1
|
Tan K, Lu W, Chen F, Shi H, Ma Y, Chen Z, Wu W, Lv Z, Mo J. CRISPR-Cas9 knockout screening identifies KIAA1429 as an essential gene in Ewing sarcoma. J Exp Clin Cancer Res 2023; 42:250. [PMID: 37759224 PMCID: PMC10537923 DOI: 10.1186/s13046-023-02828-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Ewing sarcoma (ES) is an aggressive childhood bone and soft tissue cancer. KIAA1429 is one type of N6-methyladenosine (m6A) writer that plays a tumor-progressive role in various cancers, but the role of KIAA1429 in ES remains to be elucidated. The aim of the study was to investigate the role of KIAA1429 in ES. METHODS We performed a multi-omic screen including CRISPR-Cas9 functional genomic and transcriptomic approaches, and identified that KIAA1429 played a significant role in ES progression. Gene knockdown, quantitative real-time PCR (Q-RT-PCR), immunoblotting, CellTiter-Glo assays, clonogenic assays, a subcutaneous xenograft model and immunohistochemistry were used to assess the functional role of KIAA1429 in ES. We mainly conducted RNA sequencing (RNA-seq) in ES cells to analyze the downstream regulatory mechanism of KIAA1429. An integrative analysis of chromatin immunoprecipitation sequencing (ChIP-seq) and RNA-seq indicated the upstream regulatory mechanism of KIAA1429. RESULTS In vitro and in vivo CRISPR-Cas9 knockout screening identified KIAA1429 as an ES-dependent gene. Genetic suppression of KIAA1429 inhibited ES cell proliferation and tumorigenicity both in vitro and in vivo. Further studies revealed that KIAA1429 promotes ES tumorigenesis by regulating the ribosome-associated cell cycle and cancer-related inflammation. Interestingly, we found that STAT3 was a target of KIAA1429 and that a STAT3 inhibitor reduced KIAA1429 transcript levels, indicating positive feedback between KIAA1429 and STAT3. Finally, we found that NKX2-2 bound to the KIAA1429 promoter and transactivated KIAA1429. CONCLUSION Our study systematically analyzed ES-dependent epigenetic/transcriptional regulatory genes and identified KIAA1429 as a biomarker of tumor progression in ES, providing a potential therapeutic target for treating ES.
Collapse
Affiliation(s)
- Kezhe Tan
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Lu
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Chen
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Shi
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingxuan Ma
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhou Chen
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wu
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jialin Mo
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Hagihara R, Arishima H, Yamauchi T, Kawajiri S, Ito T, Fukushima M, Kikuta K. Ewing sarcoma with very late metastasis in the skull: a case report. J Med Case Rep 2022; 16:419. [PMID: 36376967 PMCID: PMC9664645 DOI: 10.1186/s13256-022-03656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background Ewing sarcoma is a malignant bone tumor; however, its prognosis has improved since the development of modern chemotherapy. Although Ewing sarcoma outcomes have improved, issues related to late complications, secondary malignant neoplasms, and late recurrence or metastasis have emerged. Case presentation We report a case of Ewing sarcoma that recurred in the occipital bone 21 years after primary tumor treatment. A 45-year-old Japanese woman with a history of Ewing sarcoma 21 years prior, was referred to our hospital due to a severe headache. A tumor was detected in the left occipital bone, and the biopsy revealed Ewing sarcoma. Metastasis was suspected because the patient had been treated for Ewing sarcoma of the left clavicle 21 years prior. There have been several cases of local recurrence or metastasis, occurring 15–20 years after the onset of the initial disease. To our knowledge, very late metastasis of Ewing sarcoma in the skull has not been reported. Conclusion We report a rare case of very late metastasis of Ewing sarcoma in the skull with a review of the literature. Delayed metastasis secondary to Ewing sarcoma can occur in the lung, which is the most common site for metastasis, as well as other regions of the body, such as the cranium. Supplementary Information The online version contains supplementary material available at 10.1186/s13256-022-03656-5.
Collapse
|
3
|
Identification of Common Oncogenic Genes and Pathways Both in Osteosarcoma and Ewing’s Sarcoma Using Bioinformatics Analysis. J Immunol Res 2022; 2022:3655908. [PMID: 35578666 PMCID: PMC9107040 DOI: 10.1155/2022/3655908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/01/2022] [Accepted: 04/09/2022] [Indexed: 11/17/2022] Open
Abstract
This study was aimed at exploring common oncogenic genes and pathways both in osteosarcoma and Ewing's sarcoma. Microarray data were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified using the limma package. Then, protein-protein interaction (PPI) networks were constructed and hub genes were identified. Furthermore, functional enrichment analysis was analyzed. The expression of common oncogenic genes was validated in 38 osteosarcoma and 17 Ewing's sarcoma tissues by RT-qPCR and western blot compared to normal tissues. 201 genes were differentially expressed. There were 121 nodes and 232 edges of the PPI network. Among 12 hub genes, hub genes FN1, COL1A1, and COL1A2 may involve in the development of osteosarcoma and Ewing's sarcoma. And they were reduced to expression both in osteosarcoma and Ewing's sarcoma tissues at mRNA and protein levels compared to normal tissues. Knockdown of FN1, COL1A1, and COL1A2 enhanced the cell proliferation and migration of U2OS under the restriction of cisplatin. Our findings revealed the common oncogenic genes such as FN1, COL1A1, and COL1A2, which may act as antioncogene by enhancing cisplatin sensitivity in osteosarcoma cells, and pathways were both in osteosarcoma and Ewing's sarcoma.
Collapse
|
4
|
Wu G, Zhou J, Zhu X, Tang X, Liu J, Zhou Q, Chen Z, Liu T, Wang W, Xiao X, Wu T. Integrative analysis of expression, prognostic significance and immune infiltration of RFC family genes in human sarcoma. Aging (Albany NY) 2022; 14:3705-3719. [PMID: 35483337 PMCID: PMC9085243 DOI: 10.18632/aging.204039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Abstract
Objective: To reveal the expression and prognostic value of replication factor C family genes (RFCs) in patients with sarcoma. Results: The results showed that the mRNA expression levels of RFC2, RFC3, RFC4, and RFC5 were increased in sarcoma tissues. In addition, Cancer Cell Line Encyclopedia (CCLE) dataset analysis indicated that RFC1, RFC2, RFC3, RFC4, and RFC5 were elevated expressed in sarcoma cell lines. Moreover, Gene Expression Profiling Interactive Analysis (GEPIA) and Kaplan-Meier Plotter showed that highly expressed RFC2-5 were associated with poor overall survival (OS) or relapse-free survival (RFS) in sarcoma patients. The results of the Tumor Immune Estimation Resource (TIMER) database indicated that the expression of RFCs was negatively correlated with the infiltration of CD4+ T cells and macrophages. Conclusions: There were significant differences in the expression of RFCs between normal tissue and sarcoma tissue, and RFC2, RFC3, RFC4, and RFC5 might be promising prognostic biomarkers for sarcoma. Methods: The expression of RFCs was analyzed using the ONCOMINE dataset and GEPIA dataset. CCLE dataset was used to assess the expression of RFCs in the cancer cell line. The prognostic value of RFCs was evaluated by GEPIA and Kaplan-Meier analysis. Furthermore, the association between RFCs and their co-expressed genes were explored via ONCOMINE and GEPIA datasets. We used the TIMER dataset to analyze the immune cell infiltration of RFCs in sarcoma.
Collapse
Affiliation(s)
- Gen Wu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.,Clinical Medicine Eight-Year Program, 02 Class, 2014 Grade, Central South University, Changsha 410013, Hunan Province, China
| | - Jian Zhou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xi Zhu
- Department of Internal Medicine III, University Hospital, Ludwig Maximilian University, Munich 81377, Germany
| | - Xianzhe Tang
- Department of Orthopedics, Chenzhou No.1 People's Hospital, Chenzhou 423000, Hunan, China
| | - Jie Liu
- Department of Cardiology, The Fourth Hospital of Changsha, Changsha 410006, Hunan, China
| | - Qiong Zhou
- Department of Cardiology, The Fourth Hospital of Changsha, Changsha 410006, Hunan, China
| | - Ziyuan Chen
- Department of Orthopedics, The First People's Hospital of Changde City, Changde 415003, Hunan, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xungang Xiao
- Department of Orthopedics, Chenzhou No.1 People's Hospital, Chenzhou 423000, Hunan, China
| | - Tong Wu
- Department of Emergency, The First Hospital of Changsha, Changsha 410005, Hunan, China
| |
Collapse
|
5
|
Li W, Zhou Q, Liu W, Xu C, Tang ZR, Dong S, Wang H, Li W, Zhang K, Li R, Zhang W, Hu Z, Shibin S, Liu Q, Kuang S, Yin C. A Machine Learning-Based Predictive Model for Predicting Lymph Node Metastasis in Patients With Ewing's Sarcoma. Front Med (Lausanne) 2022; 9:832108. [PMID: 35463005 PMCID: PMC9020377 DOI: 10.3389/fmed.2022.832108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Objective In order to provide reference for clinicians and bring convenience to clinical work, we seeked to develop and validate a risk prediction model for lymph node metastasis (LNM) of Ewing’s sarcoma (ES) based on machine learning (ML) algorithms. Methods Clinicopathological data of 923 ES patients from the Surveillance, Epidemiology, and End Results (SEER) database and 51 ES patients from multi-center external validation set were retrospectively collected. We applied ML algorithms to establish a risk prediction model. Model performance was checked using 10-fold cross-validation in the training set and receiver operating characteristic (ROC) curve analysis in external validation set. After determining the best model, a web-based calculator was made to promote the clinical application. Results LNM was confirmed or unable to evaluate in 13.86% (135 out of 974) ES patients. In multivariate logistic regression, race, T stage, M stage and lung metastases were independent predictors for LNM in ES. Six prediction models were established using random forest (RF), naive Bayes classifier (NBC), decision tree (DT), xgboost (XGB), gradient boosting machine (GBM), logistic regression (LR). In 10-fold cross-validation, the average area under curve (AUC) ranked from 0.705 to 0.764. In ROC curve analysis, AUC ranged from 0.612 to 0.727. The performance of the RF model ranked best. Accordingly, a web-based calculator was developed (https://share.streamlit.io/liuwencai2/es_lnm/main/es_lnm.py). Conclusion With the help of clinicopathological data, clinicians can better identify LNM in ES patients. Risk prediction models established in this study performed well, especially the RF model.
Collapse
Affiliation(s)
- Wenle Li
- Department of Orthopedics, Xianyang Central Hospital, Xianyang, China.,Clinical Medical Research Center, Xianyang Central Hospital, Xianyang, China
| | - Qian Zhou
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, China
| | - Wencai Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chan Xu
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, China.,Department of Dermatology, Xianyang Central Hospital, Xianyang, China
| | - Zhi-Ri Tang
- School of Physics and Technology, Wuhan University, Wuhan, China
| | - Shengtao Dong
- Department of Spine Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haosheng Wang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, China
| | - Wanying Li
- Clinical Medical Research Center, Xianyang Central Hospital, Xianyang, China
| | - Kai Zhang
- Department of Orthopedics, Xianyang Central Hospital, Xianyang, China.,Clinical Medical Research Center, Xianyang Central Hospital, Xianyang, China
| | - Rong Li
- The First Clinical Medical College, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Wenshi Zhang
- The First Clinical Medical College, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Zhaohui Hu
- Department of Spinal Surgery, Liuzhou People's Hospital, Liuzhou, China
| | - Su Shibin
- Department of Business Management, Xiamen Bank, Xiamen, China
| | - Qiang Liu
- Clinical Medical Research Center, Xianyang Central Hospital, Xianyang, China
| | - Sirui Kuang
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
6
|
de Nigris F, Ruosi C, Napoli C. Clinical efficiency of epigenetic drugs therapy in bone malignancies. Bone 2021; 143:115605. [PMID: 32829036 DOI: 10.1016/j.bone.2020.115605] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/07/2020] [Accepted: 08/15/2020] [Indexed: 12/17/2022]
Abstract
A great interest in the scientific community is focused on the improvement of the cure rate in patients with bone malignancies that have a poor response to the first line of therapies. Novel treatments currently include epigenetic compounds or molecules targeting epigenetic-sensitive pathways. Here, we offer an exhaustive review of such agents in these clinical settings. Carefully designed preclinical studies selected several epigenetic drugs, including inhibitors of DNA methyltransferase (DNMTIs), such as Decitabine, histone deacetylase classes I-II (HDACIs), as Entinostat, Belinostat, lysine-specific histone demethylase (LSD1), as INCB059872 or FT-2102 (Olutasidenib), inhibitors of isocitrate dehydrogenases, and enhancer of zeste homolog 2 (EZH2), such as EPZ6438 (Tazemetostat) To enhance the therapeutic effect, the prevalent approach in phase II trial is the association of these epigenetic drug inhibitors, with targeted therapy or immune checkpoint blockade. Optimization of drug dosing and regimens of Phase II trials may improve the clinical efficiency of such novel therapeutic approaches against these devastating cancers.
Collapse
Affiliation(s)
- Filomena de Nigris
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Carlo Ruosi
- Department of Public Health, Federico II University, 80132 Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; IRCCS SDN, 80134 Naples, IT, Italy
| |
Collapse
|
7
|
YAP/TAZ inhibition reduces metastatic potential of Ewing sarcoma cells. Oncogenesis 2021; 10:2. [PMID: 33419969 PMCID: PMC7794350 DOI: 10.1038/s41389-020-00294-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
Ewing sarcoma (EwS) is a highly metastatic bone cancer characterized by the ETS fusion oncoprotein EWS-FLI1. EwS cells are phenotypically highly plastic and switch between functionally distinct cell states dependent on EWS-FLI1 fluctuations. Whereas EWS-FLI1high cells proliferate, EWS-FLI1low cells are migratory and invasive. Recently, we reported activation of MRTFB and TEAD, effectors of RhoA and Hippo signalling, upon low EWS-FLI1, orchestrating key steps of the EwS migratory gene expression program. TEAD and its co-activators YAP and TAZ are commonly overexpressed in cancer, providing attractive therapeutic targets. We find TAZ levels to increase in the migratory EWS-FLI1low state and to associate with adverse prognosis in EwS patients. We tested the effects of the potent YAP/TAZ/TEAD complex inhibitor verteporfin on EwS cell migration in vitro and on metastasis in vivo. Verteporfin suppressed expression of EWS-FLI1 regulated cytoskeletal genes involved in actin signalling to the extracellular matrix, effectively blocked F-actin and focal-adhesion assembly and inhibited EwS cell migration at submicromolar concentrations. In a mouse EwS xenograft model, verteporfin treatment reduced relapses at the surgical site and delayed lung metastasis. These data suggest that YAP/TAZ pathway inhibition may prevent EwS cell dissemination and metastasis, justifying further preclinical development of YAP/TAZ inhibitors for EwS treatment.
Collapse
|
8
|
Chicón-Bosch M, Tirado OM. Exosomes in Bone Sarcomas: Key Players in Metastasis. Cells 2020; 9:cells9010241. [PMID: 31963599 PMCID: PMC7016778 DOI: 10.3390/cells9010241] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
Bone sarcomas are rare cancers which often present with metastatic disease and are still associated with poor survival rates. Studies in the last decade have identified that exosomes, a type of extracellular vesicle released by cells, play an important role in tumour progression and dissemination. Through the transfer of their cargo (RNAs, proteins, and lipids) across cells, they are involved in cellular cross-talk and can induce changes in cellular behaviour. Exosomes have been shown to be important in metastasis organotropism, induction of angiogenesis and vascular permeability, the education of cells towards a pro-metastatic phenotype or the interaction between stromal and tumour cells. Due to the importance exosomes have in disease progression and the high incidence of metastasis in bone sarcomas, recent studies have evaluated the implications of these extracellular vesicles in bone sarcomas. In this review, we discuss the studies that evaluate the role of exosomes in osteosarcoma, Ewing sarcoma, and preliminary data on chondrosarcoma.
Collapse
Affiliation(s)
- Mariona Chicón-Bosch
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Correspondence: (M.C.-B.); (O.M.T.); Tel.: +34-9326-0742 (M.C.-B.); +34-932-603-823 (O.M.T.)
| | - Oscar M. Tirado
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- CIBERONC, Carlos III Institute of Health (ISCIII), 28029 Madrid, Spain
- Institut Català d’Oncologia (ICO), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Correspondence: (M.C.-B.); (O.M.T.); Tel.: +34-9326-0742 (M.C.-B.); +34-932-603-823 (O.M.T.)
| |
Collapse
|