1
|
Noruzi S, Mohammadi R, Jamialahmadi K. CRISPR/Cas9 system: a novel approach to overcome chemotherapy and radiotherapy resistance in cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03480-2. [PMID: 39560750 DOI: 10.1007/s00210-024-03480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/21/2024] [Indexed: 11/20/2024]
Abstract
Cancer presents a global health challenge with rising incidence and mortality. Despite treatment advances in cancer therapy, radiotherapy and chemotherapy remained the most common treatments for all types of cancers. However, resistance phenotype in cancer cells leads to unsatisfactory results in the efficiency of therapeutic strategies. Therefore, researchers strive to propose effective solutions to overcome treatment failure, which requires a deep knowledge of treatment-resistant mechanisms. The progression and occurrence of tumors can be attributed to gene mutation. Over the past decade, the emergence of clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9) genome editing has revolutionized cancer research. This versatile technology enables cancer modeling, manipulation of specific DNA sequences, and genome-wide screening. CRISPR/Cas9 is an effective tool for identifying radio- and chemoresistance genes and offering potential adjunctive treatments to overcome tumor recurrence after chemo- and radiotherapy. This article aims to explain the potential of the CRISPR/Cas9 system in improving the effectiveness of chemo- and radiotherapy and ultimately overcoming treatment failure.
Collapse
Affiliation(s)
- Somaye Noruzi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rezvan Mohammadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Ayala-de Miguel C, Jiménez-Castro J, Sánchez-Vegas A, Díaz-López S, Chaves-Conde M. Third-line treatment and beyond in metastatic colorectal cancer: What do we have and what can we expect? Crit Rev Oncol Hematol 2024; 202:104454. [PMID: 39043356 DOI: 10.1016/j.critrevonc.2024.104454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/25/2024] Open
Abstract
Colorectal cancer remains the third most common cancer worldwide and the second cause of cancer-related death. Treatment advances and precision oncological medicine for these tumours have been stalled in comparison to those for other common tumours such as lung and breast cancer. However, the recent publication of the SUNLIGHT trial results with the trifluridine/tipiracil (TAS-102)-bevacizumab combination and the irruption of new molecular targets with guided treatments have opened new possibilities in third-line metastatic colorectal cancer management. Anti-EGFR rechallenge, anti-HER2 targeted therapies or the promising results of Pressurised Intraperitoneal Aerosol Chemotherapy (PIPAC), are some of the available options that may modify what is presumably third-line colorectal treatment. Hereby, we present the evidence of the different treatment options in third-line colorectal cancer and beyond, as well as the possibilities of sequencing them.
Collapse
Affiliation(s)
- Carlos Ayala-de Miguel
- Servicio Oncología Médica, Hospital Universitario Virgen de Valme, Ctra, de Cádiz Km 548,9, Seville C.P. 41014, Spain.
| | - Jerónimo Jiménez-Castro
- Servicio Oncología Médica, Hospital Universitario Virgen de Valme, Ctra, de Cádiz Km 548,9, Seville C.P. 41014, Spain.
| | - Adrián Sánchez-Vegas
- Servicio Oncología Médica, Hospital Universitario Virgen de Valme, Ctra, de Cádiz Km 548,9, Seville C.P. 41014, Spain.
| | - Sebastián Díaz-López
- Servicio Oncología Médica, Hospital Universitario Virgen de Valme, Ctra, de Cádiz Km 548,9, Seville C.P. 41014, Spain.
| | - Manuel Chaves-Conde
- Servicio Oncología Médica, Hospital Universitario Virgen de Valme, Ctra, de Cádiz Km 548,9, Seville C.P. 41014, Spain.
| |
Collapse
|
3
|
Yang K, Zhu L, Liu C, Zhou D, Zhu Z, Xu N, Li W. Current status and prospect of the DNA double-strand break repair pathway in colorectal cancer development and treatment. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167438. [PMID: 39059591 DOI: 10.1016/j.bbadis.2024.167438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. Double-strand break (DSB) is the most severe type of DNA damage. However, few reviews have thoroughly examined the involvement of DSB in CRC. Latest researches demonstrated that DSB repair plays an important role in CRC. For example, DSB-related genes such as BRCA1, Ku-70 and DNA polymerase theta (POLQ) are associated with the occurrence of CRC, and POLQ even showed to affect the prognosis and resistance for radiotherapy in CRC. This review comprehensively summarizes the DSB role in CRC, explores the mechanisms and discusses the association with CRC treatment. Four pathways for DSB have been demonstrated. 1. Nonhomologous end joining (NHEJ) is the major pathway. Its core genes including Ku70 and Ku80 bind to broken ends and recruit repair factors to form a complex that mediates the connection of DNA breaks. 2. Homologous recombination (HR) is another important pathway. Its key genes including BRCA1 and BRCA2 are involved in finding, pairing, and joining broken ends, and ensure the restoration of breaks in a normal double-stranded DNA structure. 3. Single-strand annealing (SSA) pathway, and 4. POLθ-mediated end-joining (alt-EJ) is a backup pathway. This paper elucidates roles of the DSB repair pathways in CRC, which could contribute to the development of potential new treatment approaches and provide new opportunities for CRC treatment and more individualized treatment options based on therapeutic strategies targeting these DNA repair pathways.
Collapse
Affiliation(s)
- Kexin Yang
- Department of Colorectal Surgery, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650106, China; Kunming Medical University, Kunming 650500, China
| | - Lihua Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Kunming Medical University, Kunming 650500, China
| | - Chang Liu
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Dayang Zhou
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Zhu Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Ning Xu
- Department of Colorectal Surgery, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650106, China; Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Kunming Medical University, Kunming 650500, China.
| | - Wenliang Li
- Department of Colorectal Surgery, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650106, China; Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
4
|
Spagnardi M, Paredes J, Zabaleta J, Garai J, Reyes T, Martello LA, Williams JL. IL-1β enhances cell viability and decreases 5-FU sensitivity in novel colon cancer cell lines derived from African American patients. Front Oncol 2022; 12:1010380. [PMID: 36531053 PMCID: PMC9754664 DOI: 10.3389/fonc.2022.1010380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
BackgroundIn the U.S., African Americans (AAs) present with the highest incidence and mortality rates for Colorectal Cancer (CRC). When compared to Caucasian American (CA) patients, AAs also have reduced response to the first line standard of care chemotherapeutic agent 5-Fluorouracil (5-FU). Previously, we observed differential gene expression between the two populations, suggesting that colon tumors from AA patients display a decreased antitumor immune response and an increased expression of genes encoding proteins involved in inflammatory processes, such as Interleukin-1β (IL-1β). Here, we investigate the role of IL-1β in modifying chemotherapeutic response and altering expression of proteins in novel AA and well-established CA colon cancer cell lines.MethodsRNA sequencing analysis was performed to detect expression of genes involved in inflammation in AA and CA colon cancer cells. The effects of IL-1β on 5-FU response was evaluated by assessing cell viability (MTS assay) and apoptosis (flow cytometry analysis) following treatment with 5-FU alone or in combination with the cytokine. Further, we used an IL-1 receptor antagonist (IL-1Ra) to inhibit IL-1β-induced effects on 5-FU sensitivity and NF-kB pathway activation.ResultsAA colon cancer cell lines present significant increase in expression of genes IL1R2 (373-fold change (FC), IRAK1 (3.24 FC), IKBKB, (5.33 FC) NF-KB IA (5.95 FC), MYD88, (3.72 FC), IRAK3 (161 FC), TRAF5 (4.1 FC). A significant decrease in the response to 5-FU treatment, as well as a significant increase in phosphorylation of IκBα and secretion of IL-8, was seen following IL-1β treatment, in both AA and CA cell lines. Finally, treatment with IL-1Ra was able to reverse the effects induced by IL-1β, by increasing the cells sensitivity to 5-FU. IL-1Ra also inhibited phosphorylation of IκBα and IL-8 secretion.ConclusionsOur results suggest a differential expression of inflammatory genes and proteins that might regulate the different response to IL-1β between AA and CA colon cancer cell lines. Our data also demonstrates that IL-1β is involved in modulating 5-FU response in both AA and CA colon cancer cell lines. Further investigation of these mechanisms might help elucidate the differences seen in incidence, mortality and response to therapy in AA colon cancer patients.
Collapse
Affiliation(s)
- Marzia Spagnardi
- Department of Medicine, Division of Gastroenterology and Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
| | - Jenny Paredes
- Department of Medicine, Division of Gastroenterology and Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
| | - Jovanny Zabaleta
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Jone Garai
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Tiana Reyes
- Department of Family, Population and Preventive Medicine, Stony Brook, Stony Brook University, NY, United States
| | - Laura A. Martello
- Department of Medicine, Division of Gastroenterology and Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
- *Correspondence: Laura A. Martello, ; Jennie L. Williams,
| | - Jennie L. Williams
- Department of Family, Population and Preventive Medicine, Stony Brook, Stony Brook University, NY, United States
- *Correspondence: Laura A. Martello, ; Jennie L. Williams,
| |
Collapse
|
5
|
Azwar S, Seow HF, Abdullah M, Faisal Jabar M, Mohtarrudin N. Recent Updates on Mechanisms of Resistance to 5-Fluorouracil and Reversal Strategies in Colon Cancer Treatment. BIOLOGY 2021; 10:854. [PMID: 34571731 PMCID: PMC8466833 DOI: 10.3390/biology10090854] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
5-Fluorouracil (5-FU) plus leucovorin (LV) remain as the mainstay standard adjuvant chemotherapy treatment for early stage colon cancer, and the preferred first-line option for metastatic colon cancer patients in combination with oxaliplatin in FOLFOX, or irinotecan in FOLFIRI regimens. Despite treatment success to a certain extent, the incidence of chemotherapy failure attributed to chemotherapy resistance is still reported in many patients. This resistance, which can be defined by tumor tolerance against chemotherapy, either intrinsic or acquired, is primarily driven by the dysregulation of various components in distinct pathways. In recent years, it has been established that the incidence of 5-FU resistance, akin to multidrug resistance, can be attributed to the alterations in drug transport, evasion of apoptosis, changes in the cell cycle and DNA-damage repair machinery, regulation of autophagy, epithelial-to-mesenchymal transition, cancer stem cell involvement, tumor microenvironment interactions, miRNA dysregulations, epigenetic alterations, as well as redox imbalances. Certain resistance mechanisms that are 5-FU-specific have also been ascertained to include the upregulation of thymidylate synthase, dihydropyrimidine dehydrogenase, methylenetetrahydrofolate reductase, and the downregulation of thymidine phosphorylase. Indeed, the successful modulation of these mechanisms have been the game plan of numerous studies that had employed small molecule inhibitors, plant-based small molecules, and non-coding RNA regulators to effectively reverse 5-FU resistance in colon cancer cells. It is hoped that these studies would provide fundamental knowledge to further our understanding prior developing novel drugs in the near future that would synergistically work with 5-FU to potentiate its antitumor effects and improve the patient's overall survival.
Collapse
Affiliation(s)
- Shamin Azwar
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Heng Fong Seow
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Mohd Faisal Jabar
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| |
Collapse
|
6
|
Arora M, Kumari S, Singh J, Chopra A, Chauhan SS. PAXX, Not NHEJ1 Is an Independent Prognosticator in Colon Cancer. Front Mol Biosci 2020; 7:584053. [PMID: 33195430 PMCID: PMC7649742 DOI: 10.3389/fmolb.2020.584053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022] Open
Abstract
Classical Non-homologous End Joining (NHEJ) pathway is the mainstay of cellular response to DNA double strand breaks. While aberrant expression of genes involved in this pathway has been linked with genomic instability and drug resistance in several cancers, limited information is available about its clinical significance in colon cancer. We performed a comprehensive analysis of seven essential genes, including XRCC5, XRCC6, PRKDC, LIG4, XRCC4, NHEJ1, and PAXX of this pathway, in colon cancer using multi-omics datasets, and studied their associations with molecular and clinicopathological features, including age, gender, stage, KRAS mutation, BRAF mutation, microsatellite instability status and promoter DNA methylation in TCGA colon cancer dataset. This analysis revealed upregulation of XRCC5, PRKDC, and PAXX in colon cancer compared to normal colon tissues, while LIG4 and NHEJ1 (XLF) displayed downregulation. The expression of these genes was independent of age and KRAS status, while XRCC5, PRKDC, and LIG4 exhibited reduced expression in BRAF mutant tumors. Interestingly, we observed a strong association between XRCC6, XRCC5, PRKDC and LIG4 overexpression and microsatellite instability status of the tumors. In multivariate analysis, high PAXX expression emerged as an independent prognostic marker for poor overall and disease specific survival. We also observed hypomethylation of PAXX promoter in tumors, which exhibited a strong correlation with its overexpression. Furthermore, PAXX overexpression was also associated with several oncogenic pathways as well as a reduction in numbers of tumor-infiltrating lymphocytes.
Collapse
Affiliation(s)
- Mohit Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sarita Kumari
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Jay Singh
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Anita Chopra
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam S Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
7
|
6-Dithio-2'-deoxyguanosine analogs induce reactive oxygen species-mediated tumor cell apoptosis via bi-targeting thioredoxin 1 and telomerase. Toxicol Appl Pharmacol 2020; 401:115079. [PMID: 32497534 DOI: 10.1016/j.taap.2020.115079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/16/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
Thioredoxin 1 (Trx1) and telomerase play key roles in the development and progression process of most tumors, and they both are promising drug therapy targets. We have, for the first time, discovered that Trx1 and telomerase had a dual-target synergistic effect. Based on that results, we designed a series of 6-dithio-2'-deoxyguanosine analogs (named as YLS00X) and verified whether they can inhibit Trx1 and telomerase simultaneously. TrxR1/Trx1 system activity and telomerase expression were significantly inhibited by 6-dithio-2'-deoxyguanosine analogs, especially YLS004. YLS004 can also cause ROS accumulation, and induce tumor cell apoptosis. The vitro antitumor activity of 6-dithio-2'-deoxyguanosine analogs using MTT assay on 11 different human cancer cells and found that human colon cancer cells(HCT116) and melanoma cells (A375) were the most sensitive cells to 6-dithio-2'-deoxyguanosine analogs treatment and vivo xenografts models also confirmed that. The serum biochemical parameters and multiple organs HE staining results of subacute experiments indicated that YLS004 might be mildly toxic to immune organs, including the thymus, spleen, and hematopoietic system. Besides, YLS004 was rapidly metabolized in the rats' blood. Our study revealed that YLS004, a Trx1 and telomerase inhibitor, has strong anti-tumor effects to colon cancer and melanoma cells and is a promising new candidate drug.
Collapse
|
8
|
Zhang Y, Ge T, Xiang P, Zhou J, Tang S, Mao H, Tang Q. Tanshinone IIA Reverses Oxaliplatin Resistance In Human Colorectal Cancer Via Inhibition Of ERK/Akt Signaling Pathway. Onco Targets Ther 2019; 12:9725-9734. [PMID: 32009805 PMCID: PMC6859961 DOI: 10.2147/ott.s217914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Background Oxaliplatin (OXA)-based chemotherapy is generally used to treat human cancers, whereas OXA resistance is a main obstacle for the treatment of colorectal cancer (CRC). Evidence has shown that tanshinone IIA (Tan IIA) could induce apoptosis in CRC cells. However, the role of combination of OXA and Tan IIA on OXA-resistance CRC cells remains unknown. Thus, this study aimed to investigate the effects of Tan IIA in combination with OXA on OXA-resistance CRC cells. Methods MTT assay, Ki67 immunofluorescence staining and flow cytometry were used to detect viability, proliferation and apoptosis in OXA-resistant cell line SW480/OXA, respectively. The expressions of Bcl-2, Bax, active caspase 3, p-Akt and p-ERK in SW480/OXA cells were detected with Western blot. In vivo animal study was performed finally. Results In this study, the inhibitory effects of OXA on the proliferation and invasion of SW480/OXA cells were significantly enhanced by Tan IIA. In addition, Tan IIA obviously enhanced the anti-apoptosis effects of OXA on SW480/OXA cells via decreasing the levels of Bcl-2, p-Akt and p-ERK, and increasing the levels of Bax and active caspase 3. In vivo experiments confirmed that Tan IIA enhanced OXA sensitivity in SW480/OXA xenograft model. Conclusion We found that Tan IIA could reverse OXA resistance in OXA-resistance CRC cells. Therefore, OXA combined with Tan IIA might be considered as a therapeutic approach for the treatment of OXA-resistant CRC.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Tingrui Ge
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Ping Xiang
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Jingyi Zhou
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Shumin Tang
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Haibing Mao
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Qiang Tang
- Department of Gastrointestinal Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu 222061, People's Republic of China
| |
Collapse
|
9
|
Liu Z, Yu M, Fei B, Sun J, Wang D. Identification Of Natural Compound Derivative For Inhibition Of XLF And Overcoming Chemoresistance In Colorectal Cancer Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3823-3834. [PMID: 31806933 PMCID: PMC6847993 DOI: 10.2147/dddt.s215967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Purpose A previous study has identified that XRCC4-like factor (XLF) is a potential target to overcome resistance to 5-fluorouracil (5-Fu) and oxaliplatin (OXA) in colorectal cancer (CRC). The purpose of this study is to develop potent XLF inhibitors to chemoresistance in CRC. Methods Virtual screening was adopted to identify novel XLF-binding compounds by initially testing 6800 molecules in Chemical Entities of Biological Interest library. Hit compounds were further validated by Western blot assay. Cell sensitivity to 5-Fu and OXA was measured using sulforhodamine B assay. The effect of XLF inhibitor on DNA repair efficiency was evaluated by comet assay, fluorescent-based nonhomologous end joining (NHEJ) and homologous recombination (HR) reporter assays. DNA-binding activity of NHEJ key factors was examined by chromatin fractionation assay. Results We identified G3, a novel and potent XLF inhibitor (IC50 0.47±0.02 µM). G3 induced XLF protein degradation in CRC cells. Significantly, G3 improved cell sensitivity to 5-Fu and OXA in chemoresistant CRC cell lines. Mechanistically, G3 depleted XLF expression, severely compromised NHEJ efficiency by up to 65% and inhibited NHEJ key factor assembly on DNA. G3 also inhibited HR efficiency in a time-dependent manner. Conclusion These results suggest that G3 overcomes 5-Fu and OXA resistance in CRC cells by inhibiting XLF expression. Thus, XLF is a promising target and its inhibitor G3 is a potential candidate for treatment of chemoresistant CRC patients.
Collapse
Affiliation(s)
- Zhuo Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Miao Yu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Bingyuan Fei
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Jing Sun
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Dongxin Wang
- Department of Anesthesiology, Jilin Cancer Hospital, Jilin, People's Republic of China
| |
Collapse
|