1
|
Gaimari A, De Lucia A, Nicolini F, Mazzotti L, Maltoni R, Rughi G, Zurlo M, Marchesini M, Juan M, Parras D, Cerchione C, Martinelli G, Bravaccini S, Tettamanti S, Pasetto A, Pasini L, Magnoni C, Gazzola L, Borges de Souza P, Mazza M. Significant Advancements and Evolutions in Chimeric Antigen Receptor Design. Int J Mol Sci 2024; 25:12201. [PMID: 39596267 PMCID: PMC11595069 DOI: 10.3390/ijms252212201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Recent times have witnessed remarkable progress in cancer immunotherapy, drastically changing the cancer treatment landscape. Among the various immunotherapeutic approaches, adoptive cell therapy (ACT), particularly chimeric antigen receptor (CAR) T cell therapy, has emerged as a promising strategy to tackle cancer. CAR-T cells are genetically engineered T cells with synthetic receptors capable of recognising and targeting tumour-specific or tumour-associated antigens. By leveraging the intrinsic cytotoxicity of T cells and enhancing their tumour-targeting specificity, CAR-T cell therapy holds immense potential in achieving long-term remission for cancer patients. However, challenges such as antigen escape and cytokine release syndrome underscore the need for the continued optimisation and refinement of CAR-T cell therapy. Here, we report on the challenges of CAR-T cell therapies and on the efforts focused on innovative CAR design, on diverse therapeutic strategies, and on future directions for this emerging and fast-growing field. The review highlights the significant advances and changes in CAR-T cell therapy, focusing on the design and function of CAR constructs, systematically categorising the different CARs based on their structures and concepts to guide researchers interested in ACT through an ever-changing and complex scenario. UNIVERSAL CARs, engineered to recognise multiple tumour antigens simultaneously, DUAL CARs, and SUPRA CARs are some of the most advanced instances. Non-molecular variant categories including CARs capable of secreting enzymes, such as catalase to reduce oxidative stress in situ, and heparanase to promote infiltration by degrading the extracellular matrix, are also explained. Additionally, we report on CARs influenced or activated by external stimuli like light, heat, oxygen, or nanomaterials. Those strategies and improved CAR constructs in combination with further genetic engineering through CRISPR/Cas9- and TALEN-based approaches for genome editing will pave the way for successful clinical applications that today are just starting to scratch the surface. The frontier lies in bringing those approaches into clinical assessment, aiming for more regulated, safer, and effective CAR-T therapies for cancer patients.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Immunotherapy, Adoptive/methods
- Neoplasms/therapy
- Neoplasms/immunology
- Animals
- Antigens, Neoplasm/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Genetic Engineering
Collapse
Affiliation(s)
- Anna Gaimari
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Anna De Lucia
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Fabio Nicolini
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Lucia Mazzotti
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Roberta Maltoni
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Giovanna Rughi
- Centro Trial Oncoematologico, Department of “Onco-Ematologia e Terapia Cellulare e Genica Bambino” Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Matteo Zurlo
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Matteo Marchesini
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Manel Juan
- Department of Immunology, Centre de Diagnòstic Biomèdic, Hospital Clínic of Barcelona, 08036 Barcelona, Spain;
| | - Daniel Parras
- Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
| | - Claudio Cerchione
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Giovanni Martinelli
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Sara Bravaccini
- Faculty of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy;
| | - Sarah Tettamanti
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Osp. San Gerardo/Fondazione MBBM, 20900 Monza, Italy;
| | | | - Luigi Pasini
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Chiara Magnoni
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy
| | - Luca Gazzola
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy
| | - Patricia Borges de Souza
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Massimiliano Mazza
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| |
Collapse
|
2
|
Pandit S, Agarwalla P, Song F, Jansson A, Dotti G, Brudno Y. Implantable CAR T cell factories enhance solid tumor treatment. Biomaterials 2024; 308:122580. [PMID: 38640784 PMCID: PMC11125516 DOI: 10.1016/j.biomaterials.2024.122580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/11/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Chimeric Antigen Receptor (CAR) T cell therapy has produced revolutionary success in hematological cancers such as leukemia and lymphoma. Nonetheless, its translation to solid tumors faces challenges due to manufacturing complexities, short-lived in vivo persistence, and transient therapeutic impact. We introduce 'Drydux' - an innovative macroporous biomaterial scaffold designed for rapid, efficient in-situ generation of tumor-specific CAR T cells. Drydux expedites CAR T cell preparation with a mere three-day turnaround from patient blood collection, presenting a cost-effective, streamlined alternative to conventional methodologies. Notably, Drydux-enabled CAR T cells provide prolonged in vivo release, functionality, and enhanced persistence exceeding 150 days, with cells transitioning to memory phenotypes. Unlike conventional CAR T cell therapy, which offered only temporary tumor control, equivalent Drydux cell doses induced lasting tumor remission in various animal tumor models, including systemic lymphoma, peritoneal ovarian cancer, metastatic lung cancer, and orthotopic pancreatic cancer. Drydux's approach holds promise in revolutionizing solid tumor CAR T cell therapy by delivering durable, rapid, and cost-effective treatments and broadening patient accessibility to this groundbreaking therapy.
Collapse
Affiliation(s)
- Sharda Pandit
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Pritha Agarwalla
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Feifei Song
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anton Jansson
- Department of Product Development, Production and Design, School of Engineering, Jönköping University, Sweden
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yevgeny Brudno
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Wang Z, Shang J, Qiu Y, Cheng H, Tao M, Xie E, Pei X, Li W, Zhang L, Wu A, Li G. Suppression of the METTL3-m 6A-integrin β1 axis by extracellular acidification impairs T cell infiltration and antitumor activity. Cell Rep 2024; 43:113796. [PMID: 38367240 DOI: 10.1016/j.celrep.2024.113796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/28/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024] Open
Abstract
The acidic metabolic byproducts within the tumor microenvironment (TME) hinder T cell effector functions. However, their effects on T cell infiltration remain largely unexplored. Leveraging the comprehensive The Cancer Genome Atlas dataset, we pinpoint 16 genes that correlate with extracellular acidification and establish a metric known as the "tumor acidity (TuAci) score" for individual patients. We consistently observe a negative association between the TuAci score and T lymphocyte score (T score) across various human cancer types. Mechanistically, extracellular acidification significantly impedes T cell motility by suppressing podosome formation. This phenomenon can be attributed to the reduced expression of methyltransferase-like 3 (METTL3) and the modification of RNA N6-methyladenosine (m6A), resulting in a subsequent decrease in the expression of integrin β1 (ITGB1). Importantly, enforced ITGB1 expression leads to enhanced T cell infiltration and improved antitumor activity. Our study suggests that modulating METTL3 activity or boosting ITGB1 expression could augment T cell infiltration within the acidic TME, thereby improving the efficacy of cell therapy.
Collapse
Affiliation(s)
- Zhe Wang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Jingzhe Shang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Yajing Qiu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Hongcheng Cheng
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Mengyuan Tao
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Ermei Xie
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Xin Pei
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Wenhui Li
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Lianjun Zhang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China.
| | - Aiping Wu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China.
| | - Guideng Li
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China.
| |
Collapse
|
4
|
Finn P, Chavez M, Chen X, Wang H, Rane DA, Gurjar J, Qi LS. Drug-Mediated Control of Receptor Valency Enhances Immune Cell Potency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522664. [PMID: 36712002 PMCID: PMC9881924 DOI: 10.1101/2023.01.04.522664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Designer T cells offer a novel paradigm for treating diseases like cancer, yet they are often hindered by target recognition evasion and limited in vivo control. To overcome these challenges, we develop valency-controlled receptors (VCRs), a novel class of synthetic receptors engineered to enable precise modulation of immune cell activity. VCRs use custom-designed valency-control ligands (VCLs) to modulate T cell signaling via spatial molecular clustering. Using multivalent DNA origami as VCL, we first establish that valency is important for tuning the activity of CD3-mediated immune activation. We then generate multivalent formats of clinically relevant drugs as VCL and incorporate VCR into the architecture of chimeric antigen receptors (CARs). Our data demonstrate that VCL-mediated VCRs can significantly amplify CAR activities and improve suboptimal CARs. Finally, through medicinal chemistry, we synthesize programmable, bioavailable VCL drugs that potentiate targeted immune response against low-antigen tumors both in vitro and in vivo. Our findings establish receptor valency as a core mechanism for enhancing CAR functionality and offer a synthetic chemical biology platform for strengthening customizable, potent, and safer cell therapies.
Collapse
|
5
|
Zhang XW, Wu YS, Xu TM, Cui MH. CAR-T Cells in the Treatment of Ovarian Cancer: A Promising Cell Therapy. Biomolecules 2023; 13:biom13030465. [PMID: 36979400 PMCID: PMC10046142 DOI: 10.3390/biom13030465] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Ovarian cancer (OC) is among the most common gynecologic malignancies with a poor prognosis and a high mortality rate. Most patients are diagnosed at an advanced stage (stage III or IV), with 5-year survival rates ranging from 25% to 47% worldwide. Surgical resection and first-line chemotherapy are the main treatment modalities for OC. However, patients usually relapse within a few years of initial treatment due to resistance to chemotherapy. Cell-based therapies, particularly adoptive T-cell therapy and chimeric antigen receptor T (CAR-T) cell therapy, represent an alternative immunotherapy approach with great potential for hematologic malignancies. However, the use of CAR-T-cell therapy for the treatment of OC is still associated with several difficulties. In this review, we comprehensively discuss recent innovations in CAR-T-cell engineering to improve clinical efficacy, as well as strategies to overcome the limitations of CAR-T-cell therapy in OC.
Collapse
|
6
|
Chen K, Wang S, Qi D, Ma P, Fang Y, Jiang N, Wu E, Li N. Clinical Investigations of CAR-T Cell Therapy for Solid Tumors. Front Immunol 2022; 13:896685. [PMID: 35924243 PMCID: PMC9339623 DOI: 10.3389/fimmu.2022.896685] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cell therapy is a distinguished targeted immunotherapy with great potential to treat solid tumors in the new era of cancer treatment. Cell therapy products include genetically engineered cell products and non-genetically engineered cell products. Several recent cell therapies, especially chimeric antigen receptor (CAR)-T cell therapies, have been approved as novel treatment strategies for cancer. Many clinical trials on cell therapies, in the form of cell therapy alone or in combination with other treatments, in solid tumors, have been conducted or ongoing. However, there are still challenges since adverse events and the limited efficacy of cell therapies have also been observed. Here, we concisely summarize the clinical milestones of the conducted and ongoing clinical trials of cell therapy, introduce the evolution of CARs, discuss the challenges and limitations of these therapeutic modalities taking CAR-T as the main focus, and analyze the disparities in the regulatory policies in different countries.
Collapse
Affiliation(s)
- Kun Chen
- National Health Commission (NHC) Key Laboratory of Pulmonary Immune-Related Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Shuhang Wang
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Qi
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, United States
| | - Peiwen Ma
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Fang
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Jiang
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Erxi Wu
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, United States
- Texas A&M University Colleges of Medicine and Pharmacy, College Station, TX, United States
- LIVESTRONG Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Ning Li
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Wang Z, Cheng Z, Lu S, Chard Dunmall LS, Wang J, Guo Y, Wang Y. Characterization of the Intra-tumoral B Cell Immunoglobulin Repertoire Is of Prognostic Value for Esophageal Squamous Cell Carcinoma. Front Immunol 2022; 13:896627. [PMID: 35812448 PMCID: PMC9257635 DOI: 10.3389/fimmu.2022.896627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Esophageal Squamous Cell carcinomas (ESCC) is a highly heterogeneous malignancy that is among the leading cause of cancer-related death worldwide. B cells play pivotal roles in the immune defense system and cancer progression and regression, yet the repertoire of tumor infiltrating B cells (TIBs) and its association with clinical outcome remains unexplored in ESCC. Here we collected bulk RNA-seq sequencing data from 119 ESCC tumors and matched adjacent normal samples to delineate the B cell repertoire. We found that ESCC is more heavily infiltrated by B cells and plasma cells compared to activated T cells. The immunoglobulin heavy chain variable region (IGHV) gene usage was remarkably biased and IGHV3-74 was under-represented in ESCC tumors. The TIBs showed a more oligoclonal profile along with widespread clonal expansion and IgG subclass switch events (CSRs). Survival analysis revealed several unexpected associations between tumor infiltrating B cells and prognosis. Higher levels of immunoglobulin expression (IGH), CD138 expression, IGH to MS4A1 ratio, CSR events and clone diversity are all associated with better survival. Notably, we found that the abundance of CD20-negative IgG2-producing plasma cells has a strong positive effect on overall survival with a hazard ratio (HR) of 0.40 (log-rank p: 0.002). Combing molecular subtyping, the IgG2-producing plasma cells could stratify high-risk patients more accurately with a HR of 0.253 (log-rank p: 0.0006). The direct link between protective B cell populations and ESCC prognosis provides biomarkers for high-risk patient selection and holds great promise for developing strategies for immunotherapy targeting B cells in ESCC patients.
Collapse
Affiliation(s)
- Zhizhong Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Zhenguo Cheng
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuangshuang Lu
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa S. Chard Dunmall
- Centre for Biomarkers Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jun Wang
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Yongjun Guo
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Yaohe Wang, ; Yongjun Guo,
| | - Yaohe Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Biomarkers Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- *Correspondence: Yaohe Wang, ; Yongjun Guo,
| |
Collapse
|
8
|
Kanda Y, Okazaki T, Katakai T. Motility Dynamics of T Cells in Tumor-Draining Lymph Nodes: A Rational Indicator of Antitumor Response and Immune Checkpoint Blockade. Cancers (Basel) 2021; 13:4616. [PMID: 34572844 PMCID: PMC8465463 DOI: 10.3390/cancers13184616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 01/22/2023] Open
Abstract
The migration status of T cells within the densely packed tissue environment of lymph nodes reflects the ongoing activation state of adaptive immune responses. Upon encountering antigen-presenting dendritic cells, actively migrating T cells that are specific to cognate antigens slow down and are eventually arrested on dendritic cells to form immunological synapses. This dynamic transition of T cell motility is a fundamental strategy for the efficient scanning of antigens, followed by obtaining the adequate activation signals. After receiving antigenic stimuli, T cells begin to proliferate, and the expression of immunoregulatory receptors (such as CTLA-4 and PD-1) is induced on their surface. Recent findings have revealed that these 'immune checkpoint' molecules control the activation as well as motility of T cells in various situations. Therefore, the outcome of tumor immunotherapy using checkpoint inhibitors is assumed to be closely related to the alteration of T cell motility, particularly in tumor-draining lymph nodes (TDLNs). In this review, we discuss the migration dynamics of T cells during their activation in TDLNs, and the roles of checkpoint molecules in T cell motility, to provide some insight into the effect of tumor immunotherapy via checkpoint blockade, in terms of T cell dynamics and the importance of TDLNs.
Collapse
Affiliation(s)
- Yasuhiro Kanda
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 950-8510, Japan;
| | - Taku Okazaki
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan;
| | - Tomoya Katakai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 950-8510, Japan;
| |
Collapse
|
9
|
Tahmasebi S, Elahi R, Khosh E, Esmaeilzadeh A. Programmable and multi-targeted CARs: a new breakthrough in cancer CAR-T cell therapy. Clin Transl Oncol 2021; 23:1003-1019. [PMID: 32997278 DOI: 10.1007/s12094-020-02490-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
CAR-T cell therapy, as a novel immunotherapy approach, has indicated successful results in the treatment of hematological malignancies; however, distinct results have been achieved regarding solid tumors. Tumor immunosuppressive microenvironment has been identified as the most critical barrier in CAR-T cell therapy of solid tumors. Developing novel strategies to augment the safety and efficacy of CAR-T cells could be useful to overcome the solid tumor hurdles. Similar to other cancer treatments, CAR-T cell therapy can cause some side effects, which can disturb the healthy tissues. In the current review, we will discuss the practical breakthroughs in CAR-T cell therapy using the multi-targeted and programmable CARs instead of conventional types. These superior types of CAR-T cells have been developed to increase the function and safety of T cells in a controllable manner, which would diminish the incidence of relevant side effects. Moreover, we will describe the capability of these powerful CARs in targeting multiple tumor antigens, redirecting the CAR-T cells to specific target cells, incrementing the safety of CARs, and other advantages that lead to promising outcomes in cancer CAR-T cell therapy.
Collapse
Affiliation(s)
- S Tahmasebi
- Department of Immunology, Health Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - R Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - E Khosh
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - A Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Science, Zanjan, Iran.
- Cancer Gene Therapy Research Center, Zanjan University of Medical Science, Zanjan, Iran.
- Immunotherapy Research and Technology Group, Zanjan University of Medical Science, Zanjan, Iran.
| |
Collapse
|
10
|
Zhang L, Zuo Y, Lu A, Wu J, Jia Y, Wang Y, Zhang L. Safety and Efficacy of Chimeric Antigen Receptor T-Cell Therapy in Children With Central Nervous System Leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:e410-e414. [PMID: 33526401 DOI: 10.1016/j.clml.2020.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND chimeric antigen receptor-modified T cell (CAR-T) therapy is an effective and promising treatment for refractory and multiply relapsed B-cell acute lymphoblastic leukemia (B-ALL). Because of its side effects and poor responses such as neurotoxicity and cytokine release syndrome, patients with central nervous system leukemia were excluded in most previous clinical trials of CAR-T treatment. PATIENTS AND METHODS We enrolled 3 B-ALL patients with central nervous system leukemia relapse. They were infused with CD19-specific CAR-Ts, and their clinical responses were evaluated by bone marrow smear, flow cytometry, and cytogenetic alterations detected by quantitative PCR, interleukin-6, and the expansion and persistence of circulating CAR-Ts in peripheral blood and cerebrospinal fluid. RESULTS After CAR-T infusion, 2 of the 3 patients experienced bone marrow minimal residual disease-negative complete remission, and all patients tested negative for residual leukemia cells in cerebrospinal fluid tested by flow cytometry. These 3 patients experienced grade 2 or 3 cytokine release syndrome, which resolved completely after symptomatic treatment. None experienced neurotoxicity or needed further intensive care. CONCLUSION CAR-T infusion is a potentially effective treatment for relapsed/refractory B-ALL patients with central nervous system involvement.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - Yingxi Zuo
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - Aidong Lu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - Jun Wu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - Yueping Jia
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - Yu Wang
- Research Department, Immunotech Applied Science Ltd, Beijing, China
| | - Leping Zhang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
11
|
Tristán-Manzano M, Justicia-Lirio P, Maldonado-Pérez N, Cortijo-Gutiérrez M, Benabdellah K, Martin F. Externally-Controlled Systems for Immunotherapy: From Bench to Bedside. Front Immunol 2020; 11:2044. [PMID: 33013864 PMCID: PMC7498544 DOI: 10.3389/fimmu.2020.02044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022] Open
Abstract
Immunotherapy is a very promising therapeutic approach against cancer that is particularly effective when combined with gene therapy. Immuno-gene therapy approaches have led to the approval of four advanced therapy medicinal products (ATMPs) for the treatment of p53-deficient tumors (Gendicine and Imlygic), refractory acute lymphoblastic leukemia (Kymriah) and large B-cell lymphomas (Yescarta). In spite of these remarkable successes, immunotherapy is still associated with severe side effects for CD19+ malignancies and is inefficient for solid tumors. Controlling transgene expression through an externally administered inductor is envisioned as a potent strategy to improve safety and efficacy of immunotherapy. The aim is to develop smart immunogene therapy-based-ATMPs, which can be controlled by the addition of innocuous drugs or agents, allowing the clinicians to manage the intensity and durability of the therapy. In the present manuscript, we will review the different inducible, versatile and externally controlled gene delivery systems that have been developed and their applications to the field of immunotherapy. We will highlight the advantages and disadvantages of each system and their potential applications in clinics.
Collapse
Affiliation(s)
- María Tristán-Manzano
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Pedro Justicia-Lirio
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain.,LentiStem Biotech, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Noelia Maldonado-Pérez
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Marina Cortijo-Gutiérrez
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Karim Benabdellah
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Francisco Martin
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| |
Collapse
|
12
|
Hou A, Hou K, Huang Q, Lei Y, Chen W. Targeting Myeloid-Derived Suppressor Cell, a Promising Strategy to Overcome Resistance to Immune Checkpoint Inhibitors. Front Immunol 2020. [PMID: 32508809 DOI: 10.3389/fimmu.2020.00783.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are starting to transform the treatment for patients with advanced cancer. The extensive application of these antibodies for various cancer obtains exciting anti-tumor immune response by activating T cells. Although the encouraging clinical benefit in patients receiving these immunostimulatory agents are observed, numbers of patients still derive limited response or even none for reasons unknown, sometimes at the cost of adverse reactions. Myeloid-derived suppressor cells (MDSCs) is a heterogeneous immature population of myeloid cells partly influencing the efficacy of immunotherapies. These cells not only directly suppress T cell but mediate a potently immunosuppressive network within tumor microenvironment to attenuate the anti-tumor response. The crosstalk between MDSCs and immune cells/non-immune cells generates several positive feedbacks to negatively modulate the tumor microenvironment. As such, the recruitment of immunosuppressive cells, upregulation of immune checkpoints, angiogenesis and hypoxia are induced and contributing to the acquired resistance to ICIs. Targeting MDSCs could be a potential therapy to overcome the limitation. In this review, we focus on the role of MDSCs in resistance to ICIs and summarize the therapeutic strategies targeting them to enhance ICIs efficiency in cancer patients.
Collapse
Affiliation(s)
- Aohan Hou
- Faculty of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Kaiyu Hou
- Department of Bone and Trauma, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Qiubo Huang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, China
| | - Yujie Lei
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, China
| | - Wanling Chen
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, China
| |
Collapse
|
13
|
Hou A, Hou K, Huang Q, Lei Y, Chen W. Targeting Myeloid-Derived Suppressor Cell, a Promising Strategy to Overcome Resistance to Immune Checkpoint Inhibitors. Front Immunol 2020; 11:783. [PMID: 32508809 PMCID: PMC7249937 DOI: 10.3389/fimmu.2020.00783] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are starting to transform the treatment for patients with advanced cancer. The extensive application of these antibodies for various cancer obtains exciting anti-tumor immune response by activating T cells. Although the encouraging clinical benefit in patients receiving these immunostimulatory agents are observed, numbers of patients still derive limited response or even none for reasons unknown, sometimes at the cost of adverse reactions. Myeloid-derived suppressor cells (MDSCs) is a heterogeneous immature population of myeloid cells partly influencing the efficacy of immunotherapies. These cells not only directly suppress T cell but mediate a potently immunosuppressive network within tumor microenvironment to attenuate the anti-tumor response. The crosstalk between MDSCs and immune cells/non-immune cells generates several positive feedbacks to negatively modulate the tumor microenvironment. As such, the recruitment of immunosuppressive cells, upregulation of immune checkpoints, angiogenesis and hypoxia are induced and contributing to the acquired resistance to ICIs. Targeting MDSCs could be a potential therapy to overcome the limitation. In this review, we focus on the role of MDSCs in resistance to ICIs and summarize the therapeutic strategies targeting them to enhance ICIs efficiency in cancer patients.
Collapse
Affiliation(s)
- Aohan Hou
- Faculty of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Kaiyu Hou
- Department of Bone and Trauma, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Qiubo Huang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, China
| | - Yujie Lei
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, China
| | - Wanling Chen
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, China
| |
Collapse
|
14
|
Yadav RK, Ali A, Kumar S, Sharma A, Baghchi B, Singh P, Das S, Singh C, Sharma S. CAR T cell therapy: newer approaches to counter resistance and cost. Heliyon 2020; 6:e03779. [PMID: 32322738 PMCID: PMC7171532 DOI: 10.1016/j.heliyon.2020.e03779] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/05/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
The genetically engineered Chimeric Antigen Receptor bearing T-cell (CAR T cell) therapy has been emerged as the new paradigm of cancer immunotherapy. However, recent studies have reported an increase in the number of relapsed haematological malignancies. This review provides newer insights into how the efficacy of CAR T cells might be increased by the application of new genome editing technologies, monitoring the complexity of tumor types and T cells sub-types. Next, tumor mutation burden along with tumormicroenvironment and epigenetic mechanisms of CAR T cell as well as tumor cell may play a vital role to tackle the cancer resistance mechanisms. These studies highlight the need to consider traditional cancer therapy in conjunction with CAR T cell therapy for relapsed or cases unresponsive to treatment. Of note, this therapy is highly expensive and requires multi-skill for successful implementation, which results in reduction of its accessibility/affordability to the patients. Here, we also propose a model for cost minimization of CAR T cell therapy by a collaboration of academia, hospitals and industry.
Collapse
Affiliation(s)
- Rajesh Kumar Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, India
| | - Santosh Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Delhi, India
| | - Basab Baghchi
- Department of Medical Oncology/Haematology, All India Institute of Medical Sciences, Patna, India
| | - Pritanjali Singh
- Department of Radiotherapy, All India Institute of Medical Sciences, Patna, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Patna, India
| | - Chandramani Singh
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Patna, India
| | - Sadhana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, India
| |
Collapse
|
15
|
Kochneva GV, Sivolobova GF, Tkacheva AV, Gorchakov AA, Kulemzin SV. Combination of Oncolytic Virotherapy and CAR T/NK Cell Therapy for the Treatment of Cancer. Mol Biol 2020; 54:3-16. [DOI: 10.1134/s0026893320010100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 12/28/2022]
|
16
|
Salinas RD, Durgin JS, O'Rourke DM. Potential of Glioblastoma-Targeted Chimeric Antigen Receptor (CAR) T-Cell Therapy. CNS Drugs 2020; 34:127-145. [PMID: 31916100 DOI: 10.1007/s40263-019-00687-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite the established efficacy of chimeric antigen receptor (CAR) T-cell therapy in hematologic malignancies, translating CAR T therapy to solid tumors has remained investigational. Glioblastoma, the most aggressive and lethal form of primary brain tumor, has recently been among the malignancies being trialed clinically with CAR T cells. Glioblastoma in particular holds several unique features that have hindered clinical translation, including its vast intertumoral and intratumoral heterogeneity, associated immunosuppressive environment, and lack of clear experimental models to predict response and analyze resistant phenotypes. Here, we review the history of CAR T therapy development, its current progress in treating glioblastoma, as well as the current challenges and future directions in establishing CAR T therapy as a viable alternative to the current standard of care. Tremendous efforts are currently ongoing to identify novel CAR targets and target combinations for glioblastoma, to modify T cells to enhance their efficacy and to enable them to resist tumor-mediated immunosuppression, and to utilize adjunct therapies such as lymphodepletion, checkpoint inhibition, and bi-specific engagers to improve CAR T persistence. Furthermore, new preclinical models of CAR T therapy are being developed that better reflect the clinical features seen in human trials. Current clinical trials that rapidly incorporate key preclinical findings to patient translation are emerging.
Collapse
Affiliation(s)
- Ryan D Salinas
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joseph S Durgin
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Glioblastoma Translational Center of Excellence, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
17
|
Caraballo Galva LD, Cai L, Shao Y, He Y. Engineering T cells for immunotherapy of primary human hepatocellular carcinoma. J Genet Genomics 2020; 47:1-15. [PMID: 32089500 DOI: 10.1016/j.jgg.2020.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
Abstract
Liver cancers, majority of which are primary hepatocellular carcinoma (HCC), continue to be on the rise in the world. Furthermore, due to the lack of effective treatments, liver cancer ranks the 4th most common cause of male cancer deaths. Novel therapies are urgently needed. Over the last few years, immunotherapies, especially the checkpoint blockades and adoptive cell therapies of engineered T cells, have demonstrated a great potential for treating malignant tumors including HCC. In this review, we summarize the current ongoing research of antigen-specific immunotherapies including cancer vaccines and adoptive cell therapies for HCC. We briefly discuss the HCC cancer vaccine and then focus on the antigen-specific T cells genetically engineered with the T cell receptor genes (TCRTs) and the chimeric antigen receptor genes (CARTs). We first review the current options of TCRTs and CARTs immunotherapies for HCC, and then analyze the factors and parameters that may help to improve the design of TCRTs and CARTs to enhance their antitumor efficacy and safety. Our goals are to render readers a panoramic view of the current stand of HCC immunotherapies and provide some strategies to design better TCRTs and CARTs to achieve more effective and durable antitumor effects.
Collapse
Affiliation(s)
- Leidy D Caraballo Galva
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Lun Cai
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yanxia Shao
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yukai He
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
18
|
Sur D, Havasi A, Cainap C, Samasca G, Burz C, Balacescu O, Lupan I, Deleanu D, Irimie A. Chimeric Antigen Receptor T-Cell Therapy for Colorectal Cancer. J Clin Med 2020; 9:jcm9010182. [PMID: 31936611 PMCID: PMC7019711 DOI: 10.3390/jcm9010182] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy represents a new genetically engineered method of immunotherapy for cancer. The patient’s T-cells are modified to express a specific receptor that sticks to the tumor antigen. This modified cell is then reintroduced into the patient’s body to fight the resilient cancer cells. After exhibiting positive results in hematological malignancies, this therapy is being proposed for solid tumors like colorectal cancer. The clinical data of CAR T-cell therapy in colorectal cancer is rather scarce. In this review, we summarize the current state of knowledge, challenges, and future perspectives of CAR T-cell therapy in colorectal cancer. A total of 22 articles were included in this review. Eligible studies were selected and reviewed by two researchers from 49 articles found on Pubmed, Web of Science, and clinicaltrials.gov. This therapy, at the moment, provides modest benefits in solid tumors. Not taking into consideration the high manufacturing and retail prices, there are still limitations like increased toxicities, relapses, and unfavorable tumor microenvironment for CAR T-cell therapy in colorectal cancer.
Collapse
Affiliation(s)
- Daniel Sur
- 11th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400015 Cluj-Napoca, Romania; (D.S.); (C.C.); (O.B.)
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (A.H.); (C.B.)
| | - Andrei Havasi
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (A.H.); (C.B.)
| | - Calin Cainap
- 11th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400015 Cluj-Napoca, Romania; (D.S.); (C.C.); (O.B.)
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (A.H.); (C.B.)
| | - Gabriel Samasca
- Department of Immunology and Allergology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400162 Cluj-Napoca, Romania;
- Correspondence:
| | - Claudia Burz
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (A.H.); (C.B.)
- Department of Immunology and Allergology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400162 Cluj-Napoca, Romania;
| | - Ovidiu Balacescu
- 11th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400015 Cluj-Napoca, Romania; (D.S.); (C.C.); (O.B.)
- Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania
| | - Iulia Lupan
- Department of Molecular Biology and Biotehnology, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Diana Deleanu
- Department of Immunology and Allergology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400162 Cluj-Napoca, Romania;
| | - Alexandru Irimie
- 11th Department of Oncological Surgery and Gynecological Oncology, “IuliuHatieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
- Department of Surgery, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania
| |
Collapse
|
19
|
Sureban SM, Berahovich R, Zhou H, Xu S, Wu L, Ding K, May R, Qu D, Bannerman-Menson E, Golubovskaya V, Houchen CW. DCLK1 Monoclonal Antibody-Based CAR-T Cells as a Novel Treatment Strategy against Human Colorectal Cancers. Cancers (Basel) 2019; 12:cancers12010054. [PMID: 31878090 PMCID: PMC7016951 DOI: 10.3390/cancers12010054] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
CAR-T (chimeric antigen receptor T cells) immunotherapy is effective in many hematological cancers; however, efficacy in solid tumors is disappointing. Doublecortin-like kinase 1 (DCLK1) labels tumor stem cells (TSCs) in genetic mouse models of colorectal cancer (CRC). Here, we describe a novel CAR-T targeting DCLK1 (CBT-511; with our proprietary DCLK1 single-chain antibody variable fragment) as a treatment strategy to eradicate CRC TSCs. The cell surface expression of DCLK1 and cytotoxicity of CBT-511 were assessed in CRC cells (HT29, HCT116, and LoVo). LoVo-derived tumor xenografts in NOD Scid gamma (NSGTM)mice were treated with CBT-511 or mock CAR-T cells. Adherent CRC cells express surface DCLK1 (two-dimensional, 2D). A 4.5-fold increase in surface DCLK1 was observed when HT29 cells were grown as spheroids (three-dimensional, 3D). CBT-511 induced cytotoxicity (2D; p < 0.0001), and increased Interferon gamma (IFN-γ) release in CRC cells (2D) compared to mock CAR-T (p < 0.0001). Moreover, an even greater increase in IFN-γ release was observed when cells were grown in 3D. CBT-511 reduced tumor growth by approximately 50 percent compared to mock CAR-T. These data suggest that CRC cells with increased clonogenic capacity express increased surface DCLK1. A DCLK1-targeted CAR-T can induce cytotoxicity in vitro and inhibit xenograft growth in vivo.
Collapse
Affiliation(s)
- Sripathi M. Sureban
- COARE Holdings Inc., Oklahoma, OK 73104, USA; (R.M.); (D.Q.); (E.B.-M.)
- Department of Internal Medicine, Digestive Diseases and Nutrition Section, The University of Oklahoma Health Science Center, Oklahoma, OK 73014, USA;
- Correspondence: (S.M.S.); (C.W.H.); Tel.: +1-405-271-5428 (S.M.S. & C.W.H.)
| | - Robert Berahovich
- ProMab Biotechnologies Inc., Richmond, CA 94806, USA; (R.B.); (H.Z.); (S.X.); (L.W.); (V.G.)
| | - Hua Zhou
- ProMab Biotechnologies Inc., Richmond, CA 94806, USA; (R.B.); (H.Z.); (S.X.); (L.W.); (V.G.)
| | - Shirley Xu
- ProMab Biotechnologies Inc., Richmond, CA 94806, USA; (R.B.); (H.Z.); (S.X.); (L.W.); (V.G.)
| | - Lijun Wu
- ProMab Biotechnologies Inc., Richmond, CA 94806, USA; (R.B.); (H.Z.); (S.X.); (L.W.); (V.G.)
| | - Kai Ding
- Department of Internal Medicine, Digestive Diseases and Nutrition Section, The University of Oklahoma Health Science Center, Oklahoma, OK 73014, USA;
| | - Randal May
- COARE Holdings Inc., Oklahoma, OK 73104, USA; (R.M.); (D.Q.); (E.B.-M.)
- Department of Internal Medicine, Digestive Diseases and Nutrition Section, The University of Oklahoma Health Science Center, Oklahoma, OK 73014, USA;
| | - Dongfeng Qu
- COARE Holdings Inc., Oklahoma, OK 73104, USA; (R.M.); (D.Q.); (E.B.-M.)
- Department of Internal Medicine, Digestive Diseases and Nutrition Section, The University of Oklahoma Health Science Center, Oklahoma, OK 73014, USA;
| | | | - Vita Golubovskaya
- ProMab Biotechnologies Inc., Richmond, CA 94806, USA; (R.B.); (H.Z.); (S.X.); (L.W.); (V.G.)
| | - Courtney W. Houchen
- COARE Holdings Inc., Oklahoma, OK 73104, USA; (R.M.); (D.Q.); (E.B.-M.)
- Department of Internal Medicine, Digestive Diseases and Nutrition Section, The University of Oklahoma Health Science Center, Oklahoma, OK 73014, USA;
- Veterans Affairs Medical Center, Oklahoma, OK 73104, USA
- Correspondence: (S.M.S.); (C.W.H.); Tel.: +1-405-271-5428 (S.M.S. & C.W.H.)
| |
Collapse
|
20
|
Minn I, Rowe SP, Pomper MG. Enhancing CAR T-cell therapy through cellular imaging and radiotherapy. Lancet Oncol 2019; 20:e443-e451. [PMID: 31364596 DOI: 10.1016/s1470-2045(19)30461-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is one of the most remarkable advances in cancer therapy in the last several decades. More than 300 adoptive T-cell therapy trials are ongoing, which is a testament to the early success and hope engendered by this line of investigation. Despite the enthusiasm, application of CAR T-cell therapy to solid tumours has had little success, although positive outcomes are increasingly being reported for these diseases. In this Series paper, we discuss the short-term strategies to improve CAR T-cell therapy responses, particularly for solid tumours, by combining CAR T-cell therapy with radiotherapy through the use of careful monitoring and non-invasive imaging. Through the use of imaging, we can gain greater mechanistic insights into the cascade of events that must unfold to enable tumour eradication by CAR T-cell therapy.
Collapse
Affiliation(s)
- Il Minn
- Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven P Rowe
- Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin G Pomper
- Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|