1
|
Ghafouri-Fard S, Askari A, Hussen BM, Taheri M, Akbari Dilmaghani N. Role of miR-424 in the carcinogenesis. Clin Transl Oncol 2024; 26:16-38. [PMID: 37178445 PMCID: PMC10761534 DOI: 10.1007/s12094-023-03209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Recent studies have revealed the impact of microRNAs (miRNAs) in the carcinogenic process. miR-424 is a miRNA whose role in this process is being to be identified. Experiments in the ovarian cancer, cervical cancer, hepatocellular carcinoma, neuroblastoma, breast cancer, osteosarcoma, intrahepatic cholangiocarcinoma, prostate cancer, endometrial cancer, non-small cell lung cancer, hemangioma and gastric cancer have reported down-regulation of miR-424. On the other hand, this miRNA has been found to be up-regulated in melanoma, laryngeal and esophageal squamous cell carcinomas, glioma, multiple myeloma and thyroid cancer. Expression of this miRNA is regulated by methylation status of its promoter. Besides, LINC00641, CCAT2, PVT1, LIN00657, LINC00511 and NNT-AS1 are among lncRNAs that act as molecular sponges for miR-424, thus regulating its expression. Moreover, several members of SNHG family of lncRNAs have been found to regulate expression of miR-424. This miRNA is also involved in the regulation of E2F transcription factors. The current review aims at summarization of the role of miR-424 in the process of cancer evolution and its impact on clinical outcome of patients in order to find appropriate markers for malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Rahimian N, Sheida A, Rajabi M, Heidari MM, Tobeiha M, Esfahani PV, Ahmadi Asouri S, Hamblin MR, Mohamadzadeh O, Motamedzadeh A, Khaksary Mahabady M. Non-coding RNAs and exosomal non-coding RNAs in pituitary adenoma. Pathol Res Pract 2023; 248:154649. [PMID: 37453360 DOI: 10.1016/j.prp.2023.154649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
Pituitary adenoma (PA) is the third most common primary intracranial tumor in terms of overall disease incidence. Although they are benign tumors, they can have a variety of clinical symptoms, but are mostly asymptomatic, which often leads to diagnosis at an advanced stage when surgical intervention is ineffective. Earlier identification of PA could reduce morbidity and allow better clinical management of the affected patients. Non-coding RNAs (ncRNAs) do not generally code for proteins, but can modulate biological processes at the post-transcriptional level through a variety of molecular mechanisms. An increased number of ncRNA expression profiles have been found in PAs. Therefore, understanding the expression patterns of different ncRNAs could be a promising method for developing non-invasive biomarkers. This review summarizes the expression patterns of dysregulated ncRNAs (microRNAs, long non-coding RNAs, and circular RNAs) involved in PA, which could one day serve as innovative biomarkers or therapeutic targets for the treatment of this neoplasia. We also discuss the potential molecular pathways by which the dysregulated ncRNAs could cause PA and affect its progression.
Collapse
Affiliation(s)
- Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadreza Rajabi
- Department of Pathology, Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mahdi Heidari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Tobeiha
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Pegah Veradi Esfahani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Omid Mohamadzadeh
- Department of Neurological Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Yang W, Li L, Jia J, Wang Z, Zang H. Basic Fibroblast Growth Factor (bFGF)-Overexpressed Bone Marrow Mesenchymal Stem Cells (BMSCs) Orchestrate Lung Cancer Development and Fibroblast Growth. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lung cancer is one of most common cancer with a complicated pathogenesis and a poor prognosis. This study aimed to investigate the role of bFGF and BMSCs in lung cancer progression. BMSCs were transfected with bFGF mimic or NC and then co-cultured with lung cancer cells followed by
measuring cell migration by Transwell assay and proliferation by CCK-8 assay, expression of bFGF, E-cadherin, and Vimentin by RT-qPCR and Western blot. The BMSCs were positive for CD90, CD71, CD29 and CD45. Overexpression of bFGF in BMSCs resulted in increased lung cancer cell proliferation
at 24 h, 48 h and 72 h. Meanwhile, bFGF overexpression also significantly promoted cell migration and invasion as well as upregulated bFGF (4.03±0.36 ng/μl) and E-cadherin (3.64±0.27 ng/μl) and downregulated Vimentin (1.45±0.19 ng/μl). In
conclusion, co-culture of BMSCs overexpressing bFGF and lung cancer cells enhances BMSCs differentiation and promotes cancer cell development possibly through regulation of E-cadherin and Vimentin expression, indicating that this might be a novel approach for the treatment of lung cancer.
Collapse
Affiliation(s)
- Weidong Yang
- Department of X-ray, The No. 2 Hospital of Baoding, No. 338 Dongfeng West Road, Baoding, Hebei, 072750, China
| | - Lei Li
- Department of X-ray, The No. 2 Hospital of Baoding, No. 338 Dongfeng West Road, Baoding, Hebei, 072750, China
| | - Jiangtao Jia
- Department of Digestive System, The No. 2 Hospital of Baoding, No. 338 Dongfeng West Road, Baoding, Hebei, 072750, China
| | - Zhibao Wang
- Department of Nuclear Magnetic Resonance Room, The No. 2 Hospital of Baoding, No. 338 4Dongfeng West Road, Baoding, Hebei, 072750, China
| | - Hanqing Zang
- Department of ICU, The No. 2 Hospital of Baoding, No. 338 Dongfeng West Road, Baoding, Hebei, 072750, China
| |
Collapse
|
4
|
Eldesouki S, Samara KA, Qadri R, Obaideen AA, Otour AH, Habbal O, Bm Ahmed S. XIST in Brain Cancer. Clin Chim Acta 2022; 531:283-290. [PMID: 35483442 DOI: 10.1016/j.cca.2022.04.993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022]
Abstract
Long non-coding RNAs (lncRNAs) make up the majority of the human genome. They are a group of small RNA molecules that do not code for any proteins but play a primary role in regulating a variety of physiological and pathological processes. X-inactive specific transcript (XIST), one of the first lncRNAs to be discovered, is chiefly responsible for X chromosome inactivation: an evolutionary process of dosage compensation between the sex chromosomes of males and females. Recent studies show that XIST plays a pathophysiological role in the development and prognosis of brain tumors, a heterogeneous group of neoplasms that cause significant morbidity and mortality. In this review, we explore recent advancements in the role of XIST in migration, proliferation, angiogenesis, chemoresistance, and evasion of apoptosis in different types of brain tumors, with particular emphasis on gliomas.
Collapse
Affiliation(s)
| | - Kamel A Samara
- College of Medicine, University of Sharjah, Sharjah, UAE
| | - Rama Qadri
- College of Medicine, University of Sharjah, Sharjah, UAE
| | | | - Ahmad H Otour
- College of Medicine, University of Sharjah, Sharjah, UAE
| | - Omar Habbal
- College of Medicine, University of Sharjah, Sharjah, UAE
| | - Samrein Bm Ahmed
- College of Medicine, University of Sharjah, Sharjah, UAE; College of Health and Wellbeing and Life sciences, Department of Biosciences and chemistry, Sheffield Hallam University, UK
| |
Collapse
|
5
|
Sequence Requirements for miR-424-5p Regulating and Function in Cancers. Int J Mol Sci 2022; 23:ijms23074037. [PMID: 35409396 PMCID: PMC8999618 DOI: 10.3390/ijms23074037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
MiRNAs (microRNAs) are the most abundant family of small noncoding RNAs in mammalian cells. Increasing evidence shows that miRNAs are crucial regulators of individual development and cell homeostasis by controlling various biological processes. Therefore, miRNA dysfunction can lead to human diseases, especially in cancers with high morbidity and mortality worldwide. MiRNAs play different roles in these processes. In recent years, studies have found that miR-424-5p is closely related to the occurrence, development, prognosis and treatment of tumors. This review discusses how miR-424-5p plays a role in different kinds of cancers from different stages of tumors, including its roles in (i) promoting or inhibiting tumorigenesis, (ii) regulating tumor development in the tumor microenvironment and (iii) participating in cancer chemotherapy. This review provides a deep discussion of the latest findings on miR-424-5p and its importance in cancer, as well as a mechanistic analysis of the role of miR-424-5p in various tissues through target gene verification and pathway analysis.
Collapse
|
6
|
The lncRNAs at X Chromosome Inactivation Center: Not Just a Matter of Sex Dosage Compensation. Int J Mol Sci 2022; 23:ijms23020611. [PMID: 35054794 PMCID: PMC8775829 DOI: 10.3390/ijms23020611] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) constitute the majority of the transcriptome, as the result of pervasive transcription of the mammalian genome. Different RNA species, such as lncRNAs, miRNAs, circRNA, mRNAs, engage in regulatory networks based on their reciprocal interactions, often in a competitive manner, in a way denominated “competing endogenous RNA (ceRNA) networks” (“ceRNET”): miRNAs and other ncRNAs modulate each other, since miRNAs can regulate the expression of lncRNAs, which in turn regulate miRNAs, titrating their availability and thus competing with the binding to other RNA targets. The unbalancing of any network component can derail the entire regulatory circuit acting as a driving force for human diseases, thus assigning “new” functions to “old” molecules. This is the case of XIST, the lncRNA characterized in the early 1990s and well known as the essential molecule for X chromosome inactivation in mammalian females, thus preventing an imbalance of X-linked gene expression between females and males. Currently, literature concerning XIST biology is becoming dominated by miRNA associations and they are also gaining prominence for other lncRNAs produced by the X-inactivation center. This review discusses the available literature to explore possible novel functions related to ceRNA activity of lncRNAs produced by the X-inactivation center, beyond their role in dosage compensation, with prospective implications for emerging gender-biased functions and pathological mechanisms.
Collapse
|
7
|
Ghafouri-Fard S, Abak A, Hussen BM, Taheri M, Sharifi G. The Emerging Role of Non-Coding RNAs in Pituitary Gland Tumors and Meningioma. Cancers (Basel) 2021; 13:cancers13235987. [PMID: 34885097 PMCID: PMC8656547 DOI: 10.3390/cancers13235987] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are non-coding transcripts which are involved in the pathogenesis of pituitary gland tumors. LncRNAs that participate in the pathogenesis of pituitary gland tumors mainly serve as sponges for miRNAs. CLRN1-AS1/miR-217, XIST/miR-424-5p, H19/miR-93a, LINC00473/miR-502-3p, SNHG7/miR-449a, MEG8/miR-454-3p, MEG3/miR-23b-3p, MEG3/miR-376B-3P, SNHG6/miR-944, PCAT6/miR-139-3p, lncRNA-m433s1/miR-433, TUG1/miR-187-3p, SNHG1/miR-187-3p, SNHG1/miR-302, SNHG1/miR-372, SNHG1/miR-373, and SNHG1/miR-520 are identified lncRNA/miRNA pairs that are involved in this process. Hsa_circ_0001368 and circOMA1 are two examples of circRNAs that contribute to the pathogenesis of pituitary gland tumors. Meanwhile, SNHG1, LINC00702, LINC00460, and MEG3 have been found to partake in the pathogenesis of meningioma. In the current review, we describe the role of non-coding RNAs in two types of brain tumors, i.e., pituitary tumors and meningioma.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19835-35511, Iran;
| | - Atefe Abak
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19835-35511, Iran;
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil 44001, Iraq;
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, 07743 Jena, Germany
- Correspondence: (M.T.); (G.S.)
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 19835-35511, Iran
- Correspondence: (M.T.); (G.S.)
| |
Collapse
|
8
|
Long non-coding RNAs and circular RNAs in tumor angiogenesis: From mechanisms to clinical significance. Mol Ther Oncolytics 2021; 22:336-354. [PMID: 34553023 PMCID: PMC8426176 DOI: 10.1016/j.omto.2021.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) execute a wide array of functions in physiological and pathological processes, including tumor progression. Angiogenesis, an elaborate multistep process driving new blood vessel formation, accelerates cancer progression by supplying nutrients and energy. Dysregulated lncRNAs and circRNAs can reportedly impact cancer progression by influencing angiogenesis. However, the expanding landscape of lncRNAs and circRNAs in tumor progression-dependent angiogenesis remains largely unknown. This review summarizes the major functions of angiogenic lncRNAs (Angio-LncRs) and angiogenic circRNAs (termed Angio-CircRs) and their cancer mechanisms. Moreover, we highlight the commonalities of lncRNAs and circRNAs in epigenetic, transcriptional, and post-transcriptional regulation as well as illustrate how Angio-LncRs and Angio-CircRs induce cancer onset and progression. We also discuss their potential clinical applications in diagnosis, prognosis, and anti-angiogenic therapies.
Collapse
|
9
|
MicroRNAs as Potential Biomarkers in Pituitary Adenomas. Noncoding RNA 2021; 7:ncrna7030055. [PMID: 34564317 PMCID: PMC8482103 DOI: 10.3390/ncrna7030055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022] Open
Abstract
Pituitary adenomas (PAs) are one of the most common lesions of intracranial neoplasms, occurring in approximately 15% of the general population. They are typically benign, although some adenomas show aggressive behavior, exhibiting rapid growth, drug resistance, and invasion of surrounding tissues. Despite ongoing improvements in diagnostic and therapeutic strategies, late first diagnosis is common, and patients with PAs are prone to relapse. Therefore, earlier diagnosis and prevention of recurrence are of importance to improve patient care. MicroRNAs (miRNAs) are short non-coding single stranded RNAs that regulate gene expression at the post-transcriptional level. An increasing number of studies indicate that a deregulation of their expression patterns is related with pituitary tumorigenesis, suggesting that these small molecules could play a critical role in contributing to tumorigenesis and the onset of these tumors by acting either as oncosuppressors or as oncogenes, depending on the biological context. This paper provides an overview of miRNAs involved in PA tumorigenesis, which might serve as novel potential diagnostic and prognostic non-invasive biomarkers, and for the future development of miRNA-based therapeutic strategies for PAs.
Collapse
|
10
|
Aydin B, Caliskan A, Arga KY. Overview of omics biomarkers in pituitary neuroendocrine tumors to design future diagnosis and treatment strategies. EPMA J 2021; 12:383-401. [PMID: 34567287 PMCID: PMC8417171 DOI: 10.1007/s13167-021-00246-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/23/2021] [Indexed: 02/07/2023]
Abstract
Pituitary neuroendocrine tumors (PitNETs) are the second most common type of intracranial neoplasia. Since their manifestation usually causes hormone hypersecretion, effective management of PitNETs is indisputably necessary. Most of the non-functioning PitNETs pose a real challenge in diagnosis as they grow without giving any signs. Despite the good response of prolactinomas to dopamine agonist therapy, some of these tumors persist or recur; also, about 20% are resistant and 10% behave aggressively. The silent corticotropinomas may not cause symptoms until the tumor mass causes a complication. In somatotropinomas, the possibility of recurrence after transsphenoidal resection is more common in pediatric patients than in adult patients. Therefore, detection of tumors at early stages or identification of recurrence and remission after transsphenoidal surgery would allow wiser management of the disease. Extensive studies have been performed to uncover potential signatures that can be used for preventive diagnosis and/or prognosis of PitNETs as well as for targeted therapy. These molecular signatures at multiple biological levels hold promise for the convergence of preventive approaches and patient-centered disease management and offer potential therapeutic strategies. In this review, we provide an overview of the omics-based biomarker research and highlight the multi-omics signatures that have been proposed as pitNET biomarkers. In addition, understanding the multi-omics data integration of current biomarker discovery strategies was discussed in terms of preventive, predictive, and personalized medicine. The topics discussed in this review will help to develop broader visions for pitNET research, diagnosis, and therapy, particularly in the context of personalized medicine.
Collapse
Affiliation(s)
- Busra Aydin
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Aysegul Caliskan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
- Department of Pharmacy, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
- Institute of Public Health and Chronic Diseases, The Health Institutes of Turkey, Istanbul, Turkey
| |
Collapse
|
11
|
Ning D, Chen J, Du P, Liu Q, Cheng Q, Li X, Zhang B, Chen X, Jiang L. The crosstalk network of XIST/miR-424-5p/OGT mediates RAF1 glycosylation and participates in the progression of liver cancer. Liver Int 2021; 41:1933-1944. [PMID: 33909326 DOI: 10.1111/liv.14904] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Liver cancer is a major public health concern, but the mechanistic actions of biomarkers contributing to liver cancer remain to be determined. In this study, we aimed to investigate the regulatory cascade of microRNA-424-5p (miR-424-5p), X-inactive-specific transcript (XIST) and O-GlcNAc transferase (OGT) in liver cancer. METHODS Differentially expressed miRNAs and target genes related to liver cancer were predicted by bioinformatics analyses, and their expression was determined in liver tissues of patients with liver cancer and liver cancer cells. The RNA immunoprecipitation (RIP), RNA pull-down and dual luciferase reporter assay were used to examine the binding affinity among XIST and miR-424-5p and OGT. Then, gain- and loss-of-function assays were conducted to evaluate the effects of the XIST/miR-424-5p/OGT axis on malignant phenotypes. A nude mouse model of liver cancer was further established for in vivo substantiation. RESULTS XIST and OGT were up-regulated in liver cancer tissues and cells, responsible for poor prognosis in patients with liver cancer, while miR-424-5p was down-regulated. XIST competitively bound to miR-424-5p to increase OGT expression. XIST silencing inhibited malignant phenotypes of liver cancer cells, while miR-424-5p down-regulation negated its effect. miR-424-5p suppressed RAF1 glycosylation by negatively regulating OGT expression and promoted its ubiquitination/degradation. Furthermore, XIST knockdown inhibited tumour growth and metastasis in nude mice, while ectopic OGT reversed its effect. CONCLUSION These results reveal a novel mechanism by which the interaction of XIST/miR-424-5p/OGT participates in the malignancy and metastasis of liver cancer.
Collapse
Affiliation(s)
- Deng Ning
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| | - Jin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| | - Pengcheng Du
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| | - Qi Cheng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| | - Xue Li
- Clinical Immunology Laboratory, School of Medical Laboratory, Tianjin Medical University, Tianjin, P.R. China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| | - Li Jiang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| |
Collapse
|
12
|
Ghafouri-Fard S, Dashti S, Farsi M, Taheri M, Mousavinejad SA. X-Inactive-Specific Transcript: Review of Its Functions in the Carcinogenesis. Front Cell Dev Biol 2021; 9:690522. [PMID: 34179019 PMCID: PMC8226258 DOI: 10.3389/fcell.2021.690522] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/13/2021] [Indexed: 01/03/2023] Open
Abstract
X-inactive-specific transcript (XIST) is one of the firstly discovered long non-coding RNAs with prominent roles in the process of X inactivation. Moreover, this transcript contributes in the carcinogenic process in different tissues. In addition to interacting with chromatin modifying molecules, XIST can be served as a molecular sponge for miRNAs to modulate expression of miRNA targets. Most of the studies have indicated an oncogenic role for XIST. However, in prostate cancer, a single study has indicated a tumor suppressor role for this lncRNA. Similar result has been reported for XIST in oral squamous cell carcinoma. In hepatocellular carcinoma, breast cancer, ovarian cancer, osteosarcoma, and renal cell carcinoma, different studies have reported inconsistent results. In the present manuscript, we review function of XIST in the carcinogenesis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Dashti
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Molood Farsi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mousavinejad
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Wang W, Min L, Qiu X, Wu X, Liu C, Ma J, Zhang D, Zhu L. Biological Function of Long Non-coding RNA (LncRNA) Xist. Front Cell Dev Biol 2021; 9:645647. [PMID: 34178980 PMCID: PMC8222981 DOI: 10.3389/fcell.2021.645647] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression in a variety of ways at epigenetic, chromatin remodeling, transcriptional, and translational levels. Accumulating evidence suggests that lncRNA X-inactive specific transcript (lncRNA Xist) serves as an important regulator of cell growth and development. Despites its original roles in X-chromosome dosage compensation, lncRNA Xist also participates in the development of tumor and other human diseases by functioning as a competing endogenous RNA (ceRNA). In this review, we comprehensively summarized recent progress in understanding the cellular functions of lncRNA Xist in mammalian cells and discussed current knowledge regarding the ceRNA network of lncRNA Xist in various diseases. Long non-coding RNAs (lncRNAs) are transcripts that are more than 200 nt in length and without an apparent protein-coding capacity (Furlan and Rougeulle, 2016; Maduro et al., 2016). These RNAs are believed to be transcribed by the approximately 98-99% non-coding regions of the human genome (Derrien et al., 2012; Fu, 2014; Montalbano et al., 2017; Slack and Chinnaiyan, 2019), as well as a large variety of genomic regions, such as exonic, tronic, and intergenic regions. Hence, lncRNAs are also divided into eight categories: Intergenic lncRNAs, Intronic lncRNAs, Enhancer lncRNAs, Promoter lncRNAs, Natural antisense/sense lncRNAs, Small nucleolar RNA-ended lncRNAs (sno-lncRNAs), Bidirectional lncRNAs, and non-poly(A) lncRNAs (Ma et al., 2013; Devaux et al., 2015; St Laurent et al., 2015; Chen, 2016; Quinn and Chang, 2016; Richard and Eichhorn, 2018; Connerty et al., 2020). A range of evidence has suggested that lncRNAs function as key regulators in crucial cellular functions, including proliferation, differentiation, apoptosis, migration, and invasion, by regulating the expression level of target genes via epigenomic, transcriptional, or post-transcriptional approaches (Cao et al., 2018). Moreover, lncRNAs detected in body fluids were also believed to serve as potential biomarkers for the diagnosis, prognosis, and monitoring of disease progression, and act as novel and potential drug targets for therapeutic exploitation in human disease (Jiang W. et al., 2018; Zhou et al., 2019a). Long non-coding RNA X-inactive specific transcript (lncRNA Xist) are a set of 15,000-20,000 nt sequences localized in the X chromosome inactivation center (XIC) of chromosome Xq13.2 (Brown et al., 1992; Debrand et al., 1998; Kay, 1998; Lee et al., 2013; da Rocha and Heard, 2017; Yang Z. et al., 2018; Brockdorff, 2019). Previous studies have indicated that lncRNA Xist regulate X chromosome inactivation (XCI), resulting in the inheritable silencing of one of the X-chromosomes during female cell development. Also, it serves a vital regulatory function in the whole spectrum of human disease (notably cancer) and can be used as a novel diagnostic and prognostic biomarker and as a potential therapeutic target for human disease in the clinic (Liu et al., 2018b; Deng et al., 2019; Dinescu et al., 2019; Mutzel and Schulz, 2020; Patrat et al., 2020; Wang et al., 2020a). In particular, lncRNA Xist have been demonstrated to be involved in the development of multiple types of tumors including brain tumor, Leukemia, lung cancer, breast cancer, and liver cancer, with the prominent examples outlined in Table 1. It was also believed that lncRNA Xist (Chaligne and Heard, 2014; Yang Z. et al., 2018) contributed to other diseases, such as pulmonary fibrosis, inflammation, neuropathic pain, cardiomyocyte hypertrophy, and osteoarthritis chondrocytes, and more specific details can be found in Table 2. This review summarizes the current knowledge on the regulatory mechanisms of lncRNA Xist on both chromosome dosage compensation and pathogenesis (especially cancer) processes, with a focus on the regulatory network of lncRNA Xist in human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dongyi Zhang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| |
Collapse
|
14
|
Samir A, Tawab RA, Eltayebi HM. Long non-coding RNAs XIST and MALAT1 hijack the PD-L1 regulatory signaling pathway in breast cancer subtypes. Oncol Lett 2021; 22:593. [PMID: 34149904 DOI: 10.3892/ol.2021.12854] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have attracted widespread attention as potential biological and pathological regulators. lncRNAs are involved in several biological processes in cancer. Triple negative breast cancer (TNBC) is characterized by strong heterogeneity and aggressiveness. At present, the implication of microRNAs (miRs) and lncRNAs in immunotherapy has been poorly studied. Nevertheless, the blockade of immune checkpoints, particularly that of the programmed cell-death protein-1/programmed cell-death ligand-1 (PD-L1) axis, is considered as a principle approach in breast cancer (BC) therapy. The present study aimed to investigate the interaction between immune-modulatory upstream signaling pathways of the PD-L1 transcript that could enhance personalized targeted therapy. MDA-MB-231 cells were transfected with miR-182-5p mimics followed by RNA extraction and cDNA synthesis using a reverse transcription kit, and the expression levels of the target genes were assessed by reverse transcription-quantitative PCR. Furthermore, the expression levels of target genes were measured in tissues derived from 41 patients with BC, including patients with luminal BC and TNBC, as well as their adjacent lymph nodes. The results revealed that the expression levels of miR-182-5p, PD-L1 and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) were upregulated in MDA-MB-231 cells and BC tissues. However, X-inactive specific transcript (XIST) expression was downregulated in cancer tissues and TNBC cells. Following co-transfection of cells with small interfering RNAs specific for each target gene and miR-182-5p antagomirs, the effect of miR-182-5p was abolished in the presence of lncRNAs. Therefore, the results of the present study indicated that although miR-182-5p exhibited an oncogenic effect, XIST exerted a dominant effect on the regulation of the PD-L1 signaling pathway via the inhibition of the oncogenic function of MALAT1.
Collapse
Affiliation(s)
- Amany Samir
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, German University in Cairo, Cairo 11835, Egypt
| | - Reda Abdel Tawab
- Department of General Surgery, Ain Shams University, Cairo 11772, Egypt
| | - Hend M Eltayebi
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, German University in Cairo, Cairo 11835, Egypt
| |
Collapse
|
15
|
Wang X, Li X, Wang Z. lncRNA MEG3 inhibits pituitary tumor development by participating in cell proliferation, apoptosis and EMT processes. Oncol Rep 2021; 45:40. [PMID: 33649837 PMCID: PMC7934213 DOI: 10.3892/or.2021.7991] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/05/2021] [Indexed: 12/20/2022] Open
Abstract
Pituitary tumors do not pose a threat to life but can cause visual disturbances and serious clinical syndromes, such as infertility and metabolic syndrome. Therefore, screening of key genes involved in the occurrence and development of pituitary tumors can provide new targets for the treatment of pituitary tumors. The aim of the present study was to investigate the molecular mechanism of long non‑coding (lnc.) RNA maternally expressed 3 (MEG3) in cell proliferation, apoptosis and epithelial‑mesenchymal transition (EMT) processes of pituitary tumor. Tissue samples were obtained from 34 patients who underwent surgical treatment of pituitary tumors. Pituitary tumor cells (GH3 and MMQ) were transfected with pcDNA3.1(+)‑MEG3, short hairpin (sh)MEG3, microRNA (miR)‑23‑3p inhibitor or their controls using Lipofectamine® 2000. Reverse transcription‑quantitative PCR and western blot analyses were used to detect the levels of MEG3, miR‑23b‑3p and FOXO4, as well as proliferation‑, apoptosis‑ and EMT‑associated genes and proteins. Cell Counting Kit‑8 and flow cytometry assays were performed to detect proliferation and apoptosis, and Transwell assay was undertaken to assess invasion and migration. Luciferase reporter and RNA pulldown assays were performed to verify the binding between lncRNA MEG3, miR‑23b‑3p and FOXO4. Pearson's correlation analysis was used to analyze the correlation between expression levels of MEG3, miR‑23b‑3p and FOXO4. lncRNA MEG3 was expressed at lower levels in pituitary tumor tissues and cells. Overexpression of lncRNA MEG3 inhibited proliferation, invasion and migration and accelerated apoptosis of pituitary tumor cells. lncRNA MEG3 negatively regulated miR‑23b‑3p expression levels, while miR‑23b‑3p negatively regulated FOXO4 expression levels. Overexpression of lncRNA MEG3 inhibited the EMT process in pituitary tumor cells. miR‑23‑3p inhibitor rescued the effect of shMEG3 on proliferation, invasion, migration, apoptosis and the EMT process in pituitary tumor cells. lncRNA MEG3 inhibited pituitary tumor development by participating in cell proliferation, apoptosis and the EMT process, which may present a novel target for pituitary tumor treatment.
Collapse
Affiliation(s)
- Xuejian Wang
- Department of Neurosurgery, First Affiliated Hospital of Soochow University, Soochow University, Soochow, Jiangsu 225000, P.R. China
| | - Xiangdong Li
- Department of Neurosurgery, First Affiliated Hospital of Soochow University, Soochow University, Soochow, Jiangsu 225000, P.R. China
| | - Zhifeng Wang
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University, Nantong University, Nantong, Jiangsu 226000, P.R. China
| |
Collapse
|
16
|
Kim H, Ji HW, Kim HW, Yun SH, Park JE, Kim SJ. Ginsenoside Rg3 Prevents Oncogenic Long Noncoding RNA ATXN8OS from Inhibiting Tumor-Suppressive microRNA-424-5p in Breast Cancer Cells. Biomolecules 2021; 11:biom11010118. [PMID: 33477683 PMCID: PMC7831931 DOI: 10.3390/biom11010118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022] Open
Abstract
Ginsenoside Rg3 exerts antiproliferation activity on cancer cells by regulating diverse noncoding RNAs. However, little is known about the role of long noncoding RNAs (lncRNAs) or their relationship with competitive endogenous RNA (ceRNA) in Rg3-treated cancer cells. Here, a lncRNA (ATXN8OS) was found to be downregulated via Rg3-mediated promoter hypermethylation in MCF-7 breast cancer cells. SiRNA-induced downregulation of ATXN8OS decreased cell proliferation but increased apoptosis, suggesting that the noncoding RNA possessed proproliferation activity. An in silico search for potential ATXN8OS-targeting microRNAs (miRs) identified a promising candidate (miR-424-5p) based on its high binding score. As expected, miR-424-5p suppressed proliferation and stimulated apoptosis of the MCF-7 cells. The in silico miR-target-gene prediction identified 200 potential target genes of miR-424-5p, which were subsequently narrowed down to seven that underwent hypermethylation at their promoter by Rg3. Among them, three genes (EYA1, DACH1, and CHRM3) were previously known oncogenes and were proven to be oppositely regulated by ATXN8OS and miR-424-5p. When taken together, Rg3 downregulated ATXN8OS that inhibited the tumor-suppressive miR-424-5p, leading to the downregulation of the oncogenic target genes.
Collapse
|
17
|
Dastmalchi N, Baradaran B, Banan Khojasteh SM, Hosseinpourfeizi M, Safaralizadeh R. miR-424: A novel potential therapeutic target and prognostic factor in malignancies. Cell Biol Int 2020; 45:720-730. [PMID: 33325141 DOI: 10.1002/cbin.11530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/21/2020] [Accepted: 12/13/2020] [Indexed: 01/08/2023]
Abstract
microRNAs are endogenous, noncoding RNAs. Showing both tumor-suppressive and oncogenic characteristics, miRNAs can regulate important processes in malignancies. This review aimed at highlighting the recent studies on the contribution of miR-424 to the modulation of carcinogenesis and exploring its probable clinical effectiveness in the diagnosis and therapy of malignancies. The data were extracted from all papers published from 2013 until 2020. Mature miR-424 leads to the degradation of its target transcripts or the suppression of translation via binding to the molecular targets. miR-424 is involved in modulating p53, PI3K/Akt, Wnt, and other molecular pathways, thereby regulating cellular growth, apoptosis, differentiation, chemoresistance, and cancer immunity. miR-424 was introduced as a tumor-suppressive miR in numerous types of cancers while as an oncogene in several cancers. Regarding the cancer dependent role of miR-424, it may be a prognostic and diagnostic biomarker and a potential candidate for the treatment of cancers.
Collapse
Affiliation(s)
- Narges Dastmalchi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
18
|
Zhu Y, Yang Z, Chen H, Pan Y, Gong L, Chen F, Jin X, Wen S, Li Y, Chen G. lncRNAHIF1A-AS2 Promotes Renal Carcinoma Cell Proliferation and Migration via miR-130a-5p/ERBB2 Pathway. Onco Targets Ther 2020; 13:9807-9820. [PMID: 33061459 PMCID: PMC7535142 DOI: 10.2147/ott.s260191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are essential for tumorigenesis and progression of diverse cancers. This study aims to investigate the roles of lncRNAs on renal carcinoma. Methods The expression of lncRNA HIF1A-AS2 in clear cell renal cell carcinoma (ccRCC) and adjacent non-cancer tissues was identified by quantitative real-time PCR (qRT-PCR). Investigations were performed on biological function of lncRNA HIF1A-AS2 on cell proliferation, cell cycle, apoptosis and invasion of ccRCC by overexpression and knockdown experiments. Further, luciferase reporter assay and Western blot were constructed to explore molecular mechanisms underlying the function of lncRNA HIF1A-AS2. Results HIF1A-AS2 was highly expressed in kidney cancer tissues and ccRCC cells. Interference of HIF1A-AS2 in vivo hindered cell proliferation, invasion and migration while accelerated cell apoptosis. Overexpression of HIF1A-AS2 presented an opposite effect that repressed the expression of miR-130a-5p, and miR-130a-5p inhibited the expression of HIF1A-AS2. Additionally, rescue experiments exhibited that oncogenic function of HIF1A-AS2 was partially dependent on the suppression of miR-130a-5p. Conclusion Our results indicated a critical role for the HIF1A-AS2-miR-130a-5p axis in renal carcinoma progression, which may act as a promising diagnostic biomarker and a pivotal therapeutic target for renal carcinoma cures.
Collapse
Affiliation(s)
- Yunxiao Zhu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Ziyi Yang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Han Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yang Pan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Lifeng Gong
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Falin Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Xiaoxiang Jin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Shuang Wen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yi Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Gang Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| |
Collapse
|
19
|
Li S, Wu Y, Zhang J, Sun H, Wang X. Role of miRNA-424 in Cancers. Onco Targets Ther 2020; 13:9611-9622. [PMID: 33061443 PMCID: PMC7532073 DOI: 10.2147/ott.s266541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/04/2020] [Indexed: 01/02/2023] Open
Abstract
microRNA (miRNA) is an important part of non-coding RNA that regulates gene expression at a posttranscriptional level. miRNA has gained increasing interest in recent years, both in research and clinical fields. miRNAs have been found to play an important role in various diseases, particularly cancer. Aberrant miR-424 expression is found in several tumors where they can function as either oncogenes or tumor-suppressor genes. Meanwhile, miR-424 is also affected by the reorganization of many other non-coding RNAs such as lncRNA and cirRNA. Several studies have found that miR-424 participates in proliferation, differentiation, apoptosis, invasion, angiogenesis, and drug resistance, and plays an important role in the tumorigenesis and progression of tumors. This review will focus on the recent progress of research on miR-424 in tumors.
Collapse
Affiliation(s)
- Shulin Li
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen 518000, People's Republic of China
| | - Yuqi Wu
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen 518000, People's Republic of China
| | - Jiawei Zhang
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen 518000, People's Republic of China
| | - Hao Sun
- Department of Urology, Shenzhen Second People's Hospital & the First Affiliated Hospital of Shenzhen University, Shenzhen 518000, People's Republic of China
| | - Xiangwei Wang
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen 518000, People's Republic of China
| |
Collapse
|
20
|
Sun F, Wu K, Yao Z, Mu X, Zheng Z, Sun M, Wang Y, Liu Z, Zhu Y. Long noncoding RNA LINC00963 induces NOP2 expression by sponging tumor suppressor miR-542-3p to promote metastasis in prostate cancer. Aging (Albany NY) 2020; 12:11500-11516. [PMID: 32554858 PMCID: PMC7343457 DOI: 10.18632/aging.103236] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
Abstract
Metastatic disease caused by castration-resistant prostate cancer (CRPC) is the principal cause of prostate cancer (PCa)-related mortality. CRPC occurs within 2-3 years of initiation of androgen deprivation therapy (ADT), which is an important factor of influencing PCa metastasis. Recent studies have revealed that non-coding RNAs in PCa can enhance metastasis and progression, while the mechanisms are still unclear. In this study, we reported that the long noncoding RNA-LINC00963 was increased in CRPC tissues and promoted migration of PCa cells in vitro and their metastasis in vivo. High levels of LINC00963 significantly decreased tumor suppressor miR-542-3p, whose levels in metastasis tissues were low compared to those in non-metastasis tissues. LINC00963 promotes and miR-542-3p inhibits metastasis. Furthermore, the expression levels of LINC00963 and miR-542-3p were positively and negatively associated with the expression of NOP2. We demonstrated that NOP2 promoted PCa by activating the epithelial-mesenchymal transition (EMT) pathway. For specific mechanism, dual luciferase reporter assays showed that miR-542-3p directly binds to both 3'-untranslated region (UTR) of LINC00963 and NOP2 mRNA. Taken together, our results show that LINC00963 acts as an inducer of PCa metastasis by binding miR-542-3p, thereby promoting NOP2. This axis may have diagnostic and therapeutic potential for advanced PCa.
Collapse
Affiliation(s)
- Feng Sun
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ke Wu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhixian Yao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xingyu Mu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhong Zheng
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Menghao Sun
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yong Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhihong Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yiyong Zhu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
21
|
Liu Y, Liu K, Tang C, Shi Z, Jing K, Zheng J. Long non-coding RNA XIST contributes to osteoarthritis progression via miR-149-5p/DNMT3A axis. Biomed Pharmacother 2020; 128:110349. [PMID: 32521454 DOI: 10.1016/j.biopha.2020.110349] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/22/2020] [Accepted: 05/30/2020] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are largely involved in the development of osteoarthritis (OA), a chronic and degenerative joint disease. The objective of this paper is to research the functional role and molecular mechanism of lncRNA X inactive specific transcript (XIST) in OA. The levels of XIST, microRNA-149-5p (miR-149-5p), and DNA methyltransferase 3A (DNMT3A) were measured. Cell viability and apoptosis rate were determined. Associated protein levels were examined through Western blot. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were implemented for confirming the target relation. And the role of XIST on OA in vivo was investigated by a rat model. XIST was expressed at a high level in OA cartilage tissues and IL-1β-treated chondrocytes. XIST knockdown promoted cell viability but restrained cell apoptosis and extracellular matrix (ECM) protein degradation in IL-1β-treated chondrocytes. XIST directly targeted miR-149-5p and miR-149-5p down-regulation restored si-XIST-mediated pro-proliferative and anti-apoptotic or ECM degradative effects. DNMT3A was a target gene of miR-149-5p and DNMT3A overexpression ameliorated miR-149-5p-induced promotion of cell viability but repression of apoptosis and ECM degradation. Knockdown of XIST reduced DNMT3A level by motivating miR-149-5p expression. The inhibitory influence of XIST down-regulation on OA evolvement was also achieved by miR-149-5p/DNMT3A axis in vivo. In a word, knockdown of XIST can repress the development of OA by miR-149-5p/DNMT3A axis. This study discovers the XIST/miR-149-5p/DNMT3A axis in regulating OA evolution, which is beneficial for understanding the molecular pathomechanism and can lay a good foundation for targeted therapy of OA treatment.
Collapse
Affiliation(s)
- Yunke Liu
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou 450003, Henan, China
| | - Ke Liu
- Department of Orthopaedics, Henan Provincial People's Hospital, Zhengzhou 450000, Henan, China
| | - Chao Tang
- Department of Orthopaedics, Henan Provincial People's Hospital, Zhengzhou 450000, Henan, China
| | - Zuxuan Shi
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou 450000, Henan, China
| | - Kai Jing
- Department of Orthopaedics, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou 450000, Henan, China
| | - Jia Zheng
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou 450003, Henan, China.
| |
Collapse
|
22
|
Gossing W, Frohme M, Radke L. Biomarkers for Liquid Biopsies of Pituitary Neuroendocrine Tumors. Biomedicines 2020; 8:biomedicines8060148. [PMID: 32498309 PMCID: PMC7344901 DOI: 10.3390/biomedicines8060148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
Pituitary neuroendocrine tumors (PitNET) do not only belong to the most common intracranial neoplasms but seem to be generally more common than has been thought. Minimally invasive liquid biopsies have the potential to improve their early screening efficiency as well as monitor prognosis by facilitating the diagnostic procedures. This review aims to assess the potential of using liquid biopsies of different kinds of biomarker species that have only been obtained from solid pituitary tissues so far. Numerous molecules have been associated with the development of a PitNET, suggesting that it often develops from the cumulative effects of many smaller genetic or epigenetic changes. These minor changes eventually pile up to switch critical molecules into tumor-promoting states, which may be the key regulatory nodes representing the most potent marker substances for a diagnostic test. Drugs targeting these nodes may be superior for the therapeutic outcome and therefore the identification of such pituitary-specific cellular key nodes will help to accelerate their application in medicine. The ongoing genetic degeneration in pituitary adenomas suggests that repeated tumor profiling via liquid biopsies will be necessary for personalized and effective treatment solutions.
Collapse
|
23
|
Boresowicz J, Kober P, Rusetska N, Maksymowicz M, Paziewska A, Dąbrowska M, Zeber-Lubecka N, Kunicki J, Bonicki W, Ostrowski J, Siedlecki JA, Bujko M. The Search of miRNA Related to Invasive Growth of Nonfunctioning Gonadotropic Pituitary Tumors. Int J Endocrinol 2020; 2020:3730657. [PMID: 33354213 PMCID: PMC7737439 DOI: 10.1155/2020/3730657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/31/2020] [Accepted: 11/19/2020] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Nonfunctioning gonadotropic pituitary neuroendocrine tumors (PitNETs) are among the most frequent neoplasms of pituitary gland. Although PitNETs are commonly considered benign, a notable part of patients suffer from tumor recurrence after treatment. Invasive growth of pituitary tumor is among the most important prognostic factors. Since molecular features of invasiveness are of potential clinical usefulness, this study was aimed to verify whether invasive and noninvasive nonfunctioning gonadotropic PitNETs differ in the miRNA expression profile and whether the differences could provide a possible molecular classifier. METHODS miRNA profiles were determined in 20 patients (11 invasive and 9 noninvasive tumors) using next-generation sequencing. The expression of selected miRNAs was assessed in the independent cohort of 80 patients with qRT-PCR. RESULTS When miRNA profiles of invasive and noninvasive tumors were compared, 29 miRNAs were found differentially expressed. Hsa-miR-184, hsa-miR-181a-2-3p, hsa-miR-93-3p, hsa-miR-574-5p, hsa-miR-185-5p, and hsa-miR-3200-5p showed a potential clinical value according to ROC curve analysis. Unfortunately, differential expression of only hsa-miR-185-5p was confirmed in the validation cohort, with AUG at 0.654. CONCLUSION Differences in miRNAs expression profiles in invasive and noninvasive gonadotropic PitNETs are slight and the level of miRNA expression seems not to be applicable as useful classifier of tumor invasiveness.
Collapse
Affiliation(s)
- Joanna Boresowicz
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Paulina Kober
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Natalia Rusetska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Maksymowicz
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Agnieszka Paziewska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Jacek Kunicki
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Wiesław Bonicki
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Janusz A. Siedlecki
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
24
|
Li Y, Liu J, Hu W, Zhang Y, Sang J, Li H, Ma T, Bo Y, Bai T, Guo H, Lu Y, Xue X, Niu M, Ge S, Wen S, Wang B, Gao W, Wu Y. miR-424-5p Promotes Proliferation, Migration and Invasion of Laryngeal Squamous Cell Carcinoma. Onco Targets Ther 2019; 12:10441-10453. [PMID: 31819525 PMCID: PMC6890199 DOI: 10.2147/ott.s224325] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022] Open
Abstract
Background Recent studies revealed that miR-424-5p regulates the malignant behavior of multiple cancer types. However, the expression and function of miR-424-5p in laryngeal squamous cell carcinoma (LSCC) is unclear. Purpose This study aimed to evaluate the association of miR-424-5p level with clinical features of LSCC and investigate the effect and potential mechanism of miR-424-5p on LSCC progression. Methods The expression of miR-424-5p in LSCC and paired adjacent normal margin (ANM) tissues from 106 patients with LSCC were analyzed by quantitative PCR (qPCR), and clinical significance was analyzed. Target genes of miR-424-5p were predicted, followed by functional annotation. The functional role of miR-424-5p in LSCC was investigated by molecular and cellular experiments with LSCC cell lines, with flow cytometry used for cell cycle analysis. In addition, miR-424-5p regulation of the predicted target gene cell adhesion molecule 1 (CADM1) was validated by qPCR, Western blot analysis and luciferase reporter assay. Results miR-424-5p was upregulated in LSCC versus ANM tissues. High miR-424-5p level was significantly associated with poor differentiation, advanced tumor stage and cervical lymph node metastasis. Bioinformatics analysis showed that miR-424-5p target genes are mainly enriched in biological processes of the cell cycle, cell division, and negative regulation of cell migration, and were involved in multiple cancer-related pathways. Overexpression of miR-424-5p promoted proliferation, migration, invasion, and adhesion of LSCC cells and affected the cell cycle progression. Additionally, CADM1 was a direct target of miR-424-5p in LSCC cells. Conclusion miR-424-5p functions as an oncogene to promote the aggressive progression of LSCC, and CADM1 is a direct downstream target of miR-424-5p in LSCC cells. miR-424-5p may be a potential therapeutic target in LSCC.
Collapse
Affiliation(s)
- Yujun Li
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Jie Liu
- Department of Head and Neck Surgical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Wanglai Hu
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230027, People's Republic of China
| | - Yuliang Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Jiangwei Sang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Huizheng Li
- Department of Otolaryngology Head & Neck Surgery, Dalian Municipal Friendship Hospital, Dalian, Liaoning 116001, People's Republic of China
| | - Teng Ma
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing 101149, People's Republic of China
| | - Yunfeng Bo
- Department of Pathology, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030000, People's Republic of China
| | - Tao Bai
- Department of Pathology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Yan Lu
- Department of Otolaryngology Head & Neck Surgery, The First Hospital, Jinzhou Medical University, Jinzhou 121001, Liaoning, People's Republic of China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Min Niu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Shanshan Ge
- Health Management Center, the First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, People's Republic of China
| | - Shuxin Wen
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Binquan Wang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| |
Collapse
|