1
|
Liu X, Song X, Li H. Retraction Note: Transcription elongation factor A-like 7, regulated by miR-758-3p inhibits the progression of melanoma through decreasing the expression levels of c-Myc and AKT1. Cancer Cell Int 2024; 24:289. [PMID: 39143572 PMCID: PMC11323343 DOI: 10.1186/s12935-024-03472-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Affiliation(s)
- Xilin Liu
- Department of Hand Surgery, China Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Xianji Song
- Orthopaedic Surgery, China Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Hong Li
- Emergency Medical of China Japan Union Hospital of Jilin University, No. 126 Xian Tai Street, Changchun, 130033, Jilin, China.
| |
Collapse
|
2
|
Linowiecka K, Szpotan J, Godlewska M, Gaweł D, Zarakowska E, Gackowski D, Brożyna AA, Foksiński M. Selective Estrogen Receptor Modulators' (SERMs) Influence on TET3 Expression in Breast Cancer Cell Lines with Distinct Biological Subtypes. Int J Mol Sci 2024; 25:8561. [PMID: 39201247 PMCID: PMC11354732 DOI: 10.3390/ijms25168561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Tamoxifen, a selective estrogen receptor modulator (SERM), exhibits dual agonist or antagonist effects contingent upon its binding to either G-protein-coupled estrogen receptor (GPER) or estrogen nuclear receptor (ESR). Estrogen signaling plays a pivotal role in initiating epigenetic alterations and regulating estrogen-responsive genes in breast cancer. Employing three distinct breast cancer cell lines-MCF-7 (ESR+; GPER+), MDA-MB-231 (ESR-; GPER-), and SkBr3 (ESR-; GPER+)-this study subjected them to treatment with two tamoxifen derivatives: 4-hydroxytamoxifen (4-HT) and endoxifen (Endox). Through 2D high-performance liquid chromatography with tandem mass spectrometry detection (HPLC-MS/MS), varying levels of 5-methylcytosine (5-mC) were found, with MCF-7 displaying the highest levels. Furthermore, TET3 mRNA expression levels varied among the cell lines, with MCF-7 exhibiting the lowest expression. Notably, treatment with 4-HT induced significant changes in TET3 expression across all cell lines, with the most pronounced increase seen in MCF-7 and the least in MDA-MB-231. These findings underscore the influence of tamoxifen derivatives on DNA methylation patterns, particularly through modulating TET3 expression, which appears to be contingent on the presence of estrogen receptors. This study highlights the potential of targeting epigenetic modifications for personalized anti-cancer therapy, offering a novel avenue to improve treatment outcomes.
Collapse
Affiliation(s)
- Kinga Linowiecka
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.S.); (A.A.B.)
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| | - Justyna Szpotan
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.S.); (A.A.B.)
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| | - Marlena Godlewska
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (M.G.); (D.G.)
| | - Damian Gaweł
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (M.G.); (D.G.)
| | - Ewelina Zarakowska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.S.); (A.A.B.)
| | - Marek Foksiński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| |
Collapse
|
3
|
Lou R, Shao H, Wu P. Expression of RSK4 protein in non-small cell lung cancer tissues, adjacent tissues and its correlation with clinicopathological features. Am J Transl Res 2024; 16:3273-3279. [PMID: 39114716 PMCID: PMC11301506 DOI: 10.62347/zleq9498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/16/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE To evaluate the expression of Ribosomal S6 kinase 4 (RSK4) protein in non-small cell lung cancer (NSCLC) tissues and adjacent non-tumor tissues, and to elucidate its correlation with clinicopathological features of NSCLC. METHODS We analyzed 100 NSCLC patients treated at the Second Affiliated Hospital of Zhejiang University School of Medicine from June 2020 to June 2022. Patient demographics and clinical data, including gender, age, history of diabetes, tumor location, degree of tumor differentiation, lymph node metastasis, and clinical stage, were collected. RSK4 protein expression was assessed in tissue samples via immunohistochemical staining. RESULTS RSK4 protein was positively expressed in 35.00% of cancerous tissues, significantly lower than the 69.00% observed in adjacent non-tumor tissues (P < 0.05). Patients with lower tumor differentiation, advanced Tumor Node Metastasis (TNM) stages, and lymph node metastases showed significantly reduced RSK4 expression compared to those with higher differentiation, earlier TNM stages, and no lymph node metastases (all P < 0.05). Cox regression analysis indicated that TNM stage, low differentiation, and lymph node metastases significantly influenced RSK4 expression (all P < 0.05). Survival analysis revealed a higher positive prognosis survival rate of 74.29% (26/35) among patients with positive RSK4 expression, versus 53.85% (35/65) in those with negative expression (P < 0.05). Spearman correlation analysis demonstrated a significant positive correlation of RSK4 expression with TNM stage, lymph node metastasis, and patient prognosis (all P < 0.05). CONCLUSION Positive RSK4 expression in NSCLC tissues is significantly correlated with advanced cancer stage, poor differentiation, and presence of lymph node metastasis, suggesting a potential tumor suppressor role for RSK4 in NSCLC. This association underscores its prognostic relevance in NSCLC patients.
Collapse
Affiliation(s)
- Ru Lou
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University School of MedicineHangzhou 310000, Zhejiang, China
| | - Huawei Shao
- Department of Burns and Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of MedicineHangzhou 310000, Zhejiang, China
| | - Pengcheng Wu
- Department of Burns and Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of MedicineHangzhou 310000, Zhejiang, China
| |
Collapse
|
4
|
Chen H, Li L, Liu H, Qin P, Chen R, Liu S, Xiong H, Li Y, Yang Z, Xie M, Yang H, Jiang Q. PAX2 is regulated by estrogen/progesterone through promoter methylation in endometrioid adenocarcinoma and has an important role in carcinogenesis via the AKT/mTOR signaling pathway. J Pathol 2024; 262:467-479. [PMID: 38185904 DOI: 10.1002/path.6249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/08/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024]
Abstract
Endometrioid adenocarcinoma (EEC) is one of the most common cancers of the female reproductive system. In recent years, much emphasis has been placed on early diagnosis and treatment. PAX2 (Paired box 2) inactivation is reportedly an important biomarker for endometrioid intraepithelial neoplasia (EIN) and EEC. However, the role of PAX2 in EEC carcinogenesis remains unclear. PAX2 expression and associated clinical characteristics were analyzed via The Cancer Genome Atlas, Gene Expression Omnibus, and Cancer Cell Line Encyclopedia databases and clinical paired EIN/EEC tissue samples. Bioinformatic analysis was conducted to identify the putative molecular function and mechanism of PAX2. Cell proliferation, colony formation, cell migration, and invasion assays in vitro, and mouse xenograft models were utilized to study the biological functions of PAX2 in vivo. Pyrosequencing and the demethylating drug 5-Aza-dc were used to verify promoter methylation in clinical tissues and cell lines, respectively. The mechanism underlying the regulatory effect of estrogen (E2) and progesterone (P4) on PAX2 expression was investigated by receptor block assay and double luciferase reporter assay. PAX2 expression was found to be significantly downregulated in EIN and EEC tissues, its overexpression inhibited EEC cell malignant behaviors in vivo and in vitro and inhibited the AKT/mTOR signaling pathway. PAX2 inactivation in EEC was related to promoter methylation, and its expression was regulated by E2 and P4 through their receptors via promoter methylation. Our findings elucidated the expression and function of PAX2 in EEC and have provided hitherto undocumented evidence of the underlying molecular mechanisms. PAX2 expression is suppressed by estrogen prompting its methylation through estrogen receptor. Furthermore, PAX2 regulates the AKT/mTOR signaling pathway to influence EEC progression. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pathology, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, PR China
| | - Lingjun Li
- Department of Pathology, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, PR China
- Department of Pathology, Jingmen Central Hospital, Jingmen, PR China
| | - Huimin Liu
- Department of Pathology, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, PR China
| | - Ping Qin
- Department of Pathology, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, PR China
| | - Ruichao Chen
- Department of Pathology, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, PR China
| | - Shaoyan Liu
- Department of Pathology, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, PR China
| | - Hanzhen Xiong
- Department of Pathology, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, PR China
| | - Yang Li
- Department of Pathology, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, PR China
| | - Zhongfeng Yang
- Department of Pathology, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, PR China
| | - Mingyu Xie
- Department of Pathology, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, PR China
| | - Haili Yang
- Department of Pathology, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, PR China
| | - Qingping Jiang
- Department of Pathology, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
5
|
Shen X, Yan H, Li W, Zhou H, Wang J, Zhang Q, Zhang L, Liu Q, Liu Y. Estrodiol-17β and aromatase inhibitor treatment induced alternations of genome-wide DNA methylation pattern in Takifugu rubripes gonads. Gene 2023; 882:147641. [PMID: 37460000 DOI: 10.1016/j.gene.2023.147641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/12/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Estradiol-17β (E2) and aromatase inhibitor (AI) exposure can change the phenotypic sex of fish gonads. To investigated whether alterations in DNA methylation is involved in this process, the level of genome-wide DNA methylation in Takifugu rubripes gonads was quantitatively analyzed during the E2-induced feminization and AI-induced masculinization processes in this study. The methylation levels of the total cytosine (C) in control-XX(C-XX), control-XY (C-XY), E2-treated-XY (E-XY) and AI-treated-XX (AI-XX) were 9.11%, 9.19%, 8.63% and 9.23%, respectively. In the C-XX vs C-XY comparison, 4,196 differentially methylated regions (DMRs) overlapped with the gene body of 2,497 genes and 608 DMRs overlapped with the promoter of 575 genes. In the E-XY vs C-XY comparison, 6,539 DMRs overlapped with the gene body of 3,416 genes and 856 DMRs overlapped with the promoter of 776 genes. In the AI-XX vs C-XX comparison, 2,843 DMRs overlapped with the gene body of 1,831 genes and 461 DMRs overlapped with the promoter of 421 genes. Gonadal genomic methylation mainly occurred at CG sites and the genes that overlapped with DMRs on CG context were most enriched in the signaling pathways related to gonad differentiation, such as the Wnt, TGF-β, MAPK, CAM and GnRH pathways. The DNA methylation levels of steroid synthesis genes and estrogen receptor genes promoter or gene body were negative correlated with their expression. After bisulfite sequencing verification, the DNA methylation level of the amhr2 promoter in XY was increased after E2 treatment, which consistent with the data from the genome-wide DNA methylation sequencing. In C-XY group, the expression of amhr2 was significantly higher than that in E-XY (p < 0.05). Additionally, dnmt1, which is responsible for methylation maintenance, expressed at similar level in four groups (p > 0.05). dnmt3, tet2, and setd1b, which were responsible for methylation modification, expressed at significantly higher levels in E-XY compared to the C-XY (p < 0.05). Dnmt3 and tet2 were expressed at significantly higher levels in AI-XX than that in C-XX (p < 0.05). These results indicated that E2 and AI treatment lead to the aberrant genome-wide DNA methylation level and expression level of dnmt3, tet2, and setd1b in T. rubripes gonad.
Collapse
Affiliation(s)
- Xufang Shen
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116029, China
| | - Hongwei Yan
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China.
| | - Weiyuan Li
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Marine Science and Environment Engineering, Dalian Ocean University, 116023 Dalian, Liaoning, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Huiting Zhou
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Jia Wang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Qi Zhang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Lei Zhang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Marine Science and Environment Engineering, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Qi Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Marine Science and Environment Engineering, Dalian Ocean University, 116023 Dalian, Liaoning, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China.
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China
| |
Collapse
|
6
|
Cronin R, Brooke GN, Prischi F. The role of the p90 ribosomal S6 kinase family in prostate cancer progression and therapy resistance. Oncogene 2021; 40:3775-3785. [PMID: 33972681 PMCID: PMC8175238 DOI: 10.1038/s41388-021-01810-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is the second most commonly occurring cancer in men, with over a million new cases every year worldwide. Tumor growth and disease progression is mainly dependent on the Androgen Receptor (AR), a ligand dependent transcription factor. Standard PCa therapeutic treatments include androgen-deprivation therapy and AR signaling inhibitors. Despite being successful in controlling the disease in the majority of men, the high frequency of disease progression to aggressive and therapy resistant stages (termed castrate resistant prostate cancer) has led to the search for new therapeutic targets. The p90 ribosomal S6 kinase (RSK1-4) family is a group of highly conserved Ser/Thr kinases that holds promise as a novel target. RSKs are effector kinases that lay downstream of the Ras/Raf/MEK/ERK signaling pathway, and aberrant activation or expression of RSKs has been reported in several malignancies, including PCa. Despite their structural similarities, RSK isoforms have been shown to perform nonredundant functions and target a wide range of substrates involved in regulation of transcription and translation. In this article we review the roles of the RSKs in proliferation and motility, cell cycle control and therapy resistance in PCa, highlighting the possible interplay between RSKs and AR in mediating disease progression. In addition, we summarize the current advances in RSK inhibitor development and discuss their potential clinical benefits.
Collapse
Affiliation(s)
- Ryan Cronin
- School of Life Sciences, University of Essex, Colchester, UK
| | - Greg N Brooke
- School of Life Sciences, University of Essex, Colchester, UK.
| | - Filippo Prischi
- School of Life Sciences, University of Essex, Colchester, UK.
| |
Collapse
|
7
|
Martisova A, Holcakova J, Izadi N, Sebuyoya R, Hrstka R, Bartosik M. DNA Methylation in Solid Tumors: Functions and Methods of Detection. Int J Mol Sci 2021; 22:ijms22084247. [PMID: 33921911 PMCID: PMC8073724 DOI: 10.3390/ijms22084247] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
DNA methylation, i.e., addition of methyl group to 5′-carbon of cytosine residues in CpG dinucleotides, is an important epigenetic modification regulating gene expression, and thus implied in many cellular processes. Deregulation of DNA methylation is strongly associated with onset of various diseases, including cancer. Here, we review how DNA methylation affects carcinogenesis process and give examples of solid tumors where aberrant DNA methylation is often present. We explain principles of methods developed for DNA methylation analysis at both single gene and whole genome level, based on (i) sodium bisulfite conversion, (ii) methylation-sensitive restriction enzymes, and (iii) interactions of 5-methylcytosine (5mC) with methyl-binding proteins or antibodies against 5mC. In addition to standard methods, we describe recent advances in next generation sequencing technologies applied to DNA methylation analysis, as well as in development of biosensors that represent their cheaper and faster alternatives. Most importantly, we highlight not only advantages, but also disadvantages and challenges of each method.
Collapse
|
8
|
Yang H, Wang C, Liao H, Wang Q. Activation of GPER by E2 promotes proliferation, invasion and migration of breast cancer cells by regulating the miR-124/CD151 pathway. Oncol Lett 2021; 21:432. [PMID: 33868470 PMCID: PMC8045164 DOI: 10.3892/ol.2021.12693] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is one of the most common malignancies worldwide and is responsible for a high mortality rate. However, the underlying pathological mechanism of breast cancer remains unclear. MicroRNAs (miRNAs/miRs) play critical roles in the progression of breast cancer. Recent studies have reported that miR-124/CD151 participates in the development of breast cancer. However, the exact molecular mechanism of miR-124/CD151 action in 17β-estradiol (E2)-treated breast cancer cells remains unknown. Thus, the present study aimed to investigate miR-124 and CD151 expression levels in MCF-7 cells treated with E2 via reverse transcription-quantitative PCR and western blot analyses. Bioinformatic analysis was performed to predict and identify whether CD151 is a potential target of miR-124. The Cell Counting Kit-8 and colony formation assays were performed to detect proliferation of MCF-7 cells. In addition, the invasive and migratory abilities of MCF-7 cells were assessed via the Transwell and wound healing assays, respectively. The results demonstrated that E2 downregulated miR-124 expression, while upregulating G protein -coupled estrogen receptor (GPER) expression in MCF-7 cells. Following treatment with the GPER antagonist, G15, miR-124 expression was significantly enhanced and E2-induced proliferation, invasion and migration of MCF-7 cells were notably inhibited. In addition, CD151 was confirmed as a direct target of miR-124. CD151 silencing remarkably suppressed the proliferation, invasion and migration of E2-induced MCF-7 cells. Taken together, these results suggest that upregulation of GPER expression induced by E2 promotes proliferation, invasion and migration of breast cancer cells by regulating the miR-124/CD151 pathway. Thus, the results of the present study provide a potential novel method for the treatment and prognosis of breast cancer.
Collapse
Affiliation(s)
- Huaicheng Yang
- Department of General Surgery, The Frist Affiliated Hospital of Anhui University of Science and Technology, Huainan, Anhui 232007, P.R. China
| | - Congyu Wang
- Department of General Surgery, The Frist Affiliated Hospital of Anhui University of Science and Technology, Huainan, Anhui 232007, P.R. China
| | - Heqiang Liao
- Department of General Surgery, The Frist Affiliated Hospital of Anhui University of Science and Technology, Huainan, Anhui 232007, P.R. China
| | - Qi Wang
- Department of General Surgery, The Frist Affiliated Hospital of Anhui University of Science and Technology, Huainan, Anhui 232007, P.R. China
| |
Collapse
|
9
|
Xu J, Jia Q, Zhang Y, Yuan Y, Xu T, Yu K, Chai J, Wang K, Chen L, Xiao T, Li M. Prominent roles of ribosomal S6 kinase 4 (RSK4) in cancer. Pathol Res Pract 2021; 219:153374. [PMID: 33621918 DOI: 10.1016/j.prp.2021.153374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 11/19/2022]
Abstract
RSK4 refers to one Ser/Thr protein kinase functioning downstream pertaining to the signaling channel of protein kinase (MAPK) stimulated by Ras/mitogen. RSK4 can regulate numerous substrates impacting cells' surviving state, growing processes and proliferating process. Thus, dysregulated RSK4 active state display a relationship to several carcinoma categories, covering breast carcinoma, esophageal squamous cell carcinoma, glioma, colorectal carcinoma, lung carcinoma, ovarian carcinoma, leukemia, endometrial carcinoma, and kidney carcinoma. Whether RSK4 is a tumor suppressor gene or one oncogene remains controversial. No specific inhibiting elements for RSK4 have been found. This review briefs the existing information regarding RSK4 activating process, the function and mechanism of RSK4 in different tumors, and the research progress and limitations of existing RSK inhibitors. RSK4 may be a potential target of molecular therapy medicine in the future.
Collapse
Affiliation(s)
- Junpeng Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qingge Jia
- Xi'an International Medical Center, Northwest University, Xi'an, China
| | - Yan Zhang
- Children's Heart Disease Center, Sichuan Maternal and Child Health Hospital, Chengdu, China
| | - Yuan Yuan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tianqi Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kangjie Yu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jia Chai
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kaijing Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ligang Chen
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China.
| | - Tian Xiao
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
10
|
Liu Y, Ma H, Yao J. ERα, A Key Target for Cancer Therapy: A Review. Onco Targets Ther 2020; 13:2183-2191. [PMID: 32210584 PMCID: PMC7073439 DOI: 10.2147/ott.s236532] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Estrogen receptor α (ERα) is closely associated with both hormone-dependent and hormone-independent tumors, and it is also essential for the development of these cancers. The functions of ERα are bi-faceted; it can contribute to cancer progression as well as cancer inhibition. Therefore, understanding ERα is vital for the treatment of those cancers that are closely associated with its expression. Here, we will elaborate on ERα based on its structure, localization, activation, modification, and mutation. Also, we will look at co-activators of ERα, elucidate the signaling pathway activated by ERα, and identify cancers related to its activation. A comprehensive understanding of ERα could help us to find new ways to treat cancers.
Collapse
Affiliation(s)
- Yanfang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Jing Yao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|