1
|
Chen X, Li W. The heat shock protein DNAJB8 inhibits pseudorabies virus replication by autophagy. Vet Microbiol 2024; 295:110165. [PMID: 38936156 DOI: 10.1016/j.vetmic.2024.110165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Pseudorabies virus (PRV) effectively utilizes numerous host proteins and pathways to establish a successful infection. Consequently, it becomes imperative to investigate novel host factors implicated in viral infections to gain a deeper understanding of PRV pathogenesis. In this study, we reveal that the host heat shock protein, DNAJB8, functions as a negative regulator in PRV replication. Our findings indicated that both mRNA and protein levels of DNAJB8 were downregulated in cells infected with PRV. Further analysis demonstrated that overexpressing DNAJB8 suppressed PRV replication, whereas its knockdown enhanced viral replication. From a mechanistic perspective, DNAJB8 promoted cellular autophagy, subsequently impeding viral replication. Additionally, we discovered that the transcription factor SOX30 regulated DNAJB8 expression, thereby influencing viral replication. Collectively, these findings enhance our comprehension of the roles played by DNAJB8 and SOX30 in viral replication, broadening our knowledge of virus-host interactions.
Collapse
Affiliation(s)
- Xiaoyong Chen
- Xingzhi College, Zhejiang Normal University, Jinhua, Zhejiang, PR China.
| | - Wenfeng Li
- College of Animal Science, Wenzhou Vocational College of Technology and Science, Wenzhou, Zhejiang, PR China
| |
Collapse
|
2
|
Sun N, Wang C, Gao P, Wang R, Zhang Y, Qi X. Multifaceted roles and functions of SOX30 in human cancer. CANCER INNOVATION 2024; 3:e107. [PMID: 38946929 PMCID: PMC11212289 DOI: 10.1002/cai2.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 11/08/2023] [Indexed: 07/02/2024]
Abstract
SRY-box transcription factor 30 (SOX30) participates in tumor cell apoptosis in lung cancer. The occurrence of somatic SOX30 mutations, the expression signature of SOX30 in normal and cancer tissues, the correlation of SOX30 with immune cells and immune-related genes, and the clinical significance of SOX30 in various cancers have stimulated interest in SOX30 as a potential cancer biomarker. SOX30 influences drug sensitivity and tumor immunity in specific cancer types. In this review, we have comprehensively summarized the latest research on the role of SOX30 in cancer by combining bioinformatics evidence and a literature review. We summarize recent research on SOX30 in cancer regarding somatic mutations, trials, transcriptome analysis, clinical information, and SOX30-mediated regulation of malignant phenotypes. Additionally, we report on the diagnostic value of SOX30 mRNA expression levels across different cancer types. This review on the role of SOX30 in cancer progression may provide insights into possible research directions for SOX30 in cancer and a theoretical basis for guiding future studies.
Collapse
Affiliation(s)
- Na Sun
- Department of Breast and Thyroid SurgeryThe Southwest Hospital of Army Medical UniversityChongqingChina
| | - Cheng Wang
- Department of Breast and Thyroid SurgeryThe Southwest Hospital of Army Medical UniversityChongqingChina
| | - Pingping Gao
- Department of Breast and Thyroid SurgeryThe Southwest Hospital of Army Medical UniversityChongqingChina
| | - Rui Wang
- Department of Breast and Thyroid SurgeryThe Southwest Hospital of Army Medical UniversityChongqingChina
| | - Yi Zhang
- Department of Breast and Thyroid SurgeryThe Southwest Hospital of Army Medical UniversityChongqingChina
| | - Xiaowei Qi
- Department of Breast and Thyroid SurgeryThe Southwest Hospital of Army Medical UniversityChongqingChina
| |
Collapse
|
3
|
Zhou L, Yin X. Clinical applications of abnormal DNA methylation in chronic myeloid leukemia. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:122-127. [PMID: 38615173 PMCID: PMC11017016 DOI: 10.11817/j.issn.1672-7347.2024.230336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 04/15/2024]
Abstract
DNA methylation, a crucial biochemical process within the human body, fundamentally alters gene expression without modifying the DNA sequence, resulting in stable changes. The changes in DNA methylation are closely related to numerous biological processes including cellular proliferation and differentiation, embryonic development, and the occurrence of immune diseases and tumor. Specifically, abnormal DNA methylation plays a crucial role in the formation, progression, and prognosis of chronic myeloid leukemia (CML). Moreover, DNA methylation offers substantial potential for diagnosing and treating CML. Accordingly, understanding the precise mechanism of DNA methylation, particularly abnormal changes in the methylation of specific genes in CML, can potentially promote the development of novel targeted therapeutic strategies. Such strategies could transform into clinical practice, effectively aiding diagnosis and treatment of CML patients.
Collapse
Affiliation(s)
- Lingyan Zhou
- Department of Pediatrics, First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang Hunan 421600, China.
| | - Xiaocheng Yin
- Department of Pediatrics, First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang Hunan 421600, China.
| |
Collapse
|
4
|
Wu DL, Wang Y, Zhang TJ, Chu MQ, Xu ZJ, Yuan Q, Ma JC, Lin J, Qian J, Zhou JD. SLIT2 promoter hypermethylation predicts disease progression in chronic myeloid leukemia. Eur J Med Res 2022; 27:259. [PMID: 36411451 PMCID: PMC9677675 DOI: 10.1186/s40001-022-00899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Aberrant DNA methylation plays a crucial role in the progression of myeloid neoplasms. Previously, our literature reported that slit guidance ligand 2 (SLIT2) promoter methylation was associated with disease progression and indicated a poor prognosis in patients with myelodysplastic syndrome. Herein, we further investigated the clinical implications and role of SLIT2 promoter methylation in patients with chronic myeloid leukemia (CML). METHODS The level of SLIT2 promoter methylation was determined in 104 CML patients, and its clinical significance was analyzed. Moreover, demethylation studies were performed in K562 cells to determine the epigenetic mechanism by which SLIT2 promoter methylation is regulated in CML. RESULTS The level of SLIT2 promoter methylation was similar between CML patients and controls. However, deeper analysis revealed that the SLIT2 promoter methylation level in the accelerated phase (AP) and blast crisis (BC) was markedly higher than that in the chronic phase (CP) and controls. Additionally, a marked difference was identified between the SLIT2 promoter hypermethylated and non-hypermethylated groups among CML patients grouped by clinical stage. The frequency of SLIT2 hypermethylation was markedly increased with the progression of clinical stage, that is, it was the lowest in CP samples (12/80, 15%), higher in AP samples (4/8, 50%) and the highest in BC samples (11/16, 69%). Importantly, the level/density of SLIT2 promoter methylation was significantly higher in the advanced stage than in the early stage among the 6 tested paired CML patients. Epigenetically, the expression of the SLIT2-embedded non-coding genes SLIT2-IT1 and miR-218 expression was decreased in patients with CML. SLIT2 promoter hypermethylated cases had a markedly lower SLIT2-IT1 expression level than SLIT2 promoter non-hypermethylated cases. Moreover, SLIT2-IT1 and miR-218 expression was remarkably upregulated in a dose-dependent manner after demethylation treatment of K562 cells. CONCLUSIONS Hypermethylation of the SLIT2 promoter is correlated with disease progression in CML. Furthermore, SLIT2 promoter methylation may function by regulating the expression of the SLIT2-embedded non-coding genes SLIT2-IT1 and miR-218 during CML progression.
Collapse
Affiliation(s)
- De-long Wu
- grid.452247.2Department of Hematology, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China ,Department of Oncology, Dongtai People’s Hospital, Dongtai, Jiangsu People’s Republic of China
| | - Yun Wang
- grid.452247.2Department of Hematology, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China
| | - Ting-juan Zhang
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China ,grid.452247.2Department of Oncology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu People’s Republic of China
| | - Ming-qiang Chu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China ,grid.452247.2Laboratory Center, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China
| | - Zi-jun Xu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China ,grid.452247.2Laboratory Center, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China
| | - Qian Yuan
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China ,grid.452247.2Laboratory Center, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China
| | - Ji-chun Ma
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China ,grid.452247.2Laboratory Center, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China
| | - Jiang Lin
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China ,grid.452247.2Laboratory Center, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China
| | - Jun Qian
- grid.452247.2Department of Hematology, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China
| | - Jing-dong Zhou
- grid.452247.2Department of Hematology, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China
| |
Collapse
|
5
|
Iqbal MA, Li M, Lin J, Zhang G, Chen M, Moazzam NF, Qian W. Preliminary Study on the Sequencing of Whole Genomic Methylation and Transcriptome-Related Genes in Thyroid Carcinoma. Cancers (Basel) 2022; 14:cancers14051163. [PMID: 35267472 PMCID: PMC8909391 DOI: 10.3390/cancers14051163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Epigenetic alterations are critical for tumor onset and development. DNA methylation is one of the most studied pathways concerning various types of cancer. A promising and exciting avenue of research is the discovery of biomarkers of early-stage malignancies for disease prevention and prognostic indicators following cancer treatment by examining the DNA methylation modification of relevant genes implicated in cancer development. We have made significant advances in the study of DNA methylation and thyroid cancer. This study is novel in that it distinguished methylation changes that occurred primarily in the gene body region of the aforementioned hypermethylated or hypomethylated thyroid cancer genes. Our findings imply that exposing whole-genome DNA methylation patterns and gene expression profiles in thyroid cancer provides new insight into the carcinogenesis of thyroid cancer, demonstrating that gene expression mediated by DNA methylation modifications may play a significant role in tumor growth. Abstract Thyroid carcinoma is the most prevalent endocrine cancer globally and the primary cause of cancer-related mortality. Epigenetic modifications are progressively being linked to metastasis. This study aimed to examine whole-genome DNA methylation patterns and the gene expression profiles in thyroid cancer tissue samples using a MethylationEPIC BeadChip (850K), RNA sequencing, and a targeted bisulfite sequencing assay. The results of the Illumina Infinium human methylation kit (850K) analyses identified differentially methylated CpG locations (DMPs) and differentially methylated CpG regions (DMRs) encompassing nearly the entire genome with high resolution and depth. Gene ontology and KEGG pathway analyses revealed that the genes associated with DMRs belonged to various domain-specific ontologies, including cell adhesion, molecule binding, and proliferation. The RNA-Seq study found 1627 differentially expressed genes, 1174 of which that were up-regulated and 453 of which that were down-regulated. The targeted bisulfite sequencing assay revealed that CHST2, DPP4, DUSP6, ITGA2, SLC1A5, TIAM1, TNIK, and ABTB2 methylation levels were dramatically lowered in thyroid cancer patients when compared to the controls, but GALNTL6, HTR7, SPOCD1, and GRM5 methylation levels were significantly raised. Our study revealed that the whole-genome DNA methylation patterns and gene expression profiles in thyroid cancer shed new light on the tumorigenesis of thyroid cancer.
Collapse
Affiliation(s)
- Muhammad Asad Iqbal
- Department of Otolaryngology-Head & Neck Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212002, China;
| | - Mingyang Li
- Department of Basic Medical Sciences, Affiliated to School of Medicine, Jiangsu University, Zhenjiang 212002, China;
| | - Jiang Lin
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212132, China;
| | - Guoliang Zhang
- Department of General Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212132, China;
| | - Miao Chen
- Department of Pathology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212132, China;
| | | | - Wei Qian
- Department of Otolaryngology-Head & Neck Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212002, China;
- Correspondence: ; Tel.: +86-0511-88917833 or +86-1535-8586188
| |
Collapse
|
6
|
DNA Methylation and Intra-Clonal Heterogeneity: The Chronic Myeloid Leukemia Model. Cancers (Basel) 2021; 13:cancers13143587. [PMID: 34298798 PMCID: PMC8307727 DOI: 10.3390/cancers13143587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 01/24/2023] Open
Abstract
Chronic Myeloid Leukemia (CML) is a model to investigate the impact of tumor intra-clonal heterogeneity in personalized medicine. Indeed, tyrosine kinase inhibitors (TKIs) target the BCR-ABL fusion protein, which is considered the major CML driver. TKI use has highlighted the existence of intra-clonal heterogeneity, as indicated by the persistence of a minority subclone for several years despite the presence of the target fusion protein in all cells. Epigenetic modifications could partly explain this heterogeneity. This review summarizes the results of DNA methylation studies in CML. Next-generation sequencing technologies allowed for moving from single-gene to genome-wide analyses showing that methylation abnormalities are much more widespread in CML cells. These data showed that global hypomethylation is associated with hypermethylation of specific sites already at diagnosis in the early phase of CML. The BCR-ABL-independence of some methylation profile alterations and the recent demonstration of the initial intra-clonal DNA methylation heterogeneity suggests that some DNA methylation alterations may be biomarkers of TKI sensitivity/resistance and of disease progression risk. These results also open perspectives for understanding the epigenetic/genetic background of CML predisposition and for developing new therapeutic strategies.
Collapse
|
7
|
Olbromski M, Podhorska-Okołów M, Dzięgiel P. Role of SOX Protein Groups F and H in Lung Cancer Progression. Cancers (Basel) 2020; 12:cancers12113235. [PMID: 33152990 PMCID: PMC7692225 DOI: 10.3390/cancers12113235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The expression of SOX proteins has been demonstrated in many tissues at various stages of embryogenesis, where they play the role of transcription factors. The SOX18 protein (along with SOX7 and SOX17) belongs to the SOXF group and is mainly involved in the development of the cardiovascular system, where its expression was found in the endothelium. SOX18 expression was also demonstrated in neoplastic lines of gastric, pancreatic and colon adenocarcinomas. The prognostic role of SOX30 expression has only been studied in lung adenocarcinomas, where a low expression of this factor in the stromal tumor was associated with a worse prognosis for patients. Because of the complexity of non-small-cell lung cancer (NSCLC) development, the role of the SOX proteins in this malignancy is still not fully understood. Many recently published papers show that SOX family protein members play a crucial role in the progression of NSCLC. Abstract The SOX family proteins are proved to play a crucial role in the development of the lymphatic ducts and the cardiovascular system. Moreover, an increased expression level of the SOX18 protein has been found in many malignances, such as melanoma, stomach, pancreatic breast and lung cancers. Another SOX family protein, the SOX30 transcription factor, is responsible for the development of male germ cells. Additionally, recent studies have shown its proapoptotic character in non-small cell lung cancer cells. Our preliminary studies showed a disparity in the amount of mRNA of the SOX18 gene relative to the amount of protein. This is why our attention has been focused on microRNA (miRNA) molecules, which could regulate the SOX18 gene transcript level. Recent data point to the fact that, in practically all types of cancer, hundreds of genes exhibit an abnormal methylation, covering around 5–10% of the thousands of CpG islands present in the promoter sequences, which in normal cells should not be methylated from the moment the embryo finishes its development. It has been demonstrated that in non-small-cell lung cancer (NSCLC) cases there is a large heterogeneity of the methylation process. The role of the SOX18 and SOX30 expression in non-small-cell lung cancers (NSCLCs) is not yet fully understood. However, if we take into account previous reports, these proteins may be important factors in the development and progression of these malignancies.
Collapse
Affiliation(s)
- Mateusz Olbromski
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-717-841-354; Fax: +48-717-840-082
| | - Marzenna Podhorska-Okołów
- Department of Ultrastructural Research, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| |
Collapse
|
8
|
Ismail MA, Samara M, Al Sayab A, Alsharshani M, Yassin MA, Varadharaj G, Vezzalini M, Tomasello L, Monne M, Morsi H, Qoronfleh MW, Zayed H, Cook R, Sorio C, Modjtahedi H, Al-Dewik NI. Aberrant DNA methylation of PTPRG as one possible mechanism of its under-expression in CML patients in the State of Qatar. Mol Genet Genomic Med 2020; 8:e1319. [PMID: 32700424 PMCID: PMC7549574 DOI: 10.1002/mgg3.1319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Background Several studies showed that aberrant DNA methylation is involved in leukemia and cancer pathogenesis. Protein tyrosine phosphatase receptor gamma (PTPRG) expression is a natural inhibitory mechanism that is downregulated in chronic myeloid leukemia (CML) disease. The mechanism behind its downregulation has not been fully elucidated yet. Aim This study aimed to investigate the CpG methylation status at the PTPRG locus in CML patients. Methods Peripheral blood samples from CML patients at time of diagnosis [no tyrosine kinase inhibitors (TKIs)] (n = 13), failure to (TKIs) treatment (n = 13) and healthy controls (n = 6) were collected. DNA was extracted and treated with bisulfite treatment, followed by PCR, sequencing of 25 CpG sites in the promoter region and 26 CpG sites in intron‐1 region of PTPRG. The bisulfite sequencing technique was employed as a high‐resolution method. Results CML groups (new diagnosed and failed treatment) showed significantly higher methylation levels in the promoter and intron‐1 regions of PTPRG compared to the healthy group. There were also significant differences in methylation levels of CpG sites in the promoter and intron‐1 regions amongst the groups. Conclusion Aberrant methylation of PTPRG is potentially one of the possible mechanisms of PTPRG downregulation detected in CML.
Collapse
Affiliation(s)
- Mohamed A Ismail
- School of Life Science, Pharmacy and Chemistry, Faculty of Science, Engineering & ComputingFaculty of Science, Engineering & Computing, Kingston University London, Kingston-Upon-Thames, UK.,Interim Translational Research Institute (iTRI), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Muthanna Samara
- Department of Psychology, Kingston University London, Kingston upon Thames, London, UK
| | - Ali Al Sayab
- Interim Translational Research Institute (iTRI), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Mohamed Alsharshani
- Diagnostic Genetics Division (DGD), Department of Laboratory Medicine and Pathology (DLMP), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Mohamed A Yassin
- Department of Medical Oncology, National Centre for Cancer Care and Research, Hamad Medical Corporation (HMC), Doha, Qatar
| | | | - Marzia Vezzalini
- General Pathology Division, Department of Medicine, University of Verona, Verona, Italy
| | - Luisa Tomasello
- Wexner Medical Center, Biomedical Research Tower, The Ohio State University, Columbus, OH, USA
| | - Maria Monne
- Centro di Diagnostica Biomolecolare e Citogenetica Emato-Oncologica, San Francesco" Hospital, Nuoro, Italy
| | - Hisham Morsi
- Quality of Life unit, National Center for Cancer Care and Research, (NCCCR), Hamad Medical Corporation (HMC), Doha, Qatar
| | - M Walid Qoronfleh
- World Innovation Summit for Healthcare (WISH), Qatar Foundation, Doha, Qatar
| | - Hatem Zayed
- Department of Biomedical Sciences, Biomedical Research Center, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Richard Cook
- School of Life Science, Pharmacy and Chemistry, Faculty of Science, Engineering & ComputingFaculty of Science, Engineering & Computing, Kingston University London, Kingston-Upon-Thames, UK
| | - Claudio Sorio
- General Pathology Division, Department of Medicine, University of Verona, Verona, Italy
| | - Helmout Modjtahedi
- School of Life Science, Pharmacy and Chemistry, Faculty of Science, Engineering & ComputingFaculty of Science, Engineering & Computing, Kingston University London, Kingston-Upon-Thames, UK
| | - Nader I Al-Dewik
- School of Life Science, Pharmacy and Chemistry, Faculty of Science, Engineering & ComputingFaculty of Science, Engineering & Computing, Kingston University London, Kingston-Upon-Thames, UK.,Qatar Medical Genetic Center (QMGC), Hamad General Hospital (HGH), and Interim Translational Research Institute (iTRI), Hamad Medical Corporation (HMC), Doha, Qatar.,College of Health and Life Science (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar.,Department of Pediatrics, Women's Wellness and Research Center (WWRC), HMC, Doha, Qatar
| |
Collapse
|
9
|
Liu Y, Wang W, Li Y, Huang Y. SOX30 confers a tumor suppressive effect in acute myeloid leukemia through inactivation of Wnt/β-catenin signaling. Mol Cell Probes 2020; 52:101578. [PMID: 32334007 DOI: 10.1016/j.mcp.2020.101578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/28/2022]
Abstract
Recent studies suggested SRY-related high mobility group box 30 (SOX30) as a candidate tumor-promoter or tumor-inhibitor in multiple tumor types. Yet, the detailed role of SOX30 in acute myeloid leukemia (AML) has not been well studied. The present research was designed to investigate the detailed relevance of SOX30 in AML. The data of our study indicated that SOX30 expression was markedly downregulated in AML cells, a pattern associated with its hypermethylation. SOX30 overexpression caused a marked reduction in AML cell proliferation and colony formation, but it promoted AML cell apoptosis. By contrast, SOX30 depletion by small interfering RNA (siRNA)-mediated gene silencing had the opposite effect. Moreover, SOX30 overexpression markedly decreased β-catenin expression, a change that led to inactivation of Wnt/β-catenin pathway. Notably, restoration of β-catenin expression partially reversed SOX30-mediated tumor suppressive effect in AML cells. In an AML-derived mouse xenograft model, SOX30 overexpression remarkably retarded the tumor growth in vivo. Overall, these data of the study suggest a tumor-inhibition role of SOX30 in AML, and highlight a key role of SOX30/Wnt/β-catenin axis in the progression of AML.
Collapse
Affiliation(s)
- Ye Liu
- Department of Oncology & Hematology, Ninth Hospital of Xi'an Affiliated to Xi 'an Jiaotong University, Xi'an, 710054, Shaanxi Province, China
| | - Wei Wang
- Department of Oncology & Hematology, Ninth Hospital of Xi'an Affiliated to Xi 'an Jiaotong University, Xi'an, 710054, Shaanxi Province, China
| | - Yuan Li
- Department of Oncology & Hematology, Ninth Hospital of Xi'an Affiliated to Xi 'an Jiaotong University, Xi'an, 710054, Shaanxi Province, China
| | - Yao Huang
- Department of Oncology & Hematology, Ninth Hospital of Xi'an Affiliated to Xi 'an Jiaotong University, Xi'an, 710054, Shaanxi Province, China.
| |
Collapse
|
10
|
Peng H, Luo Y, Wu J, Yin W. Correlation of sex-determining region Y-box 30 with tumor characteristics and its prognostic value in breast cancer. J Clin Lab Anal 2020; 34:e23232. [PMID: 32157740 PMCID: PMC7307353 DOI: 10.1002/jcla.23232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/23/2022] Open
Abstract
Objective Sex‐determining region Y‐box 30 (SOX30) suppresses progression of several cancers, whereas its role in breast cancer is unclear. Therefore, we aimed to determine the correlation of SOX30 with tumor characteristics and prognosis in breast cancer patients. Methods The tumor samples of 510 breast cancer patients who underwent resection were obtained, and SOX30 expression was analyzed by immunohistochemistry. Clinical characteristics, disease‐free survival (DFS), and overall survival (OS) of breast cancer patients were recorded. Results There were 368 breast cancer patients in SOX30 low‐expression group and 142 in SOX30 high‐expression group. SOX30 was negatively correlated with tumor size (P = .010), tumor (T) stage (P < .001), node (N) stage (P = .001), and tumor, node, metastasis (TNM) stage (P < .001) in breast cancer patients. For prognosis, patients in SOX30 high‐expression group had prolonged DFS (P = .011) and OS (P = .002); moreover, increased SOX30 grade (assessed by semi‐quantitative scoring method assessment) was correlated with better DFS (P = .015) and OS (P = .014). Univariate Cox's regression analysis disclosed that SOX30 high expression was correlated with enhanced DFS (P = .012, hazard ratio (HR) = 0.582) and OS (P = .002, HR = 0.389); however, multivariate Cox's regression analysis revealed that SOX30 could not independently predict DFS (P = .224, HR = 0.766) or OS (P = .087, HR = 0.582) in breast cancer patients, indicating it might interact with other independent predictive factors (such as pathological differentiation, T stage, and N stage) to influence DFS and OS in breast cancer patients. Conclusion Sex‐determining region Y‐box 30 is a potential prognostic biomarker in breast cancer, which might contribute to the better outcome of breast cancer patients.
Collapse
Affiliation(s)
- Hui Peng
- Comprehensive Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Luo
- Comprehensive Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wu
- Comprehensive Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanling Yin
- Comprehensive Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|