1
|
Hu X, Xing F, Yin Y, Zhao N, Xing L, Dong G, Xu W. Downregulation of circSTX6 suppresses tumor progression while facilitating radiosensitivity in cervical squamous cell carcinoma. Heliyon 2024; 10:e39262. [PMID: 39524808 PMCID: PMC11544058 DOI: 10.1016/j.heliyon.2024.e39262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Background cervical squamous cell carcinoma (CSCC) is the second gynecological tumors that seriously threaten women's life quality. Circular RNA (circRNA) is related with cervical cancer carcinogenesis and radiosensitivity. Aim To investigate the performance of hsa_circ_0007905 (circSTX6) on regulating cellular activities and radiosensitivity in CSCC. Methods The relative expression of circSTX6 in different tissue samples was detected by RT-qPCR. The cellular activity influence of circSTX6 in cervical cancer cells was measured by CCK-8 and Transwell assays. The survival fractions of cancer cells were detected after the radiation treatment to explore the relationship between circSTX6 and radiosensitivity of cervical cancer. The downstream miRNAs were predicted and analyzed. Rescue experiments confirmed their targeting relationship. Bioinformatic analysis was performed to identify the potential targets of miR-203a-3p. Results circSTX6 was increased and miR-203a-3p was decreased in cervical cancer tissues and radio-resistant tissues. CircSTX6 expression was related to the patient's survival rates. CircSTX6 absence decreased cervical cancer cell proliferation and invasion while enhancing the sensitivity of cervical cancer cells to radiotherapy by regulating miR-203a-3p. RAB27B may be a target of miR-203a-3p. Conclusion circSTX6 may be a clinical prognostic biomarker in CSCC. The absence of circSTX6 inhibits cellular behaviors and increases the sensitivity of cervical cancer cells to radiation by modulating miR-203a-3p/RAB27B axis.
Collapse
Affiliation(s)
- Xiaokang Hu
- Department of Cancer Radiotherapy, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150006, China
| | - Fan Xing
- Department of Cancer Radiotherapy, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150006, China
| | - Yue Yin
- Department of Cancer Radiotherapy, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150006, China
| | - Ning Zhao
- Department of Ultrasonography Lab, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150006, China
| | - Lina Xing
- Department of Cancer Radiotherapy, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150006, China
| | - Guanglu Dong
- Department of Cancer Radiotherapy, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150006, China
| | - Wei Xu
- Oncology Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150006, China
| |
Collapse
|
2
|
Janiczek-Polewska M, Kolenda T, Poter P, Kozłowska-Masłoń J, Jagiełło I, Regulska K, Malicki J, Marszałek A. Diagnostic Potential of miR-143-5p, miR-143-3p, miR-551b-5p, and miR-574-3p in Chemoresistance of Locally Advanced Gastric Cancer: A Preliminary Study. Int J Mol Sci 2024; 25:8057. [PMID: 39125625 PMCID: PMC11311514 DOI: 10.3390/ijms25158057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Gastric cancer (GC) is one of the most frequently diagnosed cancers in the world. Although the incidence is decreasing in developed countries, the treatment results are still unsatisfactory. The standard treatment for locally advanced gastric cancer (LAGC) is gastrectomy with perioperative chemotherapy. The association of selected microRNAs (miRNAs) with chemoresistance was assessed using archival material of patients with LAGC. Histological material was obtained from each patient via a biopsy performed during gastroscopy and then after surgery, which was preceded by four cycles of neoadjuvant chemotherapy (NAC) according to the FLOT or FLO regimen. The expression of selected miRNAs in the tissue material was assessed, including miRNA-21-3p, miRNA-21-5p, miRNA-106a-5p, miRNA-122-3p, miRNA-122-5p, miRNA-143-3p, miRNA-143-5p, miRNA-203a-3p, miRNA-203-5p, miRNA-551b-3p, miRNA-551b-5p, and miRNA-574-3p. miRNA expression was assessed using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The response to NAC was assessed using computed tomography of the abdomen and chest and histopathology after gastrectomy. The statistical analyses were performed using GraphPad Prism 9. The significance limit was set at p < 0.05. We showed that the expression of miR-143-3p, miR-143-5p, and miR-574-3p before surgery, and miR-143-5p and miR-574-3p after surgery, decreased in patients with GC. The expression of miR-143-3p, miR-143-5p, miR-203a-3p, and miR-551b-5p decreased in several patients who responded to NAC. The miRNA most commonly expressed in these cases was miRNA-551b-5p. Moreover, it showed expression in a patient whose response to chemotherapy was inconsistent between the histopathological results and computed tomography. The expression of miR-143-3p, miR-143-5p, miR-203a-3p, and miR-551b-5p in formalin-fixed paraffin-embedded tissue (FFPET) samples can help differentiate between the responders and non-responders to NAC in LAGC. miR-143-3p, miR-143-5p, and miR-574-3p expression may be used as a potential diagnostic tool in GC patients. The presence of miR-551b-5p may support the correct assessment of a response to NAC in GC via CT.
Collapse
Affiliation(s)
- Marlena Janiczek-Polewska
- Department of Clinical Oncology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Centre, 61-866 Poznan, Poland;
| | - Paulina Poter
- Department of Clinical Pathology, Poznan University of Medical Sciences and Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Joanna Kozłowska-Masłoń
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Centre, 61-866 Poznan, Poland;
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Inga Jagiełło
- Department of Clinical Pathology, Poznan University of Medical Sciences and Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Katarzyna Regulska
- Research and Implementation Unit, Greater Poland Cancer Centre, 61-866 Poznan, Poland;
- Pharmacy, Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum, 60-806 Poznan, Poland
| | - Julian Malicki
- Department of Electroradiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Andrzej Marszałek
- Department of Clinical Pathology, Poznan University of Medical Sciences and Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
3
|
Sahib AS, Fawzi A, Zabibah RS, Koka NA, Khudair SA, Muhammad FA, Hamad DA. miRNA/epithelial-mesenchymal axis (EMT) axis as a key player in cancer progression and metastasis: A focus on gastric and bladder cancers. Cell Signal 2023; 112:110881. [PMID: 37666286 DOI: 10.1016/j.cellsig.2023.110881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
The metastasis a major hallmark of tumors that its significant is not only related to the basic research, but clinical investigations have revealed that majority of cancer deaths are due to the metastasis. The metastasis of tumor cells is significantly increased due to EMT mechanism and therefore, inhibition of EMT can reduce biological behaviors of tumor cells and improve the survival rate of patients. One of the gaps related to cancer metastasis is lack of specific focus on the EMT regulation in certain types of tumor cells. The gastric and bladder cancers are considered as two main reasons of death among patients in clinical level. Herein, the role of EMT in regulation of their progression is evaluated with a focus on the function of miRNAs. The inhibition/induction of EMT in these cancers and their ability in modulation of EMT-related factors including ZEB1/2 proteins, TGF-β, Snail and cadherin proteins are discussed. Moreover, lncRNAs and circRNAs in crosstalk of miRNA/EMT regulation in these tumors are discussed and final impact on cancer metastasis and response of tumor cells to the chemotherapy is evaluated. Moreover, the impact of miRNAs transferred by exosomes in regulation of EMT in these cancers are discussed.
Collapse
Affiliation(s)
- Ameer S Sahib
- Department of Pharmacy, Al- Mustaqbal University College, 51001 Hilla, Iraq
| | - Amjid Fawzi
- Medical Technical College, Al-Farahidi University, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Nisar Ahmad Koka
- Department of English, Faculty of Languages and Translation, King Khalid University, Abha, Kingdom of Saudi Arabia.
| | | | | | - Doaa A Hamad
- Nursing Department, Hilla University College, Babylon, Iraq
| |
Collapse
|
4
|
Varzandeh M, Sabouri L, Mansouri V, Gharibshahian M, Beheshtizadeh N, Hamblin MR, Rezaei N. Application of nano-radiosensitizers in combination cancer therapy. Bioeng Transl Med 2023; 8:e10498. [PMID: 37206240 PMCID: PMC10189501 DOI: 10.1002/btm2.10498] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 11/08/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Radiosensitizers are compounds or nanostructures, which can improve the efficiency of ionizing radiation to kill cells. Radiosensitization increases the susceptibility of cancer cells to radiation-induced killing, while simultaneously reducing the potentially damaging effect on the cellular structure and function of the surrounding healthy tissues. Therefore, radiosensitizers are therapeutic agents used to boost the effectiveness of radiation treatment. The complexity and heterogeneity of cancer, and the multifactorial nature of its pathophysiology has led to many approaches to treatment. The effectiveness of each approach has been proven to some extent, but no definitive treatment to eradicate cancer has been discovered. The current review discusses a broad range of nano-radiosensitizers, summarizing possible combinations of radiosensitizing NPs with several other types of cancer therapy options, focusing on the benefits and drawbacks, challenges, and future prospects.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
| | - Leila Sabouri
- AmitisGen TECH Dev GroupTehranIran
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Vahid Mansouri
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical SciencesTehranIran
| | - Maliheh Gharibshahian
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Student Research CommitteeSchool of Medicine, Shahroud University of Medical SciencesShahroudIran
| | - Nima Beheshtizadeh
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
| | - Michael R. Hamblin
- Laser Research Center, Faculty of Health ScienceUniversity of JohannesburgDoornfonteinSouth Africa
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- Research Center for ImmunodeficienciesChildren's Medical Center, Tehran University of Medical SciencesTehranIran
- Department of ImmunologySchool of Medicine, Tehran University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Darvish L, Bahreyni Toossi MT, Azimian H, Shakeri M, Dolat E, Ahmadizad Firouzjaei A, Rezaie S, Amraee A, Aghaee-Bakhtiari SH. The role of microRNA-induced apoptosis in diverse radioresistant cancers. Cell Signal 2023; 104:110580. [PMID: 36581218 DOI: 10.1016/j.cellsig.2022.110580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Resistance to cancer radiotherapy is one of the biggest concerns for success in treating and preventing recurrent disease. Malignant tumors may develop when they block genetic mutations associated with apoptosis or abnormal expression of apoptosis; Tumor treatment may induce the expression of apoptosis-related genes to promote tumor cell apoptosis. MicroRNAs have been shown to contribute to forecasting prognosis, distinguishing between cancer subtypes, and affecting treatment outcomes in cancer. Constraining these miRNAs may be an attractive treatment strategy to help overcome radiation resistance. The delivery of these future treatments is still challenging due to the excess downstream targets that each miRNA can control. Understanding the role of miRNAs brings us one step closer to attaining patient treatment and improving patient outcomes. This review summarized the current information on the role of microRNA-induced apoptosis in determining the radiosensitivity of various cancers.
Collapse
Affiliation(s)
- Leili Darvish
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hosein Azimian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Shakeri
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Dolat
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Ahmadizad Firouzjaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Rezaie
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Amraee
- Department of Medical Physics, Faculty of Medicine, School of Medicine, Lorestan University of Medical Sciences, khorramabad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
The role and application of transcriptional repressors in cancer treatment. Arch Pharm Res 2023; 46:1-17. [PMID: 36645575 DOI: 10.1007/s12272-023-01427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
Gene expression is modulated through the integration of many regulatory elements and their associated transcription factors (TFs). TFs bind to specific DNA sequences and either activate or repress transcriptional activity. Through decades of research, it has been established that aberrant expression or functional abnormalities of TFs can lead to uncontrolled cell division and the development of cancer. Initial studies on transcriptional regulation in cancer have focused on TFs as transcriptional activators. However, recent studies have demonstrated several different mechanisms of transcriptional repression in cancer, which could be potential therapeutic targets for the development of specific anti-cancer agents. In the first section of this review, "Emerging roles of transcriptional repressors in cancer development," we summarize the current understanding of transcriptional repressors and their involvement in the molecular processes of cancer progression. In the subsequent section, "Therapeutic applications," we provide an updated overview of the available therapeutic targets for drug discovery and discuss the new frontier of such applications.
Collapse
|
7
|
Chen R, Li Y, Ouyang W, Chen S. Bioinformatics Analysis Reveals the Biomarker Value and Potential Mechanism of miR-675-3p in Gastric Cancer. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5456554. [PMID: 35814566 PMCID: PMC9259288 DOI: 10.1155/2022/5456554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022]
Abstract
Background Gastric cancer (GC) is still the main challenge for the social and clinical system. Increasing studies have proved that microRNA dysfunction is closely associated with the GC progression. miR-675-3p has been confirmed as the tumor support in multiple tumor cells, while its role in GC remains unclear. Methods. The clinical data in the TCGA database were excavated for analyzing the role of miR-675-3p in pan-cancer and GC. qRT-PCR was applied to detect the abundances of the genes. The Starbase 2.0 was executed to target the prediction of miR-675-3p. Moreover, the enrichment analysis was performed with the DAVID database. The PPI-network analysis of the targets was performed with Cytoscape. Results miR-675-3p was dramatically upregulated in multiple types of cancer, and elevated miR-675-3p was also found in GC tissues. Moreover, increased miR-675-3p was closely related with the poor survival rates of the patients. The qRT-PCR showed that miR-675-3p was extremely upregulated in GC tissues and cell lines. The enrichment analysis showed that the targets of miR-675-3p were located in the cellular nucleus and associated with the transcriptional misregulation in cancer. The PPI-network showed that three clusters and total of 40 genes were screened as potential hub nodes. Moreover, BRIP1, MYO5B, and PDS5B were related with the prognostic survival of the patients according to the TCGA database and decreased BRIP1, MYO5B, and PDS5B were also found in GC cell lines. Conclusion This study identified miR-675-3p as a potential biomarker in GC development and revealed the potential regulation network of miR-675-3p.
Collapse
Affiliation(s)
- Ruyi Chen
- Department of Gastrointestinal, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Yi Li
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Wei Ouyang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Shaoji Chen
- Department of Gastrointestinal, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|
8
|
Liu G, Yang S, Liu Y, Xu Y, Qiu H, Sun J, Song J, Shi L. The adenosine-A2a receptor regulates the radioresistance of gastric cancer via PI3K-AKT-mTOR pathway. Int J Clin Oncol 2022; 27:911-920. [PMID: 35122587 DOI: 10.1007/s10147-022-02123-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/19/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Radiotherapy is a key strategy in gastric cancer (GC) treatment. However, radioresistance remains a serious concern. It is unclear whether the accumulation of adenosine A2a receptor (ADO-A2aR) is related to radioresistance in GC. In this study, the molecular role of ADO-A2aR in GC radioresistance was investigated. METHODS Colony formation assays were used to assess the role of ADO-A2aR on radioresistance. GC stem cell surface marker expression (including Nanog, OCT-4, SOX-2 and CD44) and PI3K/AKT/mTOR signaling pathway associated protein levels (including phosphorylated PI3K, phosphorylated AKT and phosphorylated mTOR) were determined via western blotting, flow cytometry and immunofluorescence. In addition, the role of ADO-A2aR on radioresistance was explored in vivo using murine xenograft models. RESULTS ADO-A2aR regulated GC cell stemness both in vitro and in vivo. This was shown to induce radioresistance in GC. ADO-A2aR was revealed to significantly induce cell cycle arrest and promote GC cell apoptosis. These activities were closely linked to activation of the PI3K/AKT/mTOR pathway. CONCLUSION This study identified that ADO enhances GC cell stemness via interaction with A2aR and subsequent activation of the PI3K/AKT/mTOR pathway. Ultimately, this resulted in radioresistance. A2aR is a potential target to improve GC radiosensitivity.
Collapse
Affiliation(s)
- Guihong Liu
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China.,Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Song Yang
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China.,Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Yang Liu
- Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Yumei Xu
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Hui Qiu
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Jian Sun
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China.,Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Jun Song
- Departments of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China. .,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China.
| | - Linsen Shi
- Departments of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China.
| |
Collapse
|
9
|
Aberrant Methylation of 20 miRNA Genes Specifically Involved in Various Steps of Ovarian Carcinoma Spread: From Primary Tumors to Peritoneal Macroscopic Metastases. Int J Mol Sci 2022; 23:ijms23031300. [PMID: 35163224 PMCID: PMC8835734 DOI: 10.3390/ijms23031300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Our work aimed to differentiate 20 aberrantly methylated miRNA genes that participate at different stages of development and metastasis of ovarian carcinoma (OvCa) using methylation-specific qPCR in a representative set of clinical samples: 102 primary tumors without and with metastases (to lymph nodes, peritoneum, or distant organs) and 30 peritoneal macroscopic metastases (PMM). Thirteen miRNA genes (MIR107, MIR124-2, MIR124-3, MIR125B-1, MIR127, MIR129-2, MIR130B, MIR132, MIR193A, MIR339, MIR34B/C, MIR9-1, and MIR9-3) were hypermethylated already at the early stages of OvCa, while hypermethylation of MIR1258, MIR137, MIR203A, and MIR375 was pronounced in metastatic tumors, and MIR148A showed high methylation levels specifically in PMM. We confirmed the significant relationship between methylation and expression levels for 11 out of 12 miRNAs analyzed by qRT-PCR. Moreover, expression levels of six miRNAs were significantly decreased in metastatic tumors in comparison with nonmetastatic ones, and downregulation of miR-203a-3p was the most significant. We revealed an inverse relationship between expression levels of miR-203a-3p and those of ZEB1 and ZEB2 genes, which are EMT drivers. We also identified three miRNA genes (MIR148A, MIR9-1, and MIR193A) that likely regulate EMT–MET reversion in the colonization of PMM. According to the Kaplan–Meier analysis, hypermethylation of several examined miRNA genes was associated with poorer overall survival of OvCa patients, and high methylation levels of MIR130B and MIR9-1 were related to the greatest relative risk of death.
Collapse
|
10
|
Liu J, Yan S, Hu J, Ding D, Liu Y, Li X, Pan HS, Liu G, Wu B, Liu Y. MiRNA-4537 functions as a tumor suppressor in gastric cancer and increases the radiosensitivity of gastric cancer cells. Bioengineered 2021; 12:8457-8467. [PMID: 34670480 PMCID: PMC8806832 DOI: 10.1080/21655979.2021.1982843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Radiotherapy is a common method to treat gastric cancer (GC). However, the clinical outcomes of GC radiotherapy face challenges, and the mechanisms of GC radioresistance remain unclear. Our study aimed to investigate the role and mechanism of miR-4537 in the radiation sensitivity of GC cells. Cell viability was determined by Cell Counting Kit-8. The proliferation of HGC27 and KATO III cells was measured using a colony formation assay. Flow cytometry was performed to examine the changes in cell apoptosis. Western blotting was conducted to detect the expression of zinc finger protein 587 (ZNF587) protein in HGC27 and KATO III cells. To confirm the relationship between miR-4537 and ZNF587, a luciferase reporter assay was performed. MiR-4537 was downregulated in GC tumors and cells and suppressed cell proliferation, while promoting cell apoptosis in GC. Importantly, we found that miR-4537 reduced the radioresistance of GC cells. In addition, we also confirmed that miR-4537 expression is negatively correlated with ZNF587 expression in GC tissues. MiR-4537 bound to ZNF587 and suppressed the expression level of ZNF587. Overexpression of ZNF587 partially counteracted the effects of miR-4537 on cell proliferation and apoptosis. In conclusion, in GC cells, miR-4537 inhibited the ability of cell proliferation, but on the contrary, it promoted the ability of cell apoptosis and improved radiosensitivity of the cells.
Collapse
Affiliation(s)
- Jia Liu
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Sili Yan
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Jun Hu
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Dong Ding
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Yang Liu
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Xia Li
- Department of Ultrasound Imaging, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Hai Song Pan
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Gengxin Liu
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Bo Wu
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Yu Liu
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
11
|
Chen H, Kong M, Chen Y, Jiang Y, Wen M, Zhang X. Prognostic significance of miR-203 and ZEB1 expression in early-stage hepatocellular carcinoma. J Cancer 2021; 12:4810-4818. [PMID: 34234851 PMCID: PMC8247376 DOI: 10.7150/jca.57819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Approximately one-quarter of patients with early-stage hepatocellular carcinoma (HCC) suffer from tumor recurrence within the first year after hepatectomy. Identification of patients at high risk of recurrence and new therapeutic approaches are crucial to improve clinical outcome. This study aimed to assess the prognostic significance of miR-203 and Zinc finger E-box binding homeobox 1 (ZEB1) in early-stage HCC and explore the association between the expression of ZEB1 and miR-203 in HCC. Methods: Tissue microarray-based immunohistochemistry (IHC) and in situ hybridization (ISH) were performed to investigate ZEB1 and miR-203 expression in 73 patients with early-stage HCC and their correlation with clinicopathological features and prognosis of patients were analyzed. The prognostic value of the two factors was also measured by public KM plotter database. Quantitative reverse transcription PCR (qRT-PCR) assays were conducted to study the relationship between miR-203 and ZEB1. Transwell assays, Cell Counting Kit-8 (CCK-8) assays were performed to detect the roles of miR-203 in migration, invasion and proliferation of HCC cells. Results: We found low expression of miR-203 was associated significantly with tumor recurrence (P<0.001) and poor survival (P=0.020) of patients with early-stage HCC. Multivariate analysis revealed that low miR-203 expression was a poor prognostic factor for both overall survival (OS) (P=0.036) and recurrence free survival (RFS) (P=0.017). ZEB1 did not show any prognostic significance in our cohort. Correlation analysis indicated that there was no significant correlation between miR-203 and ZEB1 on both mRNA and protein levels. Furthermore, functional studies indicated that miR-203 repressed migration, invasion and proliferation of HCC cells in vitro. Conclusion: Our study suggested that miR-203 could be a novel predictor in early-stage HCC and might also be a potential molecular target for HCC therapy.
Collapse
Affiliation(s)
- Hongyuan Chen
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China
| | - Meng Kong
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China
| | - Ying Chen
- Department of Gynaecology, People' Hospital of Rizhao, Rizhao, Shandong 276800 China
| | - Yugang Jiang
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China
| | - Mingxin Wen
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, School of Medicine, Shandong University, Jinan, Shandong 250012 China
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012 China
| |
Collapse
|
12
|
Soleymani L, Zarrabi A, Hashemi F, Hashemi F, Zabolian A, Banihashemi SM, Moghadam SS, Hushmandi K, Samarghandian S, Ashrafizadeh M, Khan H. Role of ZEB family members in proliferation, metastasis and chemoresistance of prostate cancer cells: Revealing signaling networks. Curr Cancer Drug Targets 2021; 21:749-767. [PMID: 34077345 DOI: 10.2174/1568009621666210601114631] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 11/22/2022]
Abstract
Prostate cancer (PCa) is one of the leading causes of death worldwide. A variety of strategies including surgery, chemotherapy, radiotherapy and immunotherapy are applied for PCa treatment. PCa cells are responsive towards therapy at early stages, but they can obtain resistance in the advanced stage. Furthermore, their migratory ability is high in advanced stages. It seems that genetic and epigenetic factors play an important in this case. Zinc finger E-box-binding homeobox (ZEB) is a family of transcription with two key members including ZEB1 and ZEB2. ZEB family members are known due to their involvement in promoting cancer metastasis via EMT induction. Recent studies have shown their role in cancer proliferation and inducing therapy resistance. In the current review, we focus on revealing role of ZEB1 and ZEB2 in PCa. ZEB family members that are able to significantly promote proliferation and viability of cancer cells. ZEB1 and ZEB2 enhance migration and invasion of PCa cells via EMT induction. Overexpression of ZEB1 and ZEB2 is associated with poor prognosis of PCa. ZEB1 and ZEB2 upregulation occurs during PCa progression and can provide therapy resistance to cancer cells. PRMT1, Smad2, and non-coding RNAs can function as upstream mediators of the ZEB family. Besides, Bax, Bcl-2, MRP1, N-cadherin and E-cadherin can be considered as downstream targets of ZEB family in PCa.
Collapse
Affiliation(s)
- Leyla Soleymani
- Department of biology, school of science, Urmia university, Urmia, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul. Turkey
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shirin Sabouhi Moghadam
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite -Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul. Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200. Pakistan
| |
Collapse
|
13
|
Fang X, Huang W, Wu P, Zeng J, Li X. CircRNA circTRAF3 promotes nasopharyngeal carcinoma metastasis through targeting miR-203a-3p/AKT3 axis. Pathol Res Pract 2021; 221:153438. [PMID: 33887546 DOI: 10.1016/j.prp.2021.153438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/29/2021] [Accepted: 04/04/2021] [Indexed: 12/24/2022]
Abstract
Distant metastasis is still the main cause of death in patients with nasopharyngeal carcinoma (NPC), and its mechanism is not fully understood. In this study, we studied the biological function and molecular mechanism of circular RNA circTRAF3 in NPC metastasis. We found that the increase in circTRAF3 is associated with the metastasis and survival of NPC patients. Knockdown of circTRAF3 could inhibit NPC cell proliferation and cell invasion, and induce apoptosis in vitro and in vivo. Further mechanism studies demonstrated that circTRAF3 eliminated the inhibitory effect of miR-203a-3p on AKT3 by adsorbing miR-203a-3p, and finally played the role of oncogene in NPC. Our findings reveal a new type of circRNA, circTRAF3, which acts as an oncogene in NPC and targets miR-203a-3p/AKT3 pathway. The circTRAF3/miR-203a-3p/AKT3 pathway may be a potential therapeutic target for metastatic NPC.
Collapse
Affiliation(s)
- Xing Fang
- Department of Otorhinolaryngology Head & Neck Surgery, Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ping Wu
- Department of Otorhinolaryngology Head & Neck Surgery, Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Junfeng Zeng
- Department of Otorhinolaryngology Head & Neck Surgery, Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xin Li
- Department of Otorhinolaryngology Head & Neck Surgery, Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
14
|
Huang Z, Huang L, Liu L, Wang L, Lin W, Zhu X, Su W, Lv C. Knockdown of microRNA-203 reduces cisplatin chemo-sensitivity to osteosarcoma cell lines MG63 and U2OS in vitro by targeting RUNX2. J Chemother 2021; 33:328-341. [PMID: 33764270 DOI: 10.1080/1120009x.2021.1899441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Clinical studies have reported that miRNAs abnormal expression are associated with the generation of cisplatin-resistant to osteosarcoma. Our previous research found that miR-203 is downregulated in osteosarcoma cells and overexpressed miR-203 exerts antitumor properties on osteosarcoma cells. However, the role and mechanism of miR-203 in regulating the sensitivity of cisplatin in osteosarcoma cells remains unclear. This study aimed to investigate the effects of miR-203 in cisplatin therapy for osteosarcoma cells in vitro and determined the underlying mechanism. In this study, we found that miR-203 was significantly upregulated in osteosarcoma cells after exposure to cisplatin. miR-203 knockdown reduced the sensitivity of osteosarcoma cells to cisplatin by suppressing cell apoptosis, cell cycle arrest, and inducing invasion. Meanwhile, we found that miR-203 knockdown reduces the therapeutic sensitivity of osteosarcoma cells by upregulating RUNX2. Moreover, we found that RUNX2 silencing sensitizes osteosarcoma cells to chemotherapy treatment of cisplatin. In summary, our findings demonstrated that miR-203 knockdown reduces cisplatin chemo-sensitivity to osteosarcoma cells in vitro by targeting RUNX2, and speculated that miR-203 may be a target for drug resistance of osteosarcoma to cisplatin.
Collapse
Affiliation(s)
- Zhengxiang Huang
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lintuo Huang
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lue Liu
- Department of Orthopedics, the Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, China
| | - Lu Wang
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenjun Lin
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiongbai Zhu
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Su
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chen Lv
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
15
|
Liu G, Huang X. Circ_0000518 contributes to breast cancer development depending on the regulation of miR-1258/ZEB1 axis. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1890643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Guojun Liu
- Department of Surgical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, People’s Republic of China
| | - Xuqun Huang
- Department of Surgical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, People’s Republic of China
| |
Collapse
|
16
|
Ebahimzadeh K, Shoorei H, Mousavinejad SA, Anamag FT, Dinger ME, Taheri M, Ghafouri-Fard S. Emerging role of non-coding RNAs in response of cancer cells to radiotherapy. Pathol Res Pract 2020; 218:153327. [PMID: 33422780 DOI: 10.1016/j.prp.2020.153327] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 01/03/2023]
Abstract
Radiotherapy is an effective method for treatment of a large proportion of human cancers. Yet, the efficacy of this method is precluded by the induction of radioresistance in tumor cells and the radiation-associated injury of normal cells surrounding the field of radiation. These restrictions necessitate the introduction of modalities for either radiosensitization of cancer cells or protection of normal cells against adverse effects of radiation. Non-coding RNAs (ncRNAs) have essential roles in the determination of radiosensitivity. Moreover, ncRNAs can modulate radiation-induced side effects in normal cells. Several microRNAs (miRNAs) such as miR-620, miR-21 and miR-96-5p confer radioresistance, while other miRNAs including miR-340/ 429 confer radiosensitivity. The expression levels of a number of miRNAs are associated with radiation-induced complications such as lung fibrosis or oral mucositis. The expression patterns of several long non-coding RNAs (lncRNAs) such as MALAT1, LINC00630, HOTAIR, UCA1 and TINCR are associated with response to radiotherapy. Taken together, lncRNAs and miRNAs contribute both in modulation of response of cancer cells to radiotherapy and in protection of normal cells from the associated side effects. The current review provides an overview of the roles of these transcripts in these aspects.
Collapse
Affiliation(s)
- Kaveh Ebahimzadeh
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Ali Mousavinejad
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Zhao H, Chang A, Ling J, Zhou W, Ye H, Zhuo X. Construction and analysis of miRNA-mRNA regulatory networks in the radioresistance of nasopharyngeal carcinoma. 3 Biotech 2020; 10:511. [PMID: 33184596 DOI: 10.1007/s13205-020-02504-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy has been the major treatment strategy for nasopharyngeal carcinoma (NPC), while the occurrence of radioresistance may lead to cancer recurrence or progression. This study aimed to identify the key microRNAs (miRNAs) and their target genes in the development of NPC radioresistance. Public microarray data were searched and analyzed to screen the differentially expressed miRNAs (DEMs) and genes (DEGs) between radioresistant and radiosensitive NPC samples. MiRNA-mRNA networks were constructed. As a result, 5 DEMs and 195 DEGs were screened out. The DEGs were enriched in various signaling pathways, such as Cytokine-cytokine receptor interaction, Jak-STAT signaling pathway, and Toll-like receptor signaling pathway. Several hub genes, such as IGF2, OLA1, BBS10, MMP9, and BBS7 were identified. A regulatory miRNA-mRNA network containing 87 miRNA-mRNA pairs was constructed. Then, 14 key miRNA-mRNA pairs that contained the hub genes were further filtered out. In the networks, miR-203a-3p had the largest number of target genes. Afterwards, the candidate pairs (miR-203a-3p/BTK and miR-484/OLA1) have been verified by a qRT-PCR assay. In summary, we identified several miRNAs and hub genes via big data screening. A total of 87 miRNA-mRNA pairs (including 14 key pairs) were predicted to play a crucial role in the development of NPC radioresistance. These data provide a bioinformatics basis for further exploring the molecular mechanism of radiotherapy resistance in NPC. Future studies are needed to validate the results.
Collapse
|
18
|
miRNA as promising theragnostic biomarkers for predicting radioresistance in cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2020; 157:103183. [PMID: 33310279 DOI: 10.1016/j.critrevonc.2020.103183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
Radioresistance remains as an obstacle in cancer treatment. This systematic review and meta-analysis aimed to evaluate the association between the expression of miRNAs and responses to radiotherapy and the prognosis of different tumors. In total, 77 miRNAs in 19 cancer types were studied, in which 24 miRNAs were upregulated and 58 miRNAs were downregulated in cancer patients. Five miRNAs were differentially expressed. Moreover, 75 miRNAs were found to be related to radioresistance, while 5 were observed to be related to radiosensitivity. The pooled HR and 95 % confidence interval for the combined studies was 1.135 (0.819-1.574; P-value = 0.4). The HR values of the subgroup analysis for miR-21 (HR = 2.344; 95 % CI: 1.927-2.850; P-value = 0.000), nasopharyngeal carcinoma (HR = 0.448; 95 % CI: 0.265-0.760; P = 0.003) and breast cancer (HR = 1.131; 95 % CI: 0.311-4.109; P = .85) were obtained. Our results highlighted that across the published literature, miRNAs can modulate tumor radioresistance or sensitivity by affecting radiation-related signaling pathways. It seems that miRNAs could be considered as a theragnostic biomarker to predict and monitor clinical response to radiotherapy. Thus, the prediction of radioresistance in malignant patients will improve radiotherapy outcomes and radiotherapeutic resistance.
Collapse
|
19
|
MicroRNAs and Their Influence on the ZEB Family: Mechanistic Aspects and Therapeutic Applications in Cancer Therapy. Biomolecules 2020; 10:biom10071040. [PMID: 32664703 PMCID: PMC7407563 DOI: 10.3390/biom10071040] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
Molecular signaling pathways involved in cancer have been intensively studied due to their crucial role in cancer cell growth and dissemination. Among them, zinc finger E-box binding homeobox-1 (ZEB1) and -2 (ZEB2) are molecules that play vital roles in signaling pathways to ensure the survival of tumor cells, particularly through enhancing cell proliferation, promoting cell migration and invasion, and triggering drug resistance. Importantly, ZEB proteins are regulated by microRNAs (miRs). In this review, we demonstrate the impact that miRs have on cancer therapy, through their targeting of ZEB proteins. MiRs are able to act as onco-suppressor factors and inhibit the malignancy of tumor cells through ZEB1/2 down-regulation. This can lead to an inhibition of epithelial-mesenchymal transition (EMT) mechanism, therefore reducing metastasis. Additionally, miRs are able to inhibit ZEB1/2-mediated drug resistance and immunosuppression. Additionally, we explore the upstream modulators of miRs such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as these regulators can influence the inhibitory effect of miRs on ZEB proteins and cancer progression.
Collapse
|
20
|
Regulation of DNA Damage Response and Homologous Recombination Repair by microRNA in Human Cells Exposed to Ionizing Radiation. Cancers (Basel) 2020; 12:cancers12071838. [PMID: 32650508 PMCID: PMC7408912 DOI: 10.3390/cancers12071838] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Ionizing radiation may be of both artificial and natural origin and causes cellular damage in living organisms. Radioactive isotopes have been used significantly in cancer therapy for many years. The formation of DNA double-strand breaks (DSBs) is the most dangerous effect of ionizing radiation on the cellular level. After irradiation, cells activate a DNA damage response, the molecular path that determines the fate of the cell. As an important element of this, homologous recombination repair is a crucial pathway for the error-free repair of DNA lesions. All components of DNA damage response are regulated by specific microRNAs. MicroRNAs are single-stranded short noncoding RNAs of 20–25 nt in length. They are directly involved in the regulation of gene expression by repressing translation or by cleaving target mRNA. In the present review, we analyze the biological mechanisms by which miRNAs regulate cell response to ionizing radiation-induced double-stranded breaks with an emphasis on DNA repair by homologous recombination, and its main component, the RAD51 recombinase. On the other hand, we discuss the ability of DNA damage response proteins to launch particular miRNA expression and modulate the course of this process. A full understanding of cell response processes to radiation-induced DNA damage will allow us to develop new and more effective methods of ionizing radiation therapy for cancers, and may help to develop methods for preventing the harmful effects of ionizing radiation on healthy organisms.
Collapse
|
21
|
Zhao L, Liu C, Yan S, Hu G, Xiang K, Xiang H, Yu H. LINC00657 promotes colorectal cancer stem-like cell invasion by functioning as a miR-203a sponge. Biochem Biophys Res Commun 2020; 529:500-506. [PMID: 32703458 DOI: 10.1016/j.bbrc.2020.04.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/12/2020] [Indexed: 02/09/2023]
Abstract
Recently, the role of long non-coding RNAs (lncRNAs) in regulating multiple cancer types has attracted increasing interest because of their involvement in cell metastasis in different cancer types. Previous studies indicated that LINC00657 may work as an oncogene in gastric and colon cancer. However, the functional role and mechanistic action of LINC00657 on colorectal cancer (CRC) remains unknown. Therefore, in this study, the role of LINC00657 in CRC was evaluated. Our results showed that LINC00657 was enriched in CRC stem-like cells (CSCs) and significantly promoted CSCs invasion ability. LINC00657 expression resulted frequently up-regulated in CRC patient tissue, and high expression of LINC00657 was correlated with an advanced clinical stage, lymph node metastasis, distant metastasis and poor overall survival of CRC patients. Furthermore, LINC00657 worked as a competing endogenous RNA (ceRNA) for miR-203a, antagonizing its function as a tumor suppressor and leading to the de-repression of CSCs invasion. Collectively, our observations revealed that LINC00657 is involved in CRC invasion by acting as a competing endogenous RNA. Thus, LINC00657 may serve as a potential prognostic factor and/or therapeutic target for CRC.
Collapse
Affiliation(s)
- Lian Zhao
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Chao Liu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Shipeng Yan
- Department of Cancer Prevention and Control, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Gui Hu
- Department of Gastroenterological Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Kaimin Xiang
- Department of Gastroenterological Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Hong Xiang
- Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Haibo Yu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China.
| |
Collapse
|
22
|
Gao ZY, Liu H, Zhang Z. miR-144-3p increases radiosensibility of gastric cancer cells by targeting inhibition of ZEB1. Clin Transl Oncol 2020; 23:491-500. [PMID: 32613412 DOI: 10.1007/s12094-020-02436-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/19/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE This study set out to probe into the effect and mechanism of miR-144-3p on radiosensitivity of gastric cancer (GC) cells. METHODS Cancer tissue and paracancerous tissue of GC patients admitted to our hospital were collected, their miR-144-3p expression was tested, GC cells were transfected, and survival and biological behavior of those cells under radiation were detected. RESULTS After detection, miR-144-3p expression was down-regulated in GC tissue, while ZEB1 was up-regulated. There was no remarkable difference in the survival fraction of cells in each group before receiving radiation, but that of tumor cells decreased obviously (p < 0.05) after radiation exposure. Survival fraction of cells overexpressing miR-144-3p or silencing ZEB1 decreased more obviously, while the inhibition of miR-144-3p or overexpressing ZEB1 was weaker. Biological behavior of cells under 6 Gy radiation was detected. It was found that miR-144-3p overexpression or silencing ZEB1 dramatically inhibited the proliferation activity of GC cells under 6 Gy radiation, increased the levels of pro-apoptotic Bax and caspase-3 proteins (p < 0.05) and decreased the anti-apoptotic protein Bcl-2 level (p < 0.05), resulting in an increase in the apoptosis rate of cells. miR-144-3p was confirmed to be ZEB1 targeting site by dual luciferase report. Moreover, rescue experiments prove that it can increase the radiosensitivity of GC cells by regulating ZEB1 expression. CONCLUSION miR-144-3p expression was down-regulated in GC, and it can increase the radiosensitivity of those cells by inhibiting ZEB1 expression.
Collapse
Affiliation(s)
- Z Y Gao
- Department of Radiotherapy, Binzhou Central Hospital, No. 108 Huancheng Nan Road, Huimin County, Binzhou, 251700, Shandong, China.
| | - H Liu
- Department of Oncology, Binzhou Central Hospital, Ward 3, Binzhou, 251700, China
| | - Z Zhang
- Department of Radiotherapy, Binzhou Central Hospital, No. 108 Huancheng Nan Road, Huimin County, Binzhou, 251700, Shandong, China
| |
Collapse
|
23
|
Liu L, Wang Q, Qiu Z, Kang Y, Liu J, Ning S, Yin Y, Pang D, Xu S. Noncoding RNAs: the shot callers in tumor immune escape. Signal Transduct Target Ther 2020; 5:102. [PMID: 32561709 PMCID: PMC7305134 DOI: 10.1038/s41392-020-0194-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/17/2023] Open
Abstract
Immunotherapy, designed to exploit the functions of the host immune system against tumors, has shown considerable potential against several malignancies. However, the utility of immunotherapy is heavily limited due to the low response rate and various side effects in the clinical setting. Immune escape of tumor cells may be a critical reason for such low response rates. Noncoding RNAs (ncRNAs) have been identified as key regulatory factors in tumors and the immune system. Consequently, ncRNAs show promise as targets to improve the efficacy of immunotherapy in tumors. However, the relationship between ncRNAs and tumor immune escape (TIE) has not yet been comprehensively summarized. In this review, we provide a detailed account of the current knowledge on ncRNAs associated with TIE and their potential roles in tumor growth and survival mechanisms. This review bridges the gap between ncRNAs and TIE and broadens our understanding of their relationship, providing new insights and strategies to improve immunotherapy response rates by specifically targeting the ncRNAs involved in TIE.
Collapse
Affiliation(s)
- Lei Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhilin Qiu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yujuan Kang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jiena Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Shipeng Ning
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yanling Yin
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
24
|
Gu Y, Zhu Z, Pei H, Xu D, Jiang Y, Zhang L, Xiao L. Long non-coding RNA NNT-AS1 promotes cholangiocarcinoma cells proliferation and epithelial-to-mesenchymal transition through down-regulating miR-203. Aging (Albany NY) 2020; 12:2333-2346. [PMID: 32019904 PMCID: PMC7041725 DOI: 10.18632/aging.102747] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a serious malignant tumor. Long non-coding RNA NNT-AS1 (NNT-AS1) takes crucial roles in several tumors. So, we planned to research the roles and underlying mechanism of NNT-AS1 in CCA. RESULTS NNT-AS1 overexpression was appeared in CCA tissues and cell lines. Proliferation was promoted by NNT-AS1 overexpression in CCLP1 and TFK1 cells. Besides, NNT-AS1 overexpression reduced E-cadherin level and raised levels of N-cadherin, vimentin, Snail and Slug. However, the opposite trend was occurred by NNT-AS1 knockdown. Further, NNT-AS1 overexpression promoted phosphatidylinositol 3 kinase (PI3K)/AKT and extracellular signal-regulated kinase (ERK)1/2 pathways. MiR-203 was sponged by NNT-AS1 and miR-203 mimic reversed the above promoting effects of NNT-AS1. Additionally, insulin-like growth factor type 1 receptor (IGF1R) and zinc finger E-box binding homeobox 1 (ZEB1) were two potential targets of miR-203. CONCLUSION NNT-AS1 promoted proliferation, EMT and PI3K/AKT and ERK1/2 pathways in CCLP1 and TFK1 cells through down-regulating miR-203. METHODS CCLP1 and TFK1 cells were co-transfected with pcDNA-NNT-AS1 and miR-203 mimic. Bromodeoxyuridine (BrdU), flow cytometry, quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot were employed to detect roles and mechanism of NNT-AS1. Interaction between NNT-AS1 and miR-203 or miR-203 and target genes was examined through luciferase activity experiment.
Collapse
Affiliation(s)
- Yulei Gu
- Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhiqiang Zhu
- Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hui Pei
- Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dong Xu
- Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yumin Jiang
- Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Luanluan Zhang
- Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lili Xiao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|