1
|
Shao X, Hou H, Chen H, Xia W, Geng X, Wang J. GATA1 activates HSD17B6 to improve efficiency of cisplatin in lung adenocarcinoma via DNA damage. Genes Environ 2024; 46:27. [PMID: 39695810 DOI: 10.1186/s41021-024-00321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common histological type of non-small cell lung cancer (NSCLC). Platinum-based chemotherapy, such as cisplatin chemotherapy, is the cornerstone of treatment for LUAD patients. Nevertheless, cisplatin resistance remains the key obstacle to LUAD treatment, for its mechanism has not been fully elucidated. METHODS HSD17B6 mRNA expression data were accessed from TCGA-LUAD database and differential expression analysis was performed. Enrichment analysis of HSD17B6 was conducted by GSEA, and its upstream transcription factors were predicted by hTFtarget. mRNA and protein expression levels of HSD17B6 and GATA1 were assayed by qRT-PCR and WB, and the binding relationship between them was verified by chromatin immunoprecipitation assay and dual luciferase reporter assay. Cell viability and IC50 value of cisplatin-treated cells were measured by cell counting kit-8 assay. Cell cycle was assayed by flow cytometry. DNA damage level and DNA damage marker γ-H2AX expression were assayed by comet assay and western blot, respectively. RESULTS HSD17B6 was lowly expressed in LUAD tissues and cells and mainly enriched in homologous recombination and mismatch repair pathways. As cell function experiments revealed, overexpression of HSD17B suppressed malignant phenotypes and cisplatin resistance in LUAD cells through DNA damage. Bioinformatics analysis revealed that GATA1 is the upstream regulator of HSD17B6, which was markedly reduced in LUAD tissues and cells. ChIP and dual luciferase reporter assays ascertained the binding of GATA1 to HSD17B6. Knockdown of GATA1 attenuated the effect of overexpression of HSD17B6 on LUAD cell behaviors and cisplatin resistance. CONCLUSION Transcription factor GATA1 could activate HSD17B6 to inhibit cisplatin resistance in LUAD through DNA damage, suggesting that GATA1/HSD17B6 axis may be a potential therapeutic target for chemotherapy resistance in LUAD patients.
Collapse
Affiliation(s)
- Xingxing Shao
- Pulmonary and Critical Care Medicine, Huaian Hospital of Huaian City, Huaian Cancer Hospital, No. 19 Shanyang Avenue, Huai'an District, Huai'an, 223200, China
| | - Hailang Hou
- Pulmonary and Critical Care Medicine, Huaian Hospital of Huaian City, Huaian Cancer Hospital, No. 19 Shanyang Avenue, Huai'an District, Huai'an, 223200, China
| | - Huijie Chen
- Pulmonary and Critical Care Medicine, Huaian Hospital of Huaian City, Huaian Cancer Hospital, No. 19 Shanyang Avenue, Huai'an District, Huai'an, 223200, China
| | - Wan Xia
- Pulmonary and Critical Care Medicine, Huaian Hospital of Huaian City, Huaian Cancer Hospital, No. 19 Shanyang Avenue, Huai'an District, Huai'an, 223200, China
| | - Xinpu Geng
- Pulmonary and Critical Care Medicine, Huaian Hospital of Huaian City, Huaian Cancer Hospital, No. 19 Shanyang Avenue, Huai'an District, Huai'an, 223200, China
| | - Jindao Wang
- Pulmonary and Critical Care Medicine, Huaian Hospital of Huaian City, Huaian Cancer Hospital, No. 19 Shanyang Avenue, Huai'an District, Huai'an, 223200, China.
| |
Collapse
|
2
|
Zhang L, Li Y, Wang Q, Chen Z, Li X, Wu Z, Hu C, Liao D, Zhang W, Chen ZS. The PI3K subunits, P110α and P110β are potential targets for overcoming P-gp and BCRP-mediated MDR in cancer. Mol Cancer 2020; 19:10. [PMID: 31952518 PMCID: PMC6966863 DOI: 10.1186/s12943-019-1112-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND PI3K/AKT is a vital signaling pathway in humans. Recently, several PI3K/AKT inhibitors were reported to have the ability to reverse cancer multidrug resistance (MDR); however, specific targets in the PI3K/AKT pathways and the mechanisms associated with MDR have not been found because many of the inhibitors have multiple targets within a large candidate protein pool. AKT activation is one presumed mechanism by which MDR develops during cancer treatment. METHODS The effects of inhibiting PI3K 110α and 110β by BAY-1082439 treatment and CRISPR/Cas9 knockout were examined to determine the possible functions of BAY-1082439 and the roles of PI3K 110α and 110β in the reversal of MDR that is mediated by the downregulation of P-gp and BCRP. Inhibition of AKT with GSK-2110183 showed that the downregulation of P-gp and BCRP is independent of generalized AKT inactivation. Immunofluorescence, immunoprecipitation, MTT, flow cytometry and JC-1 staining analyses were conducted to study the reversal of MDR that is mediated by P-gp and BCRP in cancer cells. An ATPase assay and a structural analysis were also used to analyze the potential mechanisms by which BAY-1082439 specifically targets PI3K 110α and 110β and nonspecifically influences P-gp and BCRP. RESULTS By inhibiting the activation of the PI3K 110α and 110β catalytic subunits through both the administration of BAY-1082439 and the CRISPR/Cas9 deletion of Pik3ca and Pik3cb, the ATP-binding cassette transporters P-gp/ABCB1 and BCRP/ABCG2 were downregulated, thereby reestablishing the drug sensitivity of human epidermoid carcinoma and non-small cell lung cancer (NSCLC) MDR cells. Inhibition of AKT did not reverse the MDR mediated by P-gp or BCRP. The ABC family proteins and AKT may play MDR-enhancing roles independently. CONCLUSIONS The reversal of the dual functions of ABC-transporter-mediated and AKT-activation-enhanced MDR through the inhibition or knockout of PI3K 110α or 110β promises to improve current strategies based on combined drug treatments to overcome MDR challenges.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Proliferation
- Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Gene Expression Regulation, Neoplastic
- Humans
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Protein Kinase Inhibitors/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yidong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qianchao Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
| | - Xiaoyun Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhuoxun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Chaohua Hu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dan Liao
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
- Key Laboratory of Complementary and Alternative Medicine Experimental Animal Models of Guangxi, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Wei Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
- Institute of Plastic Surgery, Weifang Medical University, Weifang, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|