Brooke
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bjørn I Bertelsen
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Kathrine Woie
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway
| | - Sadeep Shrestha
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hemant Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yick Fu Wong
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Camilla Krakstad
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway.
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Akinyemi I Ojesina
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
| |
Collapse
|
5
|
Wei J, Gilboa E, Calin GA, Heimberger AB. Immune Modulatory Short Noncoding RNAs Targeting the Glioblastoma Microenvironment. Front Oncol 2021; 11:682129. [PMID: 34532286 PMCID: PMC8438301 DOI: 10.3389/fonc.2021.682129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Glioblastomas are heterogeneous and have a poor prognosis. Glioblastoma cells interact with their neighbors to form a tumor-permissive and immunosuppressive microenvironment. Short noncoding RNAs are relevant mediators of the dynamic crosstalk among cancer, stromal, and immune cells in establishing the glioblastoma microenvironment. In addition to the ease of combinatorial strategies that are capable of multimodal modulation for both reversing immune suppression and enhancing antitumor immunity, their small size provides an opportunity to overcome the limitations of blood-brain-barrier (BBB) permeability. To enhance glioblastoma delivery, these RNAs have been conjugated with various molecules or packed within delivery vehicles for enhanced tissue-specific delivery and increased payload. Here, we focus on the role of RNA therapeutics by appraising which types of nucleotides are most effective in immune modulation, lead therapeutic candidates, and clarify how to optimize delivery of the therapeutic RNAs and their conjugates specifically to the glioblastoma microenvironment.
Collapse
Affiliation(s)
- Jun Wei
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Eli Gilboa
- Department of Microbiology & Immunology, Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - George A Calin
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amy B Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
6
|
Umapathy D, Karthikeyan MC, Ponnuchamy K, Arockiam AJV. Transcriptional expression of miRNAs under glucose depletion/2-deoxy-d-glucose in HCC: A possible genetic footprints of angiogenesis and its hallmarks. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Jin W, Wang L, Cheng S, Lv H. Prognostic value of microRNA-378 in esophageal cancer and its regulatory effect on tumor progression. Exp Ther Med 2021; 22:704. [PMID: 34007313 DOI: 10.3892/etm.2021.10136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
The incidence and mortality rates of esophageal squamous cell carcinoma (ESCC) are high in China, which has increased the clinical and economic burden. The present study aimed to investigate the role of microRNA (miRNA/miR)-378 in ESCC. Reverse transcription-quantitative polymerase chain reaction analysis was performed to detect miR-378 expression in ESCC tissues and cell lines. Survival analysis was performed using the Kaplan-Meier method, while Cox regression analysis was performed to determine the prognostic value of miR-378 in ESCC. miR-378 mimic and miR-378 inhibitor was transfected into ESCC cells to overexpress or knockdown miR-378 expression levels in ESCC cells. The Cell Counting Kit-8 assay was performed to assess the proliferative ability of ESCC cells, while the Transwell assay was conducted to assess the effect of miR-378 on the migratory and invasive abilities of ESCC cells. The results demonstrated that miR-378 displayed significantly lower expression both in ESCC cells and tissues by comparison with those in normal cells and adjacent tissues. In addition, patients with low miR-378 expression had a worse prognosis and a shorter overall survival time than those with high miR-378 expression. Furthermore, low miR-378 expression promoted ESCC cell proliferation, migration and invasion. Taken together, the results of the present study suggest that miR-378 may act as a tumor suppressor in the occurrence and development of ESCC.
Collapse
Affiliation(s)
- Wei Jin
- Department of Gastroenterology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Lixin Wang
- Department of Endoscopy, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Sujie Cheng
- Department of Infectious Diseases, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Hongmei Lv
- Department of Cardiology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| |
Collapse
|
8
|
Cong P, Hou HY, Wei W, Zhou Y, Yu XM. MiR-920 and LSP1 co-regulate the growth and migration of glioblastoma cells by modulation of JAK2/STAT5 pathway. J Bioenerg Biomembr 2020; 52:311-320. [PMID: 32770294 DOI: 10.1007/s10863-020-09848-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/29/2020] [Indexed: 11/24/2022]
Abstract
This study probes the function and mechanism of lymphocyte-specific protein 1 (LSP1) in glioblastoma pathogenesis. According to the data acquired from TCGA, Oncomine and GEO databases, the expression and prognostic value of LSP1 and miR-920 in glioblastoma patients were analyzed. The expression levels of LSP1 in U251 and A172 cell lines were analyzed by qRT-PCR and western blotting. CCK8, colony formation and transwell assays were utilized to test glioblastoma cell malignant abilities. Furthermore, the associations between LSP1 and miR-920 were indentified by bioinformatics analysis and rescue assays. Moreover, the protein expression levels of p-JAK2, JAK2, p-STAT5 and STAT5, as the hallmark of JAK/STAT5 signaling, were detected by western blotting. The observations showed that LSP1 was highly augmented in glioblastoma samples. Additionally, up-regulation of LSP1 was associated with a unfavorable prognosis in glioblastoma patients. Biological experiments revealed that depletion of LSP1 significantly suppressed the proliferation, invasion and migration of U251 and A172 cells. MiR-920, as an upstream regulator of LSP1, negatively modulated LSP1 expression and promoted U251 cells malignant behaviors after miR-920 inhibitor treatment. However, together knockdown LSP1 and miR-920 inhibited these effects. Moreover, the expression levels of p-JAK2 and p-STAT5 were increased or decreased in U251 cells after transfection of miR-920 inhibitor or si-LPS1. Taken together, miR-920 might blocked the malignant development of glioblastoma cells, which is possibly realized by targeting LSP1 and modulation of JAK/STAT5 pathway. These findings implied that miR-920/LSP1 was a potential therapeutic target for glioblastoma treatment.
Collapse
Affiliation(s)
- Ping Cong
- Department of Cancer Center, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, People's Republic of China
| | - Hua-Ying Hou
- Department of Cancer Center, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, People's Republic of China
| | - Wei Wei
- Department of Cancer Center, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, People's Republic of China
| | - Yong Zhou
- Department of Cancer Center, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, People's Republic of China
| | - Xiao-Ming Yu
- Department of Cancer Center, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, People's Republic of China.
| |
Collapse
|
9
|
Danbaran GR, Aslani S, Sharafkandi N, Hemmatzadeh M, Hosseinzadeh R, Azizi G, Jadidi-Niaragh F, Babaie F, Mohammadi H. How microRNAs affect the PD-L1 and its synthetic pathway in cancer. Int Immunopharmacol 2020; 84:106594. [PMID: 32416456 DOI: 10.1016/j.intimp.2020.106594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
Abstract
Programmed cell death-ligand 1 (PD-L1) is a glycoprotein that is expressed on the cell surface of both hematopoietic and nonhematopoietic cells. PD-L1 play a role in the immune tolerance and protect self-tissues from immune system attack. Dysfunction of this molecule has been highlighted in the pathogenesis of tumors, autoimmunity, and infectious disorders. MicroRNAs (miRNAs) are endogenous molecules that are classified as small non-coding RNA with approximately 20-22 nucleotides (nt) length. The function of miRNAs is based on complementary interactions with target mRNA via matching completely or incompletely. The result of this function is decay of the target mRNA or preventing mRNA translation. In the past decades, several miRNAs have been discovered which play an important role in the regulation of PD-L1 in various malignancies. In this review, we discuss the effect of miRNAs on PD-L1 expression and consider the effect of miRNAs on the synthetic pathway of PD-L1, especially during cancers.
Collapse
Affiliation(s)
| | - Saeed Aslani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nadia Sharafkandi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Babaie
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|