1
|
Liang XR, Liu YF, Chen F, Zhou ZX, Zhang LJ, Lin ZJ. Cell Cycle-Related lncRNAs as Innovative Targets to Advance Cancer Management. Cancer Manag Res 2023; 15:547-561. [PMID: 37426392 PMCID: PMC10327678 DOI: 10.2147/cmar.s407371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are non-coding RNAs (ncRNAs) longer than 200nt. They have complex biological functions and take part in multiple fundamental biological processes, such as cell proliferation, differentiation, survival and apoptosis. Recent studies suggest that lncRNAs modulate critical regulatory proteins involved in cancer cell cycle, such as cyclin, cell cycle protein-dependent kinases (CDK) and cell cycle protein-dependent kinase inhibitors (CKI) through different mechanisms. To clarify the role of lncRNAs in the regulation of cell cycle will provide new ideas for design of antitumor therapies which intervene with the cell cycle progression. In this paper, we review the recent studies about the controlling of lncRNAs on cell cycle related proteins such as cyclin, CDK and CKI in different cancers. We further outline the different mechanisms involved in this regulation and describe the emerging role of cell cycle-related lncRNAs in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Xiao-Ru Liang
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, People’s Republic of China
| | - Yan-Fei Liu
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, People’s Republic of China
| | - Feng Chen
- Department of General Surgery, Weifang Traditional Chinese Hospital, Weifang, Shandong, People’s Republic of China
| | - Zhi-Xia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| | - Li-Jie Zhang
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, People’s Republic of China
| | - Zhi-Juan Lin
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, People’s Republic of China
| |
Collapse
|
2
|
Akhtar MR, Mondal MNI, Rana HK. Bioinformatics approach to identify the impacts of microgravity on the development of bone and joint diseases. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
3
|
Zhong W, Luo W, Lin Z, Wu Z, Yuan Y, He Y. Prognostic analysis of telangiectatic osteosarcoma of the extremities. Front Oncol 2023; 12:1105054. [PMID: 36815074 PMCID: PMC9939512 DOI: 10.3389/fonc.2022.1105054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 02/09/2023] Open
Abstract
Background and objectives Telangiectatic osteosarcoma (TOS) is a rare but highly malignant subtype of osteosarcoma. Although surgical treatment is the primary treatment modality for osteosarcoma, evidence on the benefits of different surgical methods in patients with TOS is lacking. This study aimed to compare the effects of different surgical and adjuvant treatments on overall survival of TOS, and the association of patient demographics, oncological characteristics, and socioeconomic status on treatment outcomes. Method This retrospective study selected the most common TOS cases of the extremities registered in the Surveillance, Epidemiology, and End Results (SEER) database from 1989 to 2019. Univariate and multivariate Cox regression models were used to analyze all prognostic factors, and Kaplan-Meier analyses were performed for disease-specific treatment factors of survival. Result A total of 127 patients were included in the analysis. The average age at initial diagnosis was 20.09 years. In univariate analyses, the absence of metastasis at initial diagnosis, limb-salvage surgery, adjuvant chemotherapy, and no regional lymph node dissection were associated with a lower risk of death. Multivariate analysis further showed that the presence or absence of distant metastasis and regional lymph node dissection, implementation of adjuvant chemotherapy, and choice of surgical method were independent predictors of prognosis. Conclusion Distant metastasis and regional lymph node dissection are associated with poorer outcomes in TOS, and amputation has no better prognosis than limb salvage surgery. Compared with conventional chemotherapy, neoadjuvant chemotherapy did not significantly improve the prognosis of TOS.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Changsha, China,*Correspondence: Wei Luo,
| | - Zili Lin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyi Wu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yuhao Yuan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yizhe He
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Ceramide Metabolism Regulated by Sphingomyelin Synthase 2 Is Associated with Acquisition of Chemoresistance via Exosomes in Human Leukemia Cells. Int J Mol Sci 2022; 23:ijms231810648. [PMID: 36142562 PMCID: PMC9505618 DOI: 10.3390/ijms231810648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
Ceramide levels controlled by the sphingomyelin (SM) cycle have essential roles in cancer cell fate through the regulation of cell proliferation, death, metastasis, and drug resistance. Recent studies suggest that exosomes confer cancer malignancy. However, the relationship between ceramide metabolism and exosome-mediated cancer malignancy is unclear. In this study, we elucidated the role of ceramide metabolism via the SM cycle in exosomes and drug resistance in human leukemia HL-60 and adriamycin-resistant HL-60/ADR cells. HL-60/ADR cells showed significantly increased exosome production and release compared with parental chemosensitive HL-60 cells. In HL-60/ADR cells, increased SM synthase (SMS) activity reduced ceramide levels, although released exosomes exhibited a high ceramide ratio in both HL-60- and HL-60/ADR-derived exosomes. Overexpression of SMS2 but not SMS1 suppressed intracellular ceramide levels and accelerated exosome production and release in HL-60 cells. Notably, HL-60/ADR exosomes conferred cell proliferation and doxorubicin resistance properties to HL-60 cells. Finally, microRNA analysis in HL-60 and HL-60/ADR cells and exosomes showed that miR-484 elevation in HL-60/ADR cells and exosomes was associated with exosome-mediated cell proliferation. This suggests that intracellular ceramide metabolism by SMS2 regulates exosome production and release, leading to acquisition of drug resistance and enhanced cell proliferation in leukemia cells.
Collapse
|
5
|
Wang J, Sun N, Ju Y, Ni N, Tang Z, Zhang D, Dai X, Chen M, Wang Y, Gu P, Ji J. miR-381-3p Cooperated With Hes1 to Regulate the Proliferation and Differentiation of Retinal Progenitor Cells. Front Cell Dev Biol 2022; 10:853215. [PMID: 35281083 PMCID: PMC8914042 DOI: 10.3389/fcell.2022.853215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 01/01/2023] Open
Abstract
Retinal progenitor cells (RPCs) transplantation has become a promising therapy for retinal degeneration, which is a major kind of ocular diseases causing blindness. Since RPCs have limited proliferation and differentiation abilities toward retinal neurons, it is urgent to resolve these problems. MicroRNAs have been reported to have vital effects on stem cell fate. In our study, the data showed that overexpression of miR-381-3p repressed Hes1 expression, which promoted RPCs differentiation, especially toward neuronal cells, and inhibited RPCs proliferation. Knockdown of endogenous miR-381-3p increased Hes1 expression to inhibit RPCs differentiation and promote proliferation. In addition, a luciferase assay demonstrated that miR-381-3p directly targeted the Hes1 3’ untranslated region (UTR). Taken together, our study demonstrated that miR-381-3p regulated RPCs proliferation and differentiation by targeting Hes1, which provides an experimental basis of RPCs transplantation therapy for retinal degeneration.
Collapse
Affiliation(s)
- Jiajing Wang
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Na Sun
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Department of Ophthalmology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yahan Ju
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Ni Ni
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Zhimin Tang
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Dandan Zhang
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xiaochan Dai
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Moxin Chen
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yiqi Wang
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Ping Gu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- *Correspondence: Jing Ji, ; Ping Gu,
| | - Jing Ji
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- *Correspondence: Jing Ji, ; Ping Gu,
| |
Collapse
|
6
|
Pu B, Yu X, Cao Y, Li Y, Tang L, Xia J. miR-381 Reverses Multidrug Resistance by Negative Regulation of the CTNNB1/ABCB1 Pathway in HepG2/Dox Cells, and the Diagnostic and Prognostic Values of CTNNB1/ ABCB1 Are Identified in Patients with LIHC. DNA Cell Biol 2021; 40:1584-1596. [PMID: 34931867 DOI: 10.1089/dna.2021.0689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Multidrug resistance (MDR) is the biggest challenge in cancer therapy. In this study, we explored the molecular mechanism of MDR in human liver cancer and explored the related diagnostic and prognostic values of the targeted genes in patients with hepatocellular carcinoma. We constructed a multidrug-resistant liver cancer cell line, HepG2/Dox, using the parental subline HepG2. The (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) (MTT) assay was used to test the viability of the liver cancer cells. Western blotting was performed to test the expression of ABCB1, β-catenin, and β-actin. Luciferase assays were performed to confirm the relationship between miR-381 and its target genes. The diagnostic and prognostic values of target genes were analyzed using publicly available data from The Cancer Genome Atlas. The Mann-Whitney U test and logistic regression were performed to evaluate the association between ABCB1 or CTNNB1 expression and clinical features in patients with liver hepatocellular carcinoma (LIHC). Finally, Kaplan-Meier and Cox regression analyses were performed to test the effect of ABCB1 or CTNNB1 expression on the overall survival of patients with LIHC. ABCB1 expression was upregulated in HepG2/Dox cells. ABCB1 was found to be a direct target of hsa-miR-381 and was negatively regulated by has-miR-381. Moreover, hsa-miR-381 directly targeted the CTNNB1 3' UTR and decreased the luciferase activity of CTNNB1. Transfection with miR-183 partially reversed chemotherapeutic drug resistance by downregulating the expression of ABCB1 and CTNNB1 in HepG2/Dox cells. Spearman's analysis results showed that CTNNB1 and ABCB1 were positively correlated in patients with liver cancer, and increased CTNNB1 and ABCB1 expression occurred in patients with liver cancer. High expression of ABCB1 and CTNNB1 indicated poor prognosis in patients with liver cancer; however, neither ABCB1 nor CTNNB1 expression was an independent diagnostic factor in patients with LIHC. Overexpression of hsa-miR-381 partially reversed the MDR of HepG2 cells by directly targeting and negatively regulating the expression of CTTNB1 and ABCB1. Moreover, high expression of ABCB1 or CTNNB1 indicated poor prognosis in patients with liver cancer.
Collapse
Affiliation(s)
- Bangming Pu
- Hepatobiliary Surgery Department, and The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xiaolan Yu
- Department of Obstetrics and Gynecology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yong Cao
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, China
| | - Yan Li
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, China
| | - Li Tang
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, China
| | - Jiyi Xia
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Zhang Z, Yang L, Li Y, Wu Y, Li X, Wu X. Four long noncoding RNAs act as biomarkers in lung adenocarcinoma. Open Med (Wars) 2021; 16:660-671. [PMID: 33981850 PMCID: PMC8082473 DOI: 10.1515/med-2021-0276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/18/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Lung adenocarcinoma (LUAD) is currently one of the most common malignant tumors worldwide. However, there is a lack of long noncoding RNA (lncRNA)-based effective markers for predicting the prognosis of LUAD patients. We identified four lncRNAs that can effectively predict the prognosis of LUAD patients. Methods We used data gene expression profile for 446 patients from The Cancer Genome Atlas database. The patients were randomly divided into a training set and a test set. Significant lncRNAs were identified by univariate regression. Then, multivariate regression was used to identify lncRNAs significantly associated with the survival rate. We constructed four-lncRNA risk formulas for LUAD patients and divided patients into high-risk and low-risk groups. Identified lncRNAs subsequently verified in the test set, and the clinical independence of the lncRNA model was evaluated by stratified analysis. Then mutated genes were identified in the high-risk and low-risk groups. Enrichment analysis was used to determine the relationships between lncRNAs and co-expressed genes. Finally, the accuracy of the model was verified using external database. Results A four-lncRNA signature (AC018629.1, AC122134.1, AC119424.1, and AL138789.1) has been verified in the training and test sets to be significantly associated with the overall survival of LUAD patients. Conclusions The present study demonstrated that identified four-lncRNA signature can be used as an independent prognostic biomarker for the prediction of survival of LUAD patients.
Collapse
Affiliation(s)
- Zhihui Zhang
- Department of Thoracic and Cardiovascular Surgery/Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, Guangdong 510515, China
| | - Liu Yang
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Yujiang Li
- Department of Thoracic and Cardiovascular Surgery/Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, Guangdong 510515, China
| | - Yunfei Wu
- Department of Thoracic and Cardiovascular Surgery/Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, Guangdong 510515, China
| | - Xiang Li
- Department of Emergency Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xu Wu
- Department of Thoracic and Cardiovascular Surgery/Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, Guangdong 510515, China
| |
Collapse
|
8
|
Ghafouri-Fard S, Shoorei H, Anamag FT, Taheri M. The Role of Non-Coding RNAs in Controlling Cell Cycle Related Proteins in Cancer Cells. Front Oncol 2020; 10:608975. [PMID: 33330110 PMCID: PMC7734207 DOI: 10.3389/fonc.2020.608975] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cell cycle is regulated by a number of proteins namely cyclin-dependent kinases (CDKs) and their associated cyclins which bind with and activate CDKs in a phase specific manner. Additionally, several transcription factors (TFs) such as E2F and p53 and numerous signaling pathways regulate cell cycle progression. Recent studies have accentuated the role of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in the regulation of cell cycle. Both lncRNAs and miRNAs interact with TFs participating in the regulation of cell cycle transition. Dysregulation of cell cycle regulatory miRNAs and lncRNAs results in human disorders particularly cancers. Understanding the role of lncRNAs, miRNAs, and TFs in the regulation of cell cycle would pave the way for design of anticancer therapies which intervene with the cell cycle progression. In the current review, we describe the role of lncRNAs and miRNAs in the regulation of cell cycle and their association with human malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Yao P, Ni Y, Liu C. Long Non-Coding RNA 691 Regulated PTEN/PI3K/AKT Signaling Pathway in Osteosarcoma Through miRNA-9-5p. Onco Targets Ther 2020; 13:4597-4606. [PMID: 32547090 PMCID: PMC7250307 DOI: 10.2147/ott.s249827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/18/2020] [Indexed: 12/15/2022] Open
Abstract
Background Large amounts of researches indicate that non-coding RNAs play a crucial role in many malignancies. However, the potential mechanisms of non-coding RNAs involved in osteosarcoma tumorigenesis remain elusive. Materials and Methods The expression of long non-protein coding RNA 691 (lncRNA 691) in cell lines and paired osteosarcoma tissues was compared by qRT-PCR assay. Then, we explored the tumor suppressor function of lncRNA 691 with MTS and colony formation assay. Flow cytometry results showed lncRNA 691 can enhance cell apoptosis. Then, we predicted and verified the negative regulation relationship with miRNA and the miRNA’s target gene. Lastly, we revealed the tumorigenesis function of lncRNA-691/miRNA/target gene axis in osteosarcoma. Results In our study, we disclosed that lncRNA 691 had low expression levels in osteosarcoma cell lines and tissues. Overexpression of lncRNA 691 could suppress the cell proliferation and induce cell apoptosis in MG-63 cell line. Then, bioinformatics analyses were performed and miR-9-5p was found to negatively regulate the lncRNA 691 expression and promote the osteosarcoma tumorigenesis in vitro. PTEN was predicted as the target gene of miR-9-5p. Luciferase reporter assay and RIP assay demonstrated the regulatory network of lncRNA 691/miR-9-5p/PTEN. We revealed that PTEN was downregulated by the overexpression of miR-9-5p and upregulated by the overexpression of lncRNA 691. At last, the apoptosis-associated protein of the lncRNA 691/miR-9-5p/PTEN/PI3K/AKT was further demonstrated. Conclusion LncRNA 691/miR-9-5p could regulate the tumorigenesis by regulating the PTEN/PI3K/AKT signal pathway in osteosarcoma.
Collapse
Affiliation(s)
- Pengju Yao
- Department of Joint Surgery, Jiaozuo People's Hospital, Henan Province, People's Republic of China
| | - Yangming Ni
- Department of Joint Surgery, Jiaozuo People's Hospital, Henan Province, People's Republic of China
| | - Changlu Liu
- Department of Joint Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, People's Republic of China
| |
Collapse
|
10
|
Zhang HP, Yu ZL, Wu BB, Sun FR. PENK inhibits osteosarcoma cell migration by activating the PI3K/Akt signaling pathway. J Orthop Surg Res 2020; 15:162. [PMID: 32334633 PMCID: PMC7183709 DOI: 10.1186/s13018-020-01679-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
Background This article reports the effects of proenkephalin (PENK) on osteosarcoma (OS) cell migration. Methods A Gene Expression Omnibus (GEO) dataset was used to identify differentially expressed genes (DEGs) in OS tumor samples and normal human osteoblasts. Tumor tissue and adjacent normal tissue were collected from 40 OS patients. MG63 cells were transfected with si-PENK. Transwell migration assays and wound healing assays were performed to compare the effect of PENK on migration. Moreover, LY294002 was used to identify the potential mechanism. Gene expression was examined via qRT-PCR and Western blotting. Results Bioinformatic analysis revealed that PENK was downregulated in OS tumor samples compared with normal human osteoblasts. Moreover, PENK was identified as the hub gene of the DEGs. The PI3K/Akt signaling pathway was significantly enriched in the DEGs. Moreover, PENK was downregulated in OS and MG63 cells compared with the corresponding control cells. Silencing PENK promoted MG63 cell migration; however, treatment with LY294002 partially attenuated PENK silencing-induced OS cell migration. Conclusion PENK inhibits OS cell migration by activating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Hai-Ping Zhang
- Department of Orthopedics, Second Affiliated Hospital of Nantong University, Nantong, 226000, Jiangsu, People's Republic of China
| | - Zi-Liang Yu
- Department of Orthopedics, Second Affiliated Hospital of Nantong University, Nantong, 226000, Jiangsu, People's Republic of China.,School of Medicine, Nantong University, Nantong, 226000, Jiangsu, People's Republic of China
| | - Bing-Bing Wu
- Department of Orthopedics, Second Affiliated Hospital of Nantong University, Nantong, 226000, Jiangsu, People's Republic of China
| | - Fa-Rui Sun
- Department of Orthopedics, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Tianjin Rd, Huangshi, 435000, Hubei Province, People's Republic of China.
| |
Collapse
|