1
|
Hou M, Yue M, Han X, Sun T, Zhu Y, Li Z, Han J, Zhao B, Tu M, An Y. Comparative analysis of BAG1 and BAG2: Insights into their structures, functions and implications in disease pathogenesis. Int Immunopharmacol 2024; 143:113369. [PMID: 39405938 DOI: 10.1016/j.intimp.2024.113369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/22/2024] [Accepted: 10/06/2024] [Indexed: 10/30/2024]
Abstract
As BAG family members, Bcl-2 associated athanogene family protein 1 (BAG1) and 2 (BAG2) are implicated in multiple cellular processes, including apoptosis, autophagy, protein folding and homeostasis. Although structurally similar, they considerably differ in many ways. Unlike BAG2, BAG1 has four isoforms (BAG1L, BAG1M, BAG1S and BAG1 p29) displaying different expression features and functional patterns. BAG1 and BAG2 play different cellular functions by interacting with different molecules to participate in the regulation of various diseases, including cancer/tumor and neurodegenerative diseases. Commonly, BAG1 acts as a protective factor to predict a good prognosis of patients with some types of cancer or a risk factor in some other cancers, while BAG2 is regarded as a risk factor to promote cancer/tumor progression. In neurodegenerative diseases, BAG2 commonly acts as a neuroprotective factor. In this review, we summarized the differences in molacular structure and biological function between BAG1 and BAG2, as well as the influences of them on pathogenesis of diseases, and explore the prospects for their clinical therapy application by specifying the activators and inhibitors of BAG1 and BAG2, which might provide a better understanding of the underlying pathogenesis and developing the targeted therapy strategies for diseases.
Collapse
Affiliation(s)
- Mengwen Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Man Yue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Yonghao Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China.
| |
Collapse
|
2
|
Zhao B, Qin X, Fu R, Yang M, Hu X, Zhao S, Cui Y, Guo Q, Zhou W. Supramolecular nanodrug targeting CDK4/6 overcomes BAG1 mediated cisplatin resistance in oral squamous cell carcinoma. J Control Release 2024; 368:623-636. [PMID: 38479445 DOI: 10.1016/j.jconrel.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/01/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
Chemoresistance to cisplatin remains a significant challenge affecting the prognosis of advanced oral squamous cell carcinoma (OSCC). However, the specific biomarkers and underlying mechanisms responsible for cisplatin resistance remain elusive. Through comprehensive bioinformatic analyses, we identified a potential biomarker, BCL2 associated athanogene-1 (BAG1), showing elevated expression in head and neck squamous cell carcinoma (HNSCC). Since OSCC represents the primary pathological type of HNSCC, we investigated BAG1 expression in human tumor tissues and cisplatin resistant OSCC cell lines, revealing that silencing BAG1 induced apoptosis in cisplatin-resistant cells both in vitro and in vivo. This effect led to impaired cell viability of cisplatin resistant OSCC cells and indicated a positive correlation between BAG1 expression and the G1/S transition during cell proliferation. Based on these insights, the administration of a CDK4/6 inhibitor in combination with cisplatin effectively overcame cisplatin resistance in OSCC through the CDK4/6-BAG1 axis. Additionally, to enable simultaneous drug delivery and enhance synergistic antitumor efficacy, we developed a novel supramolecular nanodrug LEE011-FFERGD/CDDP, which was validated in an OSCC orthotopic mouse model. In summary, our study highlights the potential of a combined administration of CDK4/6 inhibitor and cisplatin as a promising therapeutic regimen for treating advanced or cisplatin resistant OSCC.
Collapse
Affiliation(s)
- Borui Zhao
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, China
| | - Xuan Qin
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin' s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Rui Fu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, China
| | - Maosen Yang
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Xin Hu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, China
| | - Shaorong Zhao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin' s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yange Cui
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Qingxiang Guo
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China.
| | - Wei Zhou
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Manunu B, Serafin AM, Akudugu JM. BAG1, MGMT, FOXO1, and DNAJA1 as potential drug targets for radiosensitizing cancer cell lines. Int J Radiat Biol 2023; 99:292-307. [PMID: 35511481 DOI: 10.1080/09553002.2022.2074164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE Activation of some signaling pathways can promote cell survival and have a negative impact on tumor response to radiotherapy. Here, the role of differences in expression levels of genes related to the poly(ADP-ribose) polymerase-1 (PARP-1), heat shock protein 90 (Hsp90), B-cell lymphoma 2 (Bcl-2), and phosphoinositide 3-kinase (PI3K) pathways in the survival or death of cells following X-ray exposure was investigated. METHODS Eight human cell cultures (MCF-7 and MDA-MB-231: breast cancers; MCF-12A: apparently normal breast; A549: lung cancer; L132: normal lung; G28, G44 and G112: glial cancers) were irradiated with X-rays. The colony-forming and real-time PCR based on a custom human pathway RT2 Profiler PCR Array assays were used to evaluate cell survival and gene expression, respectively. RESULTS The surviving fractions at 2 Gy for the cell lines, in order of increasing radioresistance, were found to be as follows: MCF-7 (0.200 ± 0.011), G44 (0.277 ± 0.065), L132 (0.367 ± 0.023), MDA-MB-231 (0.391 ± 0.057), G112 (0.397 ± 0.113), A549 (0.490 ± 0.048), MCF-12A (0.526 ± 0.004), and G28 (0.633 ± 0.094). The rank order of radioresistance at 6 Gy was: MCF-7 < L132 < G44 < MDA-MB-231 < A549 < G28 < G112 < MCF-12A. PCR array data analysis revealed that several genes were differentially expressed between irradiated and unirradiated cell cultures. The following genes, with fold changes: BCL2A1 (21.91), TP53 (8743.75), RAD51 (11.66), FOX1 (65.86), TCP1 (141.32), DNAJB1 (3283.64), RAD51 (51.52), and HSPE1 (12887.29) were highly overexpressed, and BAX (-127.21), FOX1 (-81.79), PDPK1 (-1241.78), BRCA1 (-8.70), MLH1 (-12143.95), BCL2 (-18.69), CCND1 (-46475.98), and GJA1 (-2832.70) were highly underexpressed in the MDA-MB-231, MCF-7, MCF-12A, A549, L132, G28, G44, and G112 cell lines, respectively. The radioresistance in the malignant A549 and G28 cells was linked to upregulation in the apoptotic, DNA repair, PI3K, and Hsp90 pathway genes BAG1, MGMT, FOXO1, and DNAJA1, respectively, and inhibition of these genes resulted in significant radiosensitization. CONCLUSIONS Targeting BAG1, MGMT, FOXO1, and DNAJA1 with specific inhibitors might effectively sensitize radioresistant tumors to radiotherapy.
Collapse
Affiliation(s)
- Bayanika Manunu
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Antonio M Serafin
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - John M Akudugu
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| |
Collapse
|
4
|
Zhirong Z, Li H, Yiqun H, Chunyang H, Lichen Z, Zhen T, Tao W, Ruiwu D. Enhancing or inhibiting apoptosis? The effects of ucMSC-Ex in the treatment of different degrees of traumatic pancreatitis. Apoptosis 2022; 27:521-530. [PMID: 35612769 DOI: 10.1007/s10495-022-01732-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2022] [Indexed: 11/28/2022]
Abstract
The animal models of traumatic pancreatitis (TP) were established to evaluate the specific mechanisms by which umbilical cord mesenchymal stem cell-derived exosomes (ucMSC-Ex) exert therapeutic effects. Sixty four rats were randomly divided into eight groups, including TP groups with three different degrees and relevant groups with ucMSC-Ex treated. The degrees of pancreatic tissue injury were evaluated by Histological Examination. Furthermore, enzyme-linked immunosorbent assay were applied to evaluate the activity of pancreatic enzymes and levels of inflammatory factors in serum. Finally, the apoptotic effects of each group were evaluated by TUNEL, western blot (WB), and real time fluorescence quantitative polymerase chain reaction (RT-qPCR). The pancreatic histopathological score and serum amylase and lipase levels gradually increased in various degrees of TP and the levels in the treatment group were all significantly decreased. The apoptosis index gradually increased in each TP group and significantly decreased in the treatment group in TUNEL results. WB and RT-qPCR showed the same trend, that bax and caspase-3 gradually increased and bcl-2 gradually decreased in TP groups. Compared with TP groups, the expression of bax and caspase-3 were lower while bcl-2 expression was higher in the treatment group. ucMSC-Ex suppressed the inflammatory response and inhibited pancreatic acinar cell apoptosis to promote repair of injured pancreatic tissue.
Collapse
Affiliation(s)
- Zhao Zhirong
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Han Li
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - He Yiqun
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - He Chunyang
- Hyperbaric Oxygen Department, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Zhou Lichen
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan, China.,College of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Tan Zhen
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan, China
| | - Wang Tao
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan, China
| | - Dai Ruiwu
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan, China. .,College of Medicine, Southwest Jiaotong University, Chengdu, China. .,College of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
5
|
Fan F, Yin R, Wang L, Zhao S, Lv D, Yang K, Geng S, Yang N, Zhang X, Wang H. ALDH3A1 driving tumor metastasis is mediated by p53/BAG1 in lung adenocarcinoma. J Cancer 2021; 12:4780-4790. [PMID: 34234849 PMCID: PMC8247369 DOI: 10.7150/jca.58250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/22/2021] [Indexed: 12/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a lethal malignancy with metastasis, a major tumor feature that predominantly correlated with progression, but the molecules that mediated tumor metastasis remain elusive. To declare the critical regulatory genes, RNA sequencing data in LUAD patients was acquired from The Cancer Genome Atlas (TCGA) and found that ALDH3A1 was distinctly highly expressed in LUAD patients with metastasis (M1) compared with those without metastasis (M0), linked to the property of cancer stem cell and epithelial-mesenchymal transition (EMT). Besides, high ALDH3A1 expression predicted a poor prognosis. Knockdown of ALDH3A1 showed decreased proliferation, migration, and invasion in A549 cell line. Furthermore, BAG1 was regulated by ALDH3A1 through p53, enhanced cell proliferation, and predicted clinical prognosis. Our findings collectively uncovered a novel mechanism that orchestrates tumor cells' metastasis, and decreasing ALDH3A1 represented a potential therapeutic target for reprogramming metastasis.
Collapse
Affiliation(s)
- Feifei Fan
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ruxue Yin
- Department of rheumatism and immunology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Liuya Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shunxin Zhao
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dan Lv
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Kangli Yang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shen Geng
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ningning Yang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaohong Zhang
- Department of Respiratory Medicine, Zhengzhou Central Hospital, Zhengzhou 450052, China
| | - Hongmin Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
6
|
Zhang X, Zhang J, Liu Y, Li J, Tan J, Song Z. Bcl-2 Associated Athanogene 2 (BAG2) is Associated With Progression and Prognosis of Hepatocellular Carcinoma: A Bioinformatics-Based Analysis. Pathol Oncol Res 2021; 27:594649. [PMID: 34257542 PMCID: PMC8262200 DOI: 10.3389/pore.2021.594649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/12/2021] [Indexed: 12/28/2022]
Abstract
Background: Bcl-2 associated athanogene2 (BAG2) is reported to act as an oncogene or a tumor-suppressor in tumors in a context-dependent way; however, its function in hepatocellular carcinoma (HCC) remains unclear. Methods: Immunohistochemistry (IHC) staining, cell counting kit-8 (CCK-8) assay, apoptotic assay, cell invasion assay and a set of bioinformatics tools were integrated to analyze the role of BAG2 in hepatocellular carcinoma. Results: BAG2 was significantly up-regulated in HCC. Prognostic analysis indicated that HCC patients with high expression of BAG2 had significantly shorter overall survival, progression free survival and disease specific survival. Besides, silencing BAG2 in HCC cells impaired cell proliferation, facilitated apoptosis and repressed invasion of the cells. Bioinformatics analysis showed that BAG2 might regulate ribosome biogenesis in HCC. Conclusion: This study revealed that the up-regulated BAG2 in HCC was associated with a worse prognosis and might favor the progression of the disease.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Junjun Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yang Liu
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jie Li
- Department of Information Science and Engineering, Hunan University of Chinese Medicine, Changsha, China
| | - Juan Tan
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zewen Song
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
7
|
Hu H, Liu Y, Tan S, Xie XX, He J, Luo F, Wang L. Anlotinib Exerts Anti-Cancer Effects on KRAS-Mutated Lung Cancer Cell Through Suppressing the MEK/ERK Pathway. Cancer Manag Res 2020; 12:3579-3587. [PMID: 32547195 PMCID: PMC7250708 DOI: 10.2147/cmar.s243660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/01/2020] [Indexed: 02/05/2023] Open
Abstract
Background With a high frequency of 30%, KRAS mutations in patients with non-small cell lung cancer (NSCLC) often lead to their poor response to most anti-cancer therapies. As a multi-target tyrosine kinase inhibitor, Anlotinib shows clinical efficacy against several types of cancer. However, its effects on KRAS mutant NSCLC and the underlying molecular mechanisms remain unclear. Materials and Methods Cell counting Kit-8 assay, colony formation assay, flow cytometry analysis, wound healing scratch assay, Transwell assay and xenograft mouse model were used to evaluate the anti-cancer effects of Anlotinib. The potential molecular mechanisms were determined by immunohistochemistry (IHC) and Western blotting. Results Anlotinib inhibited proliferation of KRAS mutant lung cancer cells and induced apoptosis in vitro. In addition, the migration and invasion abilities of these cells were also decreased after treatment with Anlotinib. It significantly suppressed tumor growth in vivo and prolonged the survival of the xenograft-bearing mice, which correlated to lower expression levels of Ki67 in the tumor tissues. Mechanistically, Anlotinib downregulated MEK and ERK as well as their phosphorylated forms in the KRAS mutant lung cancer cells. Conclusion Anlotinib inhibits the growth of KRAS mutant lung cancer cells partly via the suppression of the MEK/ERK pathway. Our findings provide novel insights into treating recalcitrant KRAS mutated NSCLC.
Collapse
Affiliation(s)
- Haoyue Hu
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yanyang Liu
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Songtao Tan
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xiao Xiao Xie
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jun He
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, People's Republic of China
| | - Feng Luo
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Li Wang
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|