1
|
Fang S, Peng L, Zhang M, Hou R, Deng X, Li X, Xin J, Peng L, Liu Z, Liu Y, Xie Y, Zhou B, Fang W, Liu Z, Cheng C. MiR-2110 induced by chemically synthesized cinobufagin functions as a tumor-metastatic suppressor via targeting FGFR1 to reduce PTEN ubiquitination degradation in nasopharyngeal carcinoma. ENVIRONMENTAL TOXICOLOGY 2024; 39:3548-3562. [PMID: 38477013 DOI: 10.1002/tox.24197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024]
Abstract
Tumor cell metastasis is the key cause of death in patients with nasopharyngeal carcinoma (NPC). MiR-2110 was cloned and identified in Epstein-Barr virus (EBV)-positive NPC, but its role is unclear in NPC. In this study, we investigated the effect of miR-2110 on NPC metastasis and its related molecular basis. In addition, we also explored whether miR-2110 can be regulated by cinobufotalin (CB) and participate in the inhibition of CB on NPC metastasis. Bioinformatics, RT-PCR, and in situ hybridization were used to observe the expression of miR-2110 in NPC tissues and cells. Scratch, Boyden, and tail vein metastasis model of nude mouse were used to detect the effect of miR-2110 on NPC metastasis. Western blot, Co-IP, luciferase activity, colocalization of micro confocal and ubiquitination assays were used to identify the molecular mechanism of miR-2110 affecting NPC metastasis. Finally, miR-2110 induced by CB participates in CB-stimulated inhibition of NPC metastasis was explored. The data showed that increased miR-2110 significantly suppresses NPC cell migration, invasion, and metastasis. Suppressing miR-2110 markedly restored NPC cell migration and invasion. Mechanistically, miR-2110 directly targeted FGFR1 and reduced its protein expression. Decreased FGFR1 attenuated its recruitment of NEDD4, which downregulated NEDD4-induced phosphatase and tensin homolog (PTEN) ubiquitination and degradation and further increased PTEN protein stability, thereby inactivating PI3K/AKT-stimulated epithelial-mesenchymal transition signaling and ultimately suppressing NPC metastasis. Interestingly, CB, a potential new inhibitory drug for NPC metastasis, significantly induced miR-2110 expression by suppressing PI3K/AKT/c-Jun-mediated transcription inhibition. Suppression of miR-2110 significantly restored cell migration and invasion in CB-treated NPC cells. Finally, a clinical sample assay indicated that reduced miR-2110 was negatively correlated with NPC lymph node metastasis and positively related to NPC patient survival prognosis. In summary, miR-2110 is a metastatic suppressor involving in CB-induced suppression of NPC metastasis.
Collapse
Affiliation(s)
- Shiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- School of Public Health, University of South China, Hengyang, China
| | - Lanzhu Peng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Mengmin Zhang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Rentao Hou
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xing Deng
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaoning Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jianyang Xin
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Lingrong Peng
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhihua Liu
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yiyi Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yingying Xie
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Beixian Zhou
- The People's Hospital of Gaozhou, Gaozhou, China
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Chao Cheng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Dai Z, Tan C, Wang J, Wang Q, Wang Y, He Y, Peng Y, Gao M, Zhang Y, Liu L, Song N, Li N. Traditional Chinese medicine for gastric cancer: An evidence mapping. Phytother Res 2024; 38:2707-2723. [PMID: 38517014 DOI: 10.1002/ptr.8155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 03/23/2024]
Abstract
As a complementary and alternative therapy, traditional Chinese medicine (TCM) has been playing a significant role in gastric cancer treatment. Data from individual systematic reviews have not been comprehensively summarized, and the relationship between certain interventions and outcomes are ill-defined. This study aimed to analyze the advantages of TCM interventions for gastric cancer by the method of evidence mapping. We searched PubMed, Embase, Web of Science, China National Knowledge Infrastructure, Chinese Scientific Journals Database, and Wanfang Database for systematic reviews of TCM treating gastric cancer up to December 31, 2023. We used Excel, Endnote 20, and Python software for the analysis of incorporated studies. We assessed the quality of included SRs by AMSTAR-2 and performed evidence mapping including 89 SRs, 1648 RCTs and 122,902 patients, identifying 47 types of interventions and 39 types of outcomes. From a visual overview, we displayed that most SRs reported beneficial effects in improving short- and long-term survival, myelosuppression, and immune function, even though the quality of evidence was generally low. The benefits of Brucea javanica Oil Emulsion Injection, ShenQiFuZheng Injection, XiaoAiPing, Astragalus-Containing TCM and Guben Xiaoji Therapy were found the most solid in corresponding aspects. Our findings suggest that although more rigorous clinical trials and SRs are needed to identify the precise effectiveness, integrating such evidence into clinical care of gastric cancer is expected to be beneficial.
Collapse
Affiliation(s)
- Zelei Dai
- Department of Radiation Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chenfeng Tan
- Department of Radiation Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Wang
- Department of Radiation Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Wang
- Department of Evidence Based Medicine and Clinical Epidemiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Wang
- Department of Medical Administration, West China Hospital, Sichuan University, Chengdu, China
| | - Ying He
- Department of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yalan Peng
- Department of Hospital Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Mingyou Gao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yonggang Zhang
- Department of Evidence Based Medicine and Clinical Epidemiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Periodical Press, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Liu
- Department of Radiation Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ningying Song
- Department of Otorhinolaryngology, Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Nian Li
- Department of Medical Administration, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Lu D, Zeng L, Li Y, Gu R, Hu M, Zhang P, Yu P, Zhang X, Xie Z, Liu H, Zhou Y. Cinobufotalin prevents bone loss induced by ovariectomy in mice through the BMPs/SMAD and Wnt/β-catenin signaling pathways. Animal Model Exp Med 2024; 7:208-221. [PMID: 38013618 PMCID: PMC11228090 DOI: 10.1002/ame2.12359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/16/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Osteoporosis is a chronic bone disease characterized by bone loss and decreased bone strength. However, current anti-resorptive drugs carry a risk of various complications. The deep learning-based efficacy prediction system (DLEPS) is a forecasting tool that can effectively compete in drug screening and prediction based on gene expression changes. This study aimed to explore the protective effect and potential mechanisms of cinobufotalin (CB), a traditional Chinese medicine (TCM), on bone loss. METHODS DLEPS was employed for screening anti-osteoporotic agents according to gene profile changes in primary osteoporosis. Micro-CT, histological and morphological analysis were applied for the bone protective detection of CB, and the osteogenic differentiation/function in human bone marrow mesenchymal stem cells (hBMMSCs) were also investigated. The underlying mechanism was verified using qRT-PCR, Western blot (WB), immunofluorescence (IF), etc. RESULTS: A safe concentration (0.25 mg/kg in vivo, 0.05 μM in vitro) of CB could effectively preserve bone mass in estrogen deficiency-induced bone loss and promote osteogenic differentiation/function of hBMMSCs. Both BMPs/SMAD and Wnt/β-catenin signaling pathways participated in CB-induced osteogenic differentiation, further regulating the expression of osteogenesis-associated factors, and ultimately promoting osteogenesis. CONCLUSION Our study demonstrated that CB could significantly reverse estrogen deficiency-induced bone loss, further promoting osteogenic differentiation/function of hBMMSCs, with BMPs/SMAD and Wnt/β-catenin signaling pathways involved.
Collapse
Affiliation(s)
- Da‐zhuang Lu
- Department of ProsthodonticsPeking University School and Hospital of StomatologyBeijingChina
- National Center of StomatologyBeijingChina
- National Clinical Research Center for Oral DiseasesBeijingChina
- Beijing Key Laboratory of Digital StomatologyBeijingChina
| | - Li‐jun Zeng
- Department of ProsthodonticsPeking University School and Hospital of StomatologyBeijingChina
- National Center of StomatologyBeijingChina
- National Clinical Research Center for Oral DiseasesBeijingChina
- Beijing Key Laboratory of Digital StomatologyBeijingChina
| | - Yang Li
- Department of ProsthodonticsPeking University School and Hospital of StomatologyBeijingChina
- National Center of StomatologyBeijingChina
- National Clinical Research Center for Oral DiseasesBeijingChina
- Beijing Key Laboratory of Digital StomatologyBeijingChina
| | - Ran‐li Gu
- Department of ProsthodonticsPeking University School and Hospital of StomatologyBeijingChina
- National Center of StomatologyBeijingChina
- National Clinical Research Center for Oral DiseasesBeijingChina
- Beijing Key Laboratory of Digital StomatologyBeijingChina
| | - Meng‐long Hu
- Department of ProsthodonticsPeking University School and Hospital of StomatologyBeijingChina
- National Center of StomatologyBeijingChina
- National Clinical Research Center for Oral DiseasesBeijingChina
- Beijing Key Laboratory of Digital StomatologyBeijingChina
| | - Ping Zhang
- Department of ProsthodonticsPeking University School and Hospital of StomatologyBeijingChina
- National Center of StomatologyBeijingChina
- National Clinical Research Center for Oral DiseasesBeijingChina
- Beijing Key Laboratory of Digital StomatologyBeijingChina
| | - Peng Yu
- National Center of StomatologyBeijingChina
- National Clinical Research Center for Oral DiseasesBeijingChina
- Beijing Key Laboratory of Digital StomatologyBeijingChina
- Department of Cariology and EndodontologyPeking University School and Hospital of StomatologyBeijingChina
| | - Xiao Zhang
- Department of ProsthodonticsPeking University School and Hospital of StomatologyBeijingChina
- National Center of StomatologyBeijingChina
- National Clinical Research Center for Oral DiseasesBeijingChina
- Beijing Key Laboratory of Digital StomatologyBeijingChina
| | - Zheng‐wei Xie
- Peking University International Cancer InstitutePeking University Health Science Center, Peking UniversityBeijingChina
| | - Hao Liu
- Department of ProsthodonticsPeking University School and Hospital of StomatologyBeijingChina
- National Center of StomatologyBeijingChina
- National Clinical Research Center for Oral DiseasesBeijingChina
- Beijing Key Laboratory of Digital StomatologyBeijingChina
- Central LaboratoryPeking University School and Hospital of StomatologyBeijingChina
| | - Yong‐sheng Zhou
- Department of ProsthodonticsPeking University School and Hospital of StomatologyBeijingChina
- National Center of StomatologyBeijingChina
- National Clinical Research Center for Oral DiseasesBeijingChina
- Beijing Key Laboratory of Digital StomatologyBeijingChina
- Central LaboratoryPeking University School and Hospital of StomatologyBeijingChina
- National Engineering Research Center of Oral Biomaterials and Digital Medical DevicesBeijingChina
| |
Collapse
|
4
|
Xie W, Zhang Y, Tang J, Zhu X, Wang S, Lu M. Efficacy and Safety of Traditional Chinese Medicines as a Complementary Therapy Combined With Chemotherapy in the Treatment of Gastric Cancer: An Overview of Systematic Reviews and Meta-Analyses. Integr Cancer Ther 2024; 23:15347354231225961. [PMID: 38229425 PMCID: PMC10798087 DOI: 10.1177/15347354231225961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND In China, traditional Chinese medicines (TCMs), as a complementary therapy combined with chemotherapy, is widely used in the treatment of gastric cancer (GC). In order to systematically evaluate and synthesize existing evidence to provide a scientific basis for the efficacy and safety of this complementary therapy, we present an overview of systematic reviews (SRs) and meta-analyses (MAs) on the topic of TCMs as a complementary therapy in combination with chemotherapy for the treatment of GC. METHODS SRs/MAs on TCMs combined with chemotherapy for GC were comprehensively searched in 8 databases. Methodological quality, risk of bias, reporting quality, and quality of evidence were assessed using the Assessment of Multiple Systematic Reviews 2 (AMSTAR-2), the Risk of Bias in Systematic (ROBIS) scale, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 (PRISMA 2020), as well as the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system. RESULTS Thirteen published SRs/MAs were included in our study. In terms of methodology, all SRs/MAs were considered to be of very low quality. Only 3 SRs/MAs has been assessed as low risk of bias. None of the SRs/MAs has been fully reported on the checklist. A total of 97 outcome indicators extracted from the included SRs/MAs were evaluated, and only 1 item was assessed as high quality. CONCLUSIONS TCMs may be an effective and safe complementary therapy in combination with chemotherapy for the treatment of GC. However, this conclusion must be treated with caution as the quality of the evidence provided by SRs/MAs is generally low.
Collapse
Affiliation(s)
- Weijian Xie
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yunsong Zhang
- Digestive internal medicine department I, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jingyun Tang
- Tai’an Disabled Soldiers’ Hospital of Shandong Province, Tai’an, Shandong, China
| | - Xiaolin Zhu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shijun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Meiqi Lu
- Digestive internal medicine department I, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Postdoctoral Research Mobile Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
5
|
Hu J, Cheng M, Li Y, Shi B, He S, Yao Z, Jiang J, Yu H, He Z, Zhao Y, Zheng H, Hua B, Liu R. Ginseng-containing traditional medicine preparations in combination with fluoropyrimidine-based chemotherapy for advanced gastric cancer: A systematic review and meta-analysis. PLoS One 2023; 18:e0284398. [PMID: 37068063 PMCID: PMC10109524 DOI: 10.1371/journal.pone.0284398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND Ginseng-containing traditional medicine preparations (G-TMPs) in combination with fluoropyrimidine-based chemotherapy (FBC) are well-known treatments for advanced gastric cancer (AGC), with a superior efficacy to FBC alone. However, evidence regarding their efficacy remains limited. The purpose of this meta-analysis is to evaluate the efficacy and safety of G-TMPs in combination with FBC for the treatment of AGC. METHODS Eight electronic databases were searched for randomized controlled trials (RCTs) using G-TMPs with FBC for the treatment of AGC. The primary outcome included the tumor response, while the secondary outcomes included the quality of life (QoL), proportions of peripheral blood lymphocytes, adverse drug reactions (ADRs), and levels of cancer biomarkers. The quality of evidence for each outcome was assessed using GRADE profilers. RESULTS A total of 1,960 participants were involved in the 26 RCTs included. Patients treated with FBC plus G-TMPs had better objective response (risk ratio [RR] = 1.23, 95% confidence interval [CI]: 1.13 to 1.35, p < 0.00001) and disease control (RR = 1.13, 95% CI: 1.08 to 1.19, p < 0.00001) rates than those treated with FBC alone. Additionally, the combination group had a better QoL, higher proportions of CD3+ T cells, CD4+ T cells, and natural killer cells, as well as a higher CD4+/CD8+ T-cell ratio. Furthermore, lower levels of CA19-9, CA72-4, and CEA were confirmed in the combination treatment group. In addition, G-TMPs reduced the incidence of ADRs during chemotherapy. CONCLUSION In combination with FBC, G-TMPs can potentially enhance efficacy, reduce ADRs, and improve prognosis for patients with AGC. However, high-quality randomized studies remain warranted. SYSTEMATIC REVIEW REGISTRATION PROSPERO Number: CRD42021264938.
Collapse
Affiliation(s)
- Jiaqi Hu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Mengqi Cheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yue Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Bolun Shi
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shulin He
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Ziang Yao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Juling Jiang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huibo Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zhongning He
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuwei Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Liu JH, Yang HL, Deng ST, Hu Z, Chen WF, Yan WW, Hou RT, Li YH, Xian RT, Xie YY, Su Y, Wu LY, Xu P, Zhu ZB, Liu X, Deng YL, Wang YB, Liu Z, Fang WY. The small molecule chemical compound cinobufotalin attenuates resistance to DDP by inducing ENKUR expression to suppress MYH9-mediated c-Myc deubiquitination in lung adenocarcinoma. Acta Pharmacol Sin 2022; 43:2687-2695. [PMID: 35296779 PMCID: PMC9525298 DOI: 10.1038/s41401-022-00890-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
The small molecule chemical compound cinobufotalin (CB) is reported to be a potential antitumour drug that increases cisplatin (DDP) sensitivity in nasopharyngeal carcinoma. In this study, we first found that CB decreased DDP resistance, migration and invasion in lung adenocarcinoma (LUAD). Mechanistic studies showed that CB induced ENKUR expression by suppressing PI3K/AKT signalling to downregulate c-Jun, a negative transcription factor of ENKUR. Furthermore, ENKUR was shown to function as a tumour suppressor by binding to β-catenin to decrease c-Jun expression, thus suppressing MYH9 transcription. Interestingly, MYH9 is a binding protein of ENKUR. The Enkurin domain of ENKUR binds to MYH9, and the Myosin_tail of MYH9 binds to ENKUR. Downregulation of MYH9 reduced the recruitment of the deubiquitinase USP7, leading to increased c-Myc ubiquitination and degradation, decreased c-Myc nuclear translocation, and inactivation of epithelial-mesenchymal transition (EMT) signalling, thus attenuating DDP resistance. Our data demonstrated that CB is a promising antitumour drug and may be a candidate chemotherapeutic drug for LUAD patients.
Collapse
Affiliation(s)
- Jia-Hao Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hui-Ling Yang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Shu-Ting Deng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhe Hu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Wei-Feng Chen
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Wei-Wei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ren-Tao Hou
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Hao Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Rui-Ting Xian
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ying-Ying Xie
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yun Su
- Key Laboratory of Protein Modification and Degradation, Basic School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Li-Yang Wu
- Key Laboratory of Protein Modification and Degradation, Basic School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Ping Xu
- Respiratory Department, Peking University Shenzhen Hospital, Shenzhen, 518034, China
| | - Zhi-Bo Zhu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiong Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Ling Deng
- Department of Chinese Medicine Rehabilitation, Pingxiang People's Hospital, Pingxiang, 337055, China
| | - Yu-Bing Wang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China.
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Wei-Yi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Tan Y, Wang H, Xu B, Zhang X, Zhu G, Ge Y, Lu T, Gao R, Li J. Chinese herbal medicine combined with oxaliplatin-based chemotherapy for advanced gastric cancer: A systematic review and meta-analysis of contributions of specific medicinal materials to tumor response. Front Pharmacol 2022; 13:977708. [PMID: 36091754 PMCID: PMC9453215 DOI: 10.3389/fphar.2022.977708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction: The incidence and mortality of gastric cancer ranks among the highest, and the 5-year survival rate of advanced gastric cancer (AGC) is less than 10%. Currently, chemotherapy is the main treatment for AGC, and oxaliplatin is an important part of the commonly used chemotherapy regimen for AGC. A large number of RCTs have shown that Chinese herbal medicine (CHM) combined with oxaliplatin-based chemotherapy can improve objective response rate (ORR) and disease control rate (DCR), reduce the toxic and side effects of chemotherapy. There is currently a lack of systematic evaluation of the evidence to account for the efficacy and safety of CHM combined with oxaliplatin-based chemotherapy in AGC. Therefore, we carried out this study and conducted the sensitivity analysis on the herbal composition to explore the potential anti-tumor efficacy. Methods: Databases of PubMed, EMBASE, CENTRAL, Web of Science, the Chinese Biomedical Literature Database, the China National Knowledge Infrastructure, the Wanfang database, and the Chinese Scientific Journals Database were searched from their inception to April 2022. RCTs evaluating the efficacy of CHM combined with oxaliplatin-based chemotherapy on AGC were included. Stata 16 was used for data synthesis, RoB 2 for quality evaluation of included RCTs, and GRADE for quality of synthesized evidence. Additional sensitivity analysis was performed to explore the potential anti-tumor effects of single herbs and combination of herbs. Results: Forty trials involving 3,029 participants were included. Most included RCTs were assessed as "Some concerns" of risk of bias. Meta-analyses showed that compare to oxaliplatin-based chemotherapy alone, that CHM combined with oxaliplatin-based chemotherapy could increase the objective response rate (ORR) by 35% [risk ratio (RR) = 1.35, 95% confidence intervals (CI) (1.25, 1.45)], and disease control rate (DCR) by 12% [RR = 1.12, 95% CI (1.08, 1.16)]. Subgroup analysis showed that compare to SOX, FOLFOX, and XELOX regimens alone, CHM plus SOX, CHM plus FOLFOX, and CHM plus XELOX could significantly increase the ORR and DCR. Sensitivity analysis identified seven herbs of Astragalus, Liquorice, Poria, Largehead Atractylodes, Chinese Angelica, Codonopsis, and Tangerine Peel with potentials to improve tumor response of oxaliplatin-based chemotherapy in AGC. Conclusion: Synthesized evidence showed moderate certainty that CHM plus oxaliplatin-based chemotherapy may promote improvement in tumor response in AGC. CHM treatment is safe for AGC. Due to the poor quality of included RCTs and small samplesizes, the quality of synthesized evidence was not high. Specific combinations of herbs appeared to produce higher contributions to ORR than the herb individually. Each of this seven above mentioned herbs has been shown in experimental studies to potentially contribute to the improvement of tumor response. To support this conclusion, these seven herbs are worthy of further clinical research. Systematic Review Registration: [http://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=262595], identifier [CRD42022262595].
Collapse
Affiliation(s)
- Ying Tan
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Heping Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bowen Xu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxiao Zhang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guanghui Zhu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yuansha Ge
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Taicheng Lu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Ruike Gao
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Wang J, Chang H, Su M, Zhao H, Qiao Y, Wang Y, Shang L, Shan C, Zhang S. The Potential Mechanisms of Cinobufotalin Treating Colon Adenocarcinoma by Network Pharmacology. Front Pharmacol 2022; 13:934729. [PMID: 35814224 PMCID: PMC9262105 DOI: 10.3389/fphar.2022.934729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Network pharmacology, as a novel way using bioinformatics to explore drug targets and interactions in cancer, broadens our understanding of drug action, thereby facilitating drug discovery. Here, we utilized network pharmacology to explore the role and mechanism by which cinobufotalin functions in colon adenocarcinoma (COAD). We found that cinobufotalin represses the growth and proliferation of colon cancer cells, and integrated public databases for targets reported to be associated with COAD, together with those predicted to be targets of cinobufotalin. Targets overlapped between COAD-associated proteins and cinobufotalin target proteins were used to filter candidate targets of cinobufotalin in COAD. The following proteins were thought to occupy a key position in COAD-cinobufotalin target networks: SRC, PIK3R1, MAPK1, PIK3CA, HSP90AA1, CTNNB1, GRB2, RHO1, PTPN11, and EGFR. The networks regulated by cinobufotalin were involved mainly in extracellular signal stimulation and transduction, including MAPK signaling pathway, PI3K-AKT signaling pathway, and JAK-STAT signaling pathway. Besides, transcriptome sequencing results also indicated that cinobufotalin inhibits the response of colon cancer cells to extracellular stimulation and promotes cell apoptosis. Molecular docking results showed that cinobufotalin matches in the pocket of the top candidate cinobufotalin target proteins (SRC, PIK3R1, MAPK1 and PIK3CA). These findings demonstrate cinobufotalin can be developed as potential anti-cancer therapeutics.
Collapse
Affiliation(s)
- Jiyan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- *Correspondence: Shuai Zhang, ; Changliang Shan, ; Jiyan Wang,
| | - Hongkai Chang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Meng Su
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Huifang Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaya Qiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luqing Shang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- *Correspondence: Shuai Zhang, ; Changliang Shan, ; Jiyan Wang,
| | - Shuai Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Shuai Zhang, ; Changliang Shan, ; Jiyan Wang,
| |
Collapse
|
9
|
Lu C, Ke L, Li J, Wu S, Feng L, Wang Y, Mentis AFA, Xu P, Zhao X, Yang K. Chinese Medicine as an Adjunctive Treatment for Gastric Cancer: Methodological Investigation of meta-Analyses and Evidence Map. Front Pharmacol 2022; 12:797753. [PMID: 35082677 PMCID: PMC8784830 DOI: 10.3389/fphar.2021.797753] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Many meta-analyses (MAs) on Chinese medicine (CM) as an adjunctive treatment for gastric cancer have been published in recent years. However, the pooled evidence reported in MAs and their methodological quality remain unknown. Therefore, we designed a study to comprehensively evaluate and summarize the current evidence of CMs for gastric cancer in published MAs. Methods: A systematic search on MAs published in English from inception to 1st September 2021 was conducted in PubMed and Embase. The AMSTAR-2 tool was used to evaluate the methodological quality of the included MAs, and the results of the quality assessment were visualized using the evidence mapping method. Stata 17/SE was used for statistical analysis (Registration number: INPLASY202190005). Results: A total of 20 MAs (16 pairwise and 4 network MAs) were included from 118 records. These MAs were published in 14 journals from 2013 to 2021, with the number of patients and trials ranging from 688 to 6,857, and from 10 to 85, respectively. A large number of CMs (e.g., AiDi, FuFangKuShen, and HuaChanSu) in combination with chemotherapy for gastric cancer were identified among the included MAs. According to the pooled results reported in MAs, when compared to chemotherapy alone, CMs in combination with chemotherapy not only improve various outcomes on efficacy (e.g., objective response rate, quality of life) but also reduce various adverse reactions (e.g., leucopenia, nausea and vomiting). Only 2 MAs were low in terms of the overall methodological quality, while the other 18 MAs were all critically low. The methodology was required to be advanced significantly, mainly involving: study protocol and registration, explanation for the inclusion of study design, list of excluded studies with justifications, adequate details of included studies, reporting on funding sources of primary studies, and evaluation of the potential impact of risk of bias. In addition, MAs that received funds support (β = 2.68; 95%CI: 0.40 to 4.96; p = 0.024) or were published in journals with higher impact factor (β = 2.81; 95%CI: 0.69 to 4.92; p = 0.012) had a higher score on the overall methodological quality in the univariate analysis, but the results were not statistically significant according to the multivariate analysis. Conclusion: Combining CMs with chemotherapy can potentially improve clinical outcomes and reduce the relevant adverse effects in patients with gastric cancer. However, the methodological quality of relevant MAs requires significant improvement, and the current evidence needs to be validated through multinational trials that are well-designed and have a large sample size.
Collapse
Affiliation(s)
- Cuncun Lu
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Evidence-Based Social Science Center, School of Public Health, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lixin Ke
- Hepatobiliary and Pancreatic Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jieyun Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Evidence-Based Social Science Center, School of Public Health, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Shuilin Wu
- Evidence-Based Social Science Center, School of Public Health, Lanzhou University, Lanzhou, China
| | - Lufang Feng
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Evidence-Based Social Science Center, School of Public Health, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Youyou Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Alexios Fotios A Mentis
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Peng Xu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxiao Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Evidence-Based Social Science Center, School of Public Health, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| |
Collapse
|
10
|
Li C, Guo H, Wang C, Zhan W, Tan Q, Xie C, Sharma A, Sharma HS, Chen L, Zhang Z. Network pharmacological mechanism of Cinobufotalin against glioma. PROGRESS IN BRAIN RESEARCH 2021; 265:119-137. [PMID: 34560920 DOI: 10.1016/bs.pbr.2021.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Cinobufotalin was extracted from the skin of Chinese giant salamander or black sable with good clinical effect against tumor. This study aims to explore the mechanism of Cinobufotalin components and predict the target of action of Cinobufotalin on glioma. METHODS The active components of Cinobufotalin were screened by the Chinese medicine pharmacology database and analysis platform (TCMSP), PubChem database, etc. The potential molecular components and targets were identified and enrichment analysis was conducted through the construction of related networks and analysis of their characteristics. Relevant targets of glioma were searched through TTD, DRUGBANK, and other databases, and the intersection was found and the key targets were found too. RESULTS A total of 21 active components and 184 target genes of Cinobufotalin were found. According to the enrichment analysis results, the pharmacological mechanism of Cinobufotalin mainly includes inhibition of the cell cycle, promotion of cell apoptosis, and regulation of immunity. On this basis, RAC1, FOS, and NOS3 can be preliminarily predicted as potential targets of Cinobufotalin in the treatment of glioma. CONCLUSIONS The screening of active ingredients and target prediction based on network pharmacology can provide a new research idea for the multi-target treatment of glioma with Cinobufotalin.
Collapse
Affiliation(s)
- Cong Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, China
| | - Hanyu Guo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, China
| | - Chao Wang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, China
| | - Wengang Zhan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, China
| | - Qijia Tan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, China
| | - Caijun Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital of Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Zhiqiang Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, China.
| |
Collapse
|
11
|
Jaszczewska‐Adamczak JA, Mlynarski J. Asymmetric Epoxidation of Enones Promoted by Dinuclear Magnesium Catalyst. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Jacek Mlynarski
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
12
|
Meng H, Shen M, Li J, Zhang R, Li X, Zhao L, Huang G, Liu J. Novel SREBP1 inhibitor cinobufotalin suppresses proliferation of hepatocellular carcinoma by targeting lipogenesis. Eur J Pharmacol 2021; 906:174280. [PMID: 34174265 DOI: 10.1016/j.ejphar.2021.174280] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is the major type of primary liver cancer and a leading cause of cancer-related deaths worldwide. Cinobufotalin (CBF) is extracted from the skin secretion of the giant toad and clinically used for the treatment of liver cancer, but its molecular mechanism of anti-cancer in HCC has not yet been elucidated. Here, we showed CBF effectively promoted cell apoptosis, induced cell cycle G2-M arrest, inhibited cell proliferation and lipogenesis. Consistently, the lipogenesis ability of xenograft examined by 11C-acetate micro-PET/CT imaging, and the tumor growth rate was notably declined in a centration-dependent manner. The fatty acid profiles showed saturated and mono-unsaturated fatty acid significantly decreased after CBF treatment. Mechanistically, CBF selectively inhibited the expression of SREBP1 and interacted with SREBP1 to prevent it from sterol regulatory elements (SREs), thus inhibiting the expression of lipogenic enzymes. Collectively, our study demonstrates that CBF is a potent native compound that remarkably inhibits HCC lipogenesis and tumorigenesis. CBF may possess this therapeutic potential though interfering with de novo lipid synthesis via SREBP1.
Collapse
Affiliation(s)
- Huannan Meng
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory for Molecular Imaging, Collaborative Scientific Research Center, Shanghai University of Medicine & Health Science, Shanghai, 200093, China
| | - Mengqin Shen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
| | - Jiajin Li
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
| | - Ruixue Zhang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
| | - Xi Li
- Department of Medicinal Material, Changhai Hospital of Shanghai, 200433, China
| | - Li Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
| | - Gang Huang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory for Molecular Imaging, Collaborative Scientific Research Center, Shanghai University of Medicine & Health Science, Shanghai, 200093, China; Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianjun Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory for Molecular Imaging, Collaborative Scientific Research Center, Shanghai University of Medicine & Health Science, Shanghai, 200093, China; Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China.
| |
Collapse
|
13
|
Li FJ, Hu JH, Ren X, Zhou CM, Liu Q, Zhang YQ. Toad venom: A comprehensive review of chemical constituents, anticancer activities, and mechanisms. Arch Pharm (Weinheim) 2021; 354:e2100060. [PMID: 33887066 DOI: 10.1002/ardp.202100060] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 12/31/2022]
Abstract
Toad venom, a traditional natural medicine, has been used for hundreds of years in China for treating different diseases. Many studies have been performed to elucidate the cardiotonic and analgesic activities of toad venom. Until the last decade, an increasing number of studies have documented that toad venom is a source of lead compound(s) for the development of potential cancer treatment drugs. Research has shown that toad venom contains 96 types of bufadienolide monomers and 23 types of indole alkaloids, such as bufalin, cinobufagin, arenobufagin, and resibufogenin, which exhibit a wide range of anticancer activities in vitro and, in particular, in vivo for a range of cancers. The main antitumor mechanisms are likely to be apoptosis or/and autophagy induction, cell cycle arrest, cell metastasis suppression, reversal of drug resistance, or growth inhibition of cancer cells. This review summarizes the chemical constituents of toad venom, analyzing their anticancer activities and molecular mechanisms for cancer treatments. We also outline the importance of further studies regarding the material basis and anticancer mechanisms of toad venom.
Collapse
Affiliation(s)
- Fang-Jie Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing-Hong Hu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, China
| | - Xin Ren
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cheng-Mei Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, China
| | - Yong-Qing Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
14
|
Efficacy and Safety of Cinobufacin Combined with Chemotherapy for Advanced Breast Cancer: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4953539. [PMID: 33014106 PMCID: PMC7520696 DOI: 10.1155/2020/4953539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022]
Abstract
Background Cinobufacin is a Chinese patent medicine widely used for breast cancer in China. However, no systematic review and meta-analysis have been published to validate its effects in breast cancer treatment. We, therefore, summarize the efficacy and safety of Cinobufacin combined with chemotherapy in order to provide rigid evidence for its clinical application. Methods By searching multiple databases incepted to December 2019, the RCTs of breast cancer patients treated with Cinobufacin were screened according to the inclusion criteria, and the meta-analysis and sensitivity analysis were conducted using RevMan5.3. Results A total of 1163 articles were retrieved, and 16 studies were included. The total sample size was 1331 cases, including 666 cases in the treatment group receiving Cinobufacin combined with chemotherapy and 665 cases in the control group receiving chemotherapy alone. Our study found that the ORR (overall response rate) (RR = 1.35, 95% CI: [1.23, 1.49], P < 0.00001), CBR (clinical benefit rate) (RR = 1.14, 95% CI: [1.08, 1.21], P < 0.00001), KPS scores (RR = 1.98, 95% CI: [1.45, 2.68], P < 0.0001), and pain relief rate (RR = 1.34, 95% CI: [1.01, 1.78] P=0.04 of the Cinobufacin combined with chemotherapy group were better than those of the chemotherapy group, and the difference was statistically significant. Our study also discovered that the tumor markers (CA125, CA153, and CEA) in the Cinobufacin combined with chemotherapy group were lower than those in the chemotherapy group, which heterogeneity was derived from the low-quality literature included in the study, but the results were robust. In addition, in terms of safety, we found that the incidences of gastrointestinal reactions (RR = 0.58, 95% CI: [0.48, 0.70], P < 0.00001), liver and kidney damage (RR = 0.57, 95% CI: [0.38, 0.84], P=0.004), and hair loss (RR = 0.61, 95% CI: [0.40, 0.92], P=0.02) in the Cinobufacin combined chemotherapy group were lower than those in the chemotherapy group, and the difference was statistically significant, but the incidences of peripheral neurotoxicity (RR = 0.69, 95% CI: [0.26, 1.85], P=0.46) and myelosuppression (RR = 0.78, 95% CI: [0.46, 1.34], P=0.37) in the combined group were similar to those of the chemotherapy group, and the difference was not statistically significant. Conclusions Cinobufacin combined with chemotherapy can improve the clinical efficacy of breast cancer patients, enhance the quality of life of the patients, reduce the value of tumor markers such as CA125, CA153, and CEA, and lower the occurrence of adverse reactions such as gastrointestinal reactions, liver and kidney damage, and hair loss.
Collapse
|
15
|
Epoxide containing molecules: A good or a bad drug design approach. Eur J Med Chem 2020; 201:112327. [PMID: 32526552 DOI: 10.1016/j.ejmech.2020.112327] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022]
Abstract
Functional group modification is one of the main strategies used in drug discovery and development. Despite the controversy of being identified for many years as a biologically hazardous functional group, the introduction of an epoxide function in a structural backbone is still one of the possible modifications being implemented in drug design. In this manner, it is our intention to prove with this work that epoxides can have significant interest in medicinal chemistry, not only as anticancer agents, but also as important drugs for other pathologies. Thus, this revision paper aims to highlight the biological activity and the proposed mechanisms of action of several epoxide-containing molecules either in preclinical studies or in clinical development or even in clinical use. An overview of the chemistry of epoxides is also reported. Some of the conclusions are that effectively most of the epoxide-containing molecules referred in this work were being studied or are in the market as anticancer drugs. However, some of them in preclinical studies, were also associated with other different activities such as anti-malarial, anti-arthritic, insecticidal, antithrombotic, and selective inhibitory activity of FXIII-A (a transglutaminase). As for the epoxide-containing molecules in clinical trials, some of them are being tested for obesity and schizophrenia. Finally, drugs containing epoxide groups already in the market are mostly used for the treatment of different types of cancer, such as breast cancer and multiple myeloma. Other diseases for which the referred drugs are being used include heart failure, infections and gastrointestinal disturbs. In summary, epoxides can be a suitable option in drug design, particularly in the design of anticancer agents, and deserve to be better explored. However, and despite the promising results, it is imperative to explore the mechanisms of action of these compounds in order to have a better picture of their efficiency and safety.
Collapse
|