1
|
Qiu L, Zhao L, Zhao W, Zhao J. Dual-space disentangled-multimodal network (DDM-net) for glioma diagnosis and prognosis with incomplete pathology and genomic data. Phys Med Biol 2024; 69:085028. [PMID: 38595094 DOI: 10.1088/1361-6560/ad37ec] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Objective. Effective fusion of histology slides and molecular profiles from genomic data has shown great potential in the diagnosis and prognosis of gliomas. However, it remains challenging to explicitly utilize the consistent-complementary information among different modalities and create comprehensive representations of patients. Additionally, existing researches mainly focus on complete multi-modality data and usually fail to construct robust models for incomplete samples.Approach. In this paper, we propose adual-space disentangled-multimodal network (DDM-net)for glioma diagnosis and prognosis. DDM-net disentangles the latent features generated by two separate variational autoencoders (VAEs) into common and specific components through a dual-space disentangled approach, facilitating the construction of comprehensive representations of patients. More importantly, DDM-net imputes the unavailable modality in the latent feature space, making it robust to incomplete samples.Main results. We evaluated our approach on the TCGA-GBMLGG dataset for glioma grading and survival analysis tasks. Experimental results demonstrate that the proposed method achieves superior performance compared to state-of-the-art methods, with a competitive AUC of 0.952 and a C-index of 0.768.Significance. The proposed model may help the clinical understanding of gliomas and can serve as an effective fusion model with multimodal data. Additionally, it is capable of handling incomplete samples, making it less constrained by clinical limitations.
Collapse
Affiliation(s)
- Lu Qiu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Lu Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Wangyuan Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jun Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
2
|
Cui D, Li Z, Wei C, Zhang Q, Xiao C. Long non-coding RNA LINC00491 accelerates head and neck squamous cell carcinoma progression through regulating miR-508-3p/SATB1 axis and activating Wnt signaling pathway. Cytokine 2024; 175:156444. [PMID: 38150791 DOI: 10.1016/j.cyto.2023.156444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 12/29/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the most common malignancy of the head and neck epidermis. Accumulating long non-coding RNAs (lncRNAs) have been proven to be involved in the occurrence and development of HNSCC. LncRNA long intergenic non-protein coding RNA 491 (LINC00491) has been confirmed to regulate the progression of some cancers. In our study, we aimed to explore the potential biological function of LINC00491 and expound the regulatory mechanism by which LINC00491 affects the progression of HNSCC. RT-qPCR was utilized to analyze the expression of LINC00491 in HNSCC cell lines and the normal cell line. Functionally, we carried out a series of assays to measure cell proliferation, apoptosis, migration and invasion, such as EdU assay, colony formation, wound healing and western blot assays. Also, mechanism assays including RNA pull down and RIP were also implemented to investigate the interaction of LINC00491 and RNAs. As a result, we discovered that LINC00491 was highly expressed in HNSCC cells. In addition, LINC00491 depletion suppressed cell proliferation, migration and EMT process. Furthermore, we discovered that LINC00491 could bind to miR-508-3p. MiR-508-3p overexpression can restrain HNSCC cell growth. Importantly, miR-508-3p can target SATB homeobox 1 (SATB1) in HNSCC cells. Further, Wnt signaling pathway was proved to be activated by LINC00491 through SATB1 in HNSCC cells. In a word, LINC00491 accelerated HNSCC progression through regulating miR-508-3p/SATB1 axis and activating Wnt signaling pathway.
Collapse
Affiliation(s)
- Dan Cui
- Department of Stomatology, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Zexi Li
- Department of Stomatology, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Chao Wei
- Department of Stomatology, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Qianjin Zhang
- Department of Stomatology, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Can Xiao
- Department of Stomatology, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
3
|
Isa AI. Exploring signaling pathway crosstalk in glioma by mapping miRNA and WNT pathways: A review. Int J Biol Macromol 2024; 257:128722. [PMID: 38092099 DOI: 10.1016/j.ijbiomac.2023.128722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/26/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Glioma is a significant healthcare burden; nevertheless, the particular genetic regulatory mechanism underpinning its onset and progression is still unknown. Recent research has focused in large part on trying to determine the underlying molecular pathways that contribute to the malignancy of this disease because of the difficulties in treating it. Many tumors have been linked to changes in the expression of microRNAs (miRNAs). miRNAs play a critical role in cancer development by controlling a wide variety of targets and signaling cascades. A rising body of evidence emphasizes WNT pathway dysregulation in glioma, despite the fact that it is dysregulated in many malignancies. Here, we give a detailed analysis of the roles played by miRNAs in the WNT pathway by glioma. We also demonstrate how the WNT pathway cooperates with miRNAs to control a variety of functions, including cell proliferation, invasion, migration, and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Adamu Imam Isa
- Department of Physiology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| |
Collapse
|
4
|
Lu X, Zhang D. RPL34-Divergent Transcript, a Novel Long NonCoding Ribonucleic Acid, Promotes Migration by Activating Epithelial-Mesenchymal Transition in Glioma. World Neurosurg 2023; 179:e582-e592. [PMID: 37689361 DOI: 10.1016/j.wneu.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
OBJECTIVE Glioma is one of the leading causes of death in patients with intracranial tumours. RPL34 divergent transcript (RPL34-DT) is a long non-coding ribonucleic acid that is significantly upregulated in glioma tissues. However, the role of RPL34-DT in glioma behavior remains to be elucidated. Therefore, in this study, we focused on the effect of RPL34-DT on the epithelial-mesenchymal transition in gliomas. METHODS Real-time quantitative reverse transcription polymerase chain reaction was used to detect the levels of RPL34-DT in glioma tissue and cell lines. We further used the LN229 and U251 glioma cell lines to assess the role of RPL34-DT. Wound healing and invasion assays were performed to determine the role of RPL34-DT in migration. Changes in protein levels were assessed by western blotting. RESULTS We found that RPL34-DT was upregulated in glioma tissues and glioma cell lines. Knockdown of RPL34-AS1 blocked migration of glioma cell. This effect occurred through a decrease of epithelial-mesenchymal transition and β-catenin. CONCLUSIONS This study suggests that RPL34-DT affects cell migration in glioma and therefore may serve as a valuable therapeutic target in patients with glioma.
Collapse
Affiliation(s)
- Xiaolin Lu
- Department of Orthopedic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dongzhi Zhang
- Department of neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
5
|
Al-Gazally ME, Khan R, Imran M, Ramírez-Coronel AA, Alshahrani SH, Altalbawy FMA, Turki Jalil A, Romero-Parra RM, Zabibah RS, Shahid Iqbal M, Karampoor S, Mirzaei R. The role and mechanism of action of microRNA-122 in cancer: Focusing on the liver. Int Immunopharmacol 2023; 123:110713. [PMID: 37523968 DOI: 10.1016/j.intimp.2023.110713] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
microRNA-122 (miR-122) is a highly conserved microRNA that is predominantly expressed in the liver and plays a critical role in the regulation of liver metabolism. Recent studies have shown that miR-122 is involved in the pathogenesis of various types of cancer, particularly liver cancer. In this sense, The current findings highlighted the potential role of miR-122 in regulating many vital processes in cancer pathophysiology, including apoptosis, signaling pathway, cell metabolism, immune system response, migration, and invasion. These results imply that miR-122, which has been extensively studied for its biological functions and potential therapeutic applications, acts as a tumor suppressor or oncogene in cancer development. We first provide an overview and summary of the physiological function and mode of action of miR-122 in liver cancer. We will examine the various signaling pathways and molecular mechanisms through which miR-122 exerts its effects on cancer cells, including the regulation of oncogenic and tumor suppressor genes, the modulation of cell proliferation and apoptosis, and the regulation of metastasis. Most importantly, we will also discuss the potential diagnostic and therapeutic applications of miR-122 in cancer, including the development of miRNA-based biomarkers for cancer diagnosis and prognosis, and the potential use of miR-122 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
| | - Ramsha Khan
- MBBS, Nawaz Sharif Medical College, Gujrat, Pakistan
| | - Muhammad Imran
- MBBS, Multan Medical and Dental College, Multan, Pakistan
| | | | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt; Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, 11942 Alkharj, Saudi Arabia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
6
|
Leung DHL, Phon BWS, Sivalingam M, Radhakrishnan AK, Kamarudin MNA. Regulation of EMT Markers, Extracellular Matrix, and Associated Signalling Pathways by Long Non-Coding RNAs in Glioblastoma Mesenchymal Transition: A Scoping Review. BIOLOGY 2023; 12:818. [PMID: 37372103 DOI: 10.3390/biology12060818] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Glioblastoma (GBM) mesenchymal (MES) transition can be regulated by long non-coding RNAs (lncRNAs) via modulation of various factors (Epithelial-to-Mesenchymal (EMT) markers, biological signalling, and the extracellular matrix (ECM)). However, understanding of these mechanisms in terms of lncRNAs is largely sparse. This review systematically analysed the mechanisms by which lncRNAs influence MES transition in GBM from a systematic search of the literature (using PRISMA) performed in five databases (PubMed, MEDLINE, EMBASE, Scopus, and Web of Science). We identified a total of 62 lncRNAs affiliated with GBM MES transition, of which 52 were upregulated and 10 were downregulated in GBM cells, where 55 lncRNAs were identified to regulate classical EMT markers in GBM (E-cadherin, N-cadherin, and vimentin) and 25 lncRNAs were reported to regulate EMT transcription factors (ZEB1, Snai1, Slug, Twist, and Notch); a total of 16 lncRNAs were found to regulate the associated signalling pathways (Wnt/β-catenin, PI3k/Akt/mTOR, TGFβ, and NF-κB) and 14 lncRNAs were reported to regulate ECM components (MMP2/9, fibronectin, CD44, and integrin-β1). A total of 25 lncRNAs were found dysregulated in clinical samples (TCGA vs. GTEx), of which 17 were upregulated and 8 were downregulated. Gene set enrichment analysis predicted the functions of HOXAS3, H19, HOTTIP, MEG3, DGCR5, and XIST at the transcriptional and translational levels based on their interacting target proteins. Our analysis observed that the MES transition is regulated by complex interplays between the signalling pathways and EMT factors. Nevertheless, further empirical studies are required to elucidate the complexity in this process between these EMT factors and the signalling involved in the GBM MES transition.
Collapse
Affiliation(s)
- Dexter Hoi Long Leung
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Brandon Wee Siang Phon
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Mageswary Sivalingam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Muhamad Noor Alfarizal Kamarudin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| |
Collapse
|
7
|
Zhang L, Piipponen M, Liu Z, Li D, Bian X, Niu G, Geara J, Toma MA, Sommar P, Xu Landén N. Human skin specific long noncoding RNA HOXC13-AS regulates epidermal differentiation by interfering with Golgi-ER retrograde transport. Cell Death Differ 2023; 30:1334-1348. [PMID: 36869179 PMCID: PMC10154349 DOI: 10.1038/s41418-023-01142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
After a skin injury, keratinocytes switch from a state of homeostasis to one of regeneration leading to the reconstruction of the epidermal barrier. The regulatory mechanism of gene expression underpinning this key switch during human skin wound healing is enigmatic. Long noncoding RNAs (lncRNAs) constitute a new horizon in the understanding of the regulatory programs encoded in the mammalian genome. By comparing the transcriptome of an acute human wound and skin from the same donor as well as keratinocytes isolated from these paired tissue samples, we generated a list of lncRNAs showing changed expression in keratinocytes during wound repair. Our study focused on HOXC13-AS, a recently evolved human lncRNA specifically expressed in epidermal keratinocytes, and we found that its expression was temporally downregulated during wound healing. In line with its enrichment in suprabasal keratinocytes, HOXC13-AS was found to be increasingly expressed during keratinocyte differentiation, but its expression was reduced by EGFR signaling. After HOXC13-AS knockdown or overexpression in human primary keratinocytes undergoing differentiation induced by cell suspension or calcium treatment and in organotypic epidermis, we found that HOXC13-AS promoted keratinocyte differentiation. Moreover, RNA pull-down assays followed by mass spectrometry and RNA immunoprecipitation analysis revealed that mechanistically HOXC13-AS sequestered the coat complex subunit alpha (COPA) protein and interfered with Golgi-to-endoplasmic reticulum (ER) molecular transport, resulting in ER stress and enhanced keratinocyte differentiation. In summary, we identified HOXC13-AS as a crucial regulator of human epidermal differentiation.
Collapse
Affiliation(s)
- Letian Zhang
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Minna Piipponen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Zhuang Liu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Dongqing Li
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden.,Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xiaowei Bian
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Guanglin Niu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Jennifer Geara
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Maria A Toma
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Pehr Sommar
- Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden. .,Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|
8
|
The "Superoncogene" Myc at the Crossroad between Metabolism and Gene Expression in Glioblastoma Multiforme. Int J Mol Sci 2023; 24:ijms24044217. [PMID: 36835628 PMCID: PMC9966483 DOI: 10.3390/ijms24044217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The concept of the Myc (c-myc, n-myc, l-myc) oncogene as a canonical, DNA-bound transcription factor has consistently changed over the past few years. Indeed, Myc controls gene expression programs at multiple levels: directly binding chromatin and recruiting transcriptional coregulators; modulating the activity of RNA polymerases (RNAPs); and drawing chromatin topology. Therefore, it is evident that Myc deregulation in cancer is a dramatic event. Glioblastoma multiforme (GBM) is the most lethal, still incurable, brain cancer in adults, and it is characterized in most cases by Myc deregulation. Metabolic rewiring typically occurs in cancer cells, and GBM undergoes profound metabolic changes to supply increased energy demand. In nontransformed cells, Myc tightly controls metabolic pathways to maintain cellular homeostasis. Consistently, in Myc-overexpressing cancer cells, including GBM cells, these highly controlled metabolic routes are affected by enhanced Myc activity and show substantial alterations. On the other hand, deregulated cancer metabolism impacts Myc expression and function, placing Myc at the intersection between metabolic pathway activation and gene expression. In this review paper, we summarize the available information on GBM metabolism with a specific focus on the control of the Myc oncogene that, in turn, rules the activation of metabolic signals, ensuring GBM growth.
Collapse
|
9
|
Sun H, Gao Q, Zhu G, Han C, Yan H, Wang T. Identification of influential observations in high-dimensional survival data through robust penalized Cox regression based on trimming. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:5352-5378. [PMID: 36896549 DOI: 10.3934/mbe.2023248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Penalized Cox regression can efficiently be used for the determination of biomarkers in high-dimensional genomic data related to disease prognosis. However, results of Penalized Cox regression is influenced by the heterogeneity of the samples who have different dependent structure between survival time and covariates from most individuals. These observations are called influential observations or outliers. A robust penalized Cox model (Reweighted Elastic Net-type maximum trimmed partial likelihood estimator, Rwt MTPL-EN) is proposed to improve the prediction accuracy and identify influential observations. A new algorithm AR-Cstep to solve Rwt MTPL-EN model is also proposed. This method has been validated by simulation study and application to glioma microarray expression data. When there were no outliers, the results of Rwt MTPL-EN were close to the Elastic Net (EN). When outliers existed, the results of EN were impacted by outliers. And whenever the censored rate was large or low, the robust Rwt MTPL-EN performed better than EN. and could resist the outliers in both predictors and response. In terms of outliers detection accuracy, Rwt MTPL-EN was much higher than EN. The outliers who "lived too long" made EN perform worse, but were accurately detected by Rwt MTPL-EN. Through the analysis of glioma gene expression data, most of the outliers identified by EN were those "failed too early", but most of them were not obvious outliers according to risk estimated from omics data or clinical variables. Most of the outliers identified by Rwt MTPL-EN were those who "lived too long", and most of them were obvious outliers according to risk estimated from omics data or clinical variables. Rwt MTPL-EN can be adopted to detect influential observations in high-dimensional survival data.
Collapse
Affiliation(s)
- Hongwei Sun
- Department of Health Statistics, School of Public Health and Management, Binzhou Medical University, Yantai City, Shandong 264003, China
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan City, Shanxi 030001, China
| | - Qian Gao
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan City, Shanxi 030001, China
| | - Guiming Zhu
- Department of Health Statistics, School of Public Health and Management, Binzhou Medical University, Yantai City, Shandong 264003, China
| | - Chunlei Han
- Department of Health Statistics, School of Public Health and Management, Binzhou Medical University, Yantai City, Shandong 264003, China
| | - Haosen Yan
- Department of Health Statistics, School of Public Health and Management, Binzhou Medical University, Yantai City, Shandong 264003, China
| | - Tong Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan City, Shanxi 030001, China
| |
Collapse
|
10
|
Wang L, Wu M, Zhou X. Long non-coding RNA UCA1 promotes retinoblastoma progression by modulating the miR-124/c-myc axis. Am J Transl Res 2022; 14:1592-1605. [PMID: 35422898 PMCID: PMC8991135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
The long non-coding RNA (lncRNA), urothelial carcinoma-associated 1 (UCA1), belongs to cancer-related lncRNAs implicated in various carcinomas, including colorectal and gastric cancers. Nonetheless, the role and underlying mechanisms of UCA1 in retinoblastoma are still unclear. This study found that UCA1 expression in retinoblastoma tissues and cells was dramatically upregulated relative to that of healthy controls. Functionally, UCA1 knockdown could suppress retinoblastoma cells' proliferation, migration and invasion, and facilitate their apoptosis. Knockdown of UCA1 also retarded the growth of xenograft tumors in vivo. Mechanistically, UCA1 promoted c-myc expression through sponging miR-124. miR-124 inhibition or c-myc overexpression partially reversed the effects of UCA1 knockdown on retinoblastoma cells. Overall, lncRNA UCA1 may exert an oncogenic effect on retinoblastoma progression through the miR-124/c-myc axis, which might serve as a promising retinoblastoma treatment target.
Collapse
Affiliation(s)
- Lan Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical UniversityChongqing 402160, China
- Department of Ophthalmology, Nanchong Central Hospital (The Second Clinical School of North Sichuan Medical College)Nanchong 637000, Sichuan, China
| | - Mingxing Wu
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical UniversityChongqing 402160, China
| | - Xiyuan Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical UniversityChongqing 402160, China
| |
Collapse
|
11
|
Shao W, Ding Q, Guo Y, Xing J, Huo Z, Wang Z, Xu Q, Guo Y. A Pan-Cancer Landscape of HOX-Related lncRNAs and Their Association With Prognosis and Tumor Microenvironment. Front Mol Biosci 2021; 8:767856. [PMID: 34805277 PMCID: PMC8602076 DOI: 10.3389/fmolb.2021.767856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 12/27/2022] Open
Abstract
The highly conserved homology cassette family (HOX) as well as 18 referenced long non-coding antisense transcripts (HOXATs) play vital roles in the development of some cancers. Nevertheless, their expression patterns as well as their association with cancer prognosis and the tumor microenvironment (TME) in pan-cancers are still unclear. Here, based on public databases, the expression levels of HOXATs, their prognostic potentials, and correlation with tumor mutation burden (TMB), immune cell infiltration, immune subtype, immune response-related genes, and stemness scores corresponding to 33 tumor types were analyzed systematically using R language. The results of the analysis indicated that different cancer tissues show different HOXAT expression profiles. Further, HOXAT expression showed association with cancer prognosis and immune and stemness regulation. Gene set enrichment analysis also demonstrated that HOXATs participate in cancer- and immune-related pathways, and based on their expression levels, HOTAIRM1 and HOXB-AS1 showed potential involvement in oncogenesis as well as possible involvement in immune regulation across a variety of cancer types. Further investigation also confirmed a significantly higher expression of HOXB-AS1 in GBM than in lower grade glioma tissues. Importantly, in vitro cell function experiments indicated that HOXB-AS1 supports cancer stem cell and plays a fundamental role in glioma metastasis. In conclusion, our results provide valuable resources that can guide the investigation of the mechanisms related to the role of HOXATs in cancers as well as therapeutic analysis in this regard.
Collapse
Affiliation(s)
- Wei Shao
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, China
| | - Qian Ding
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, China
| | - Yugang Guo
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, China
| | - Juan Xing
- Henan Provincial Nanyang Central Hospital, Nanyang, China
| | - Zheng Huo
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, China
| | - Zhan Wang
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, China
| | - Qian Xu
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, China
| | - Yue Guo
- Henan Provincial Nanyang Central Hospital, Nanyang, China
| |
Collapse
|
12
|
Lin Z, Pang K, Li H, Zhang X, Wan J, Zheng T, Liu T, Peng W. Characterization of Immune-Related Long Non-coding RNAs to Construct a Novel Signature and Predict the Prognosis and Immune Landscape of Soft Tissue Sarcoma. Front Cell Dev Biol 2021; 9:709241. [PMID: 34631703 PMCID: PMC8497898 DOI: 10.3389/fcell.2021.709241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Increasing evidence has demonstrated that immune-related long non-coding RNAs (irlncRNAs) are critically involved in tumor initiation and progression and associated with the prognosis of various cancers. However, their role in soft tissue sarcoma (STS) remains significantly uninvestigated. Materials and Methods: Gene expression profiles were extracted from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) for the identification of irlncRNAs. Univariate analysis and modified least absolute shrinkage and selection operator (LASSO) penalized regression analysis were employed to determine differently expressed irlncRNA (DEirlncRNA) pairs of prognostic value, and subsequently, a risk signature based on DEirlncRNA pairs was established. Furthermore, Kaplan–Meier analysis and the area under the receiver operating characteristic curve (AUC) were used to assess survival differences and the predictive accuracy of the risk signature, respectively. Lastly, the correlation of irlncRNAs with immune characteristics and chemosensitivity in patients with STS were further investigated. Results: A total of 1088 irlncRNAs were identified, and 311 irlncRNAs were distinguished as DEirlncRNAs. A total of 130 DEirlncRNA pairs were further identified as prognostic markers, and 14 pairs were selected for establishing a risk signature. The irlncRNA-based risk signature functioned as an independent prognostic marker for STS. Compared with the patients in the high-risk group, those in the low-risk group exhibited a better prognosis and were more sensitive to several chemotherapeutic agents. In addition, the irlncRNA-based risk signature was significantly associated with immune scores, infiltrating immune cells, and the expression of several immune checkpoints. Conclusion: In conclusion, our data revealed that the irlncRNA-based risk signature resulted in reliable prognosis, effectively predicted the immune landscape of patients with STS and was significantly correlated with chemosensitivity, thus providing insights into the potential role of irlncRNAs as prognostic biomarkers and novel therapeutic targets for STS.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Ke Pang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongli Li
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xianghong Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tao Zheng
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Regulatory interplay between microRNAs and WNT pathway in glioma. Biomed Pharmacother 2021; 143:112187. [PMID: 34560532 DOI: 10.1016/j.biopha.2021.112187] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Glioma is one of the most common neoplasms of the central nervous system with a poor survival. Due to the obstacles in treating this disease, a part of recent studies mainly focuses on identifying the underlying molecular mechanisms that contribute to its malignancy. Altering microRNAs (miRNAs) expression pattern has been identified obviously in many cancers. Through regulating various targets and signaling pathways, miRNAs play a pivotal role in cancer progression. As one of the essential signaling pathways, WNT pathway is dysregulated in many cancers, and a growing body of evidence emphasis its dysregulation in glioma. Herein, we provide a comprehensive review of miRNAs involved in WNT pathway in glioma. Moreover, we show the interplay between miRNAs and WNT pathway in regulating different processes such as proliferation, invasion, migration, radio/chemotherapy resistance, and epithelial-mesenchymal-transition. Then, we introduce several drugs and treatments against glioma, which their effects are mediated through the interplay of WNT pathway and miRNAs.
Collapse
|
14
|
Wang P, Zhou X, Li G, Ma H, Liu R, Zhao Y. Altered expression of microRNAs in the rat diaphragm in a model of ventilator-induced diaphragm dysfunction after controlled mechanical ventilation. BMC Genomics 2021; 22:671. [PMID: 34537009 PMCID: PMC8449218 DOI: 10.1186/s12864-021-07970-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/02/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Ventilator-induced diaphragm dysfunction (VIDD) is a common complication of life support by mechanical ventilation observed in critical patients in clinical practice and may predispose patients to severe complications such as ventilator-associated pneumonia or ventilator discontinuation failure. To date, the alterations in microRNA (miRNA) expression in the rat diaphragm in a VIDD model have not been elucidated. This study was designed to identify these alterations in expression. RESULTS Adult male Wistar rats received conventional controlled mechanical ventilation (CMV) or breathed spontaneously for 12 h. Then, their diaphragm tissues were collected for RNA extraction. The miRNA expression alterations in diaphragm tissue were investigated by high-throughput microRNA-sequencing (miRNA-seq). For targeted mRNA functional analysis, gene ontology (GO) analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were subsequently conducted. qRT-PCR validation and luciferase reporter assays were performed. We successfully constructed a model of ventilator-induced diaphragm dysfunction and identified 38 significantly differentially expressed (DE) miRNAs, among which 22 miRNAs were upregulated and 16 were downregulated. GO analyses identified functional genes, and KEGG pathway analyses revealed the signaling pathways that were most highly correlated, which were the MAPK pathway, FoxO pathway and Autophagy-animal. Luciferase reporter assays showed that STAT3 was a direct target of both miR-92a-1-5p and miR-874-3p and that Trim63 was a direct target of miR-3571. CONCLUSIONS The current research supplied novel perspectives on miRNAs in the diaphragm, which may not only be implicated in diaphragm dysfunction pathogenesis but could also be considered as therapeutic targets in diaphragm dysfunction.
Collapse
Affiliation(s)
- Pengcheng Wang
- Emergency Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.,Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China
| | - Xianlong Zhou
- Emergency Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.,Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China
| | - Gang Li
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China
| | - Haoli Ma
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China
| | - Ruining Liu
- Emergency Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.,Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China
| | - Yan Zhao
- Emergency Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China. .,Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.
| |
Collapse
|
15
|
Gao M, Cui Z, Li S, Li N, Tong L, Wang Y, Song M, Zhou B, Yin Z. Survival Outcome and Clinicopathologicl analysis of Homeobox gene cluster-embedded LncRNAs in Human Cancers: A Systematic Review and Meta-analysis. Expert Rev Mol Diagn 2021; 21:1211-1221. [PMID: 34410213 DOI: 10.1080/14737159.2021.1970536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
OBJECTIVE The ectopic expression of Homeobox (HOX) gene cluster-embedded long non-coding RNAs (LncRNAs) have been involved several carcinogenic development and progressions. This meta-analysis aimed to summarize the LncRNAs to validate the functions and the prognostic values in several kinds of cancer. METHODS The retrospective study was conducted to analyze the association between HOX gene-related LncRNAs and the survival outcomes. Cochran's Q and I2 test were used for calculated heterogeneity, and I2 > 50%, P < 0.05 was conformed to the random effect model. Publication bias was indicated by Begg's and Egger's test. RESULTS Total 15,315 patients extracting from 121 studies focused on assessing the association between LncRNAs and the survival outcomes and 12,110 participants were enrolled to address the clinicopathological features. The results demonstrated that the overexpression of HOX gene cluster-embedded LncRNAs revealed notable association among tumor size (pooled OR = 1.80), lymph node metastasis (LNM) stage (pooled OR = 3.00), tumor node metastasis (TNM) stage (pooled OR = 2.86), histological differentiation (pooled OR = 1.59) and distant metastasis (pooled OR = 2.49). Additionally, the up-regulated LncRNAs predicted a poor prognosis in overall survival (pooled HR = 1.95, 95%CI = 1.86-2.04), and also disclosed worse prognosis among the stratified analysis included HOX clusters, LncRNAs, ethnicity, and tumor classification (pooled HRs >1). CONCLUSION In summary, the findings proved that HOX gene cluster-embedded LncRNAs acted as potential biomarkers for clinical treatment of several tumors and the overexpression might be a candidate hallmark for prognosis outcome.
Collapse
Affiliation(s)
- Min Gao
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, PR China
| | - Zhigang Cui
- Department of Science and Education, School of Nursing, China Medical University, Liaoning, Pr, China
| | - Sixuan Li
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, PR China
| | - Na Li
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, PR China
| | - Lianwei Tong
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, PR China
| | - Ying Wang
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, PR China
| | - Mingyang Song
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, PR China
| | - Baosen Zhou
- Department of Clinical Epidemiology and Evidence-based Medicine, First Affiliated Hospital of China Medical University, Liaoning, Pr China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Liaoning, PR China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Liaoning, PR China
| |
Collapse
|
16
|
Zhao H, Li X, Yang L, Zhang L, Jiang X, Gao W, Chen P, Cheng Y, Wang F, Liu J. Isorhynchophylline Relieves Ferroptosis-Induced Nerve Damage after Intracerebral Hemorrhage Via miR-122-5p/TP53/SLC7A11 Pathway. Neurochem Res 2021; 46:1981-1994. [PMID: 33942214 DOI: 10.1007/s11064-021-03320-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 02/08/2023]
Abstract
Isorhynchophylline (IRN), a component of traditional Chinese herb Uncaria rhynchophylla, possesses strong antioxidant activity. Ferroptosis induced by iron overload causes cell oxidative stress after intracerebral hemorrhage (ICH). Therefore, this study aims to explore the effects of IRN on the ferroptosis following ICH. In this study, mouse hippocampal HT-22 cells were treated with ferric ammonium citrate (FAC) alone or together with IRN, and we found IRN reduced the FAC-induced cell damage. Then, cells were treated with IRN following treatment with FAC after transfection with miR-122-5p inhibitor, and the results showed IRN reduced the FAC-induced decrease of miR-122-5p levels and relieved the ferroptosis by detecting ferroptotic marker proteins, iron ion concentration and oxidative stress level; after transfection with miR-122-5p inhibitor, the protective effects of IRN against FAC-induced ferroptosis in these cells were weakened. TP53 (also known as p53) was verified as a target of miR-122-5p by using dual luciferase reporter assay, and restoration of TP53 attenuated the effects of miR-122-5p on ferroptotic marker proteins expression, iron ion concentration and lipid ROS levels, as well as solute carrier family seven member 11 (SLC7A11) mRNA expression. SLC7A11 siRNA reversed the inhibitory effects of IRN on FAC-induced ferroptosis and oxidative stress levels. Subsequently, IRN increased the mNSS score, and decreased brain water content and EB content in ICH model. Moreover, IRN decreased ferroptosis and lipid ROS level, upregulated the expression of miR-122-5p and SLC7A11 mRNA, and inhibited TP53 expression. Our findings reveal that IRN protects neurocyte from ICH-induced ferroptosis via miR-122-5p/TP53/SLC7A11 pathway, which may provide a potential therapeutic mechanism for ICH.
Collapse
Affiliation(s)
- Haikang Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Xiaoqiang Li
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Lei Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Liang Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Xiaobing Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Wenwen Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Peng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Yingying Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Fenglu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China.
| | - Jianrong Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China.
| |
Collapse
|
17
|
Novikova EL, Kulakova MA. There and Back Again: Hox Clusters Use Both DNA Strands. J Dev Biol 2021; 9:28. [PMID: 34287306 PMCID: PMC8293171 DOI: 10.3390/jdb9030028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Bilaterian animals operate the clusters of Hox genes through a rich repertoire of diverse mechanisms. In this review, we will summarize and analyze the accumulated data concerning long non-coding RNAs (lncRNAs) that are transcribed from sense (coding) DNA strands of Hox clusters. It was shown that antisense regulatory RNAs control the work of Hox genes in cis and trans, participate in the establishment and maintenance of the epigenetic code of Hox loci, and can even serve as a source of regulatory peptides that switch cellular energetic metabolism. Moreover, these molecules can be considered as a force that consolidates the cluster into a single whole. We will discuss the examples of antisense transcription of Hox genes in well-studied systems (cell cultures, morphogenesis of vertebrates) and bear upon some interesting examples of antisense Hox RNAs in non-model Protostomia.
Collapse
Affiliation(s)
- Elena L. Novikova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7–9, 199034 Saint Petersburg, Russia;
- Laboratory of Evolutionary Morphology, Zoological Institute RAS, Universitetskaya nab. 1, 199034 Saint Petersburg, Russia
| | - Milana A. Kulakova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7–9, 199034 Saint Petersburg, Russia;
- Laboratory of Evolutionary Morphology, Zoological Institute RAS, Universitetskaya nab. 1, 199034 Saint Petersburg, Russia
| |
Collapse
|
18
|
Ma W, Zhao X, Xue N, Gao Y, Xu Q. The LINC01410/miR-122-5p/NDRG3 axis is involved in the proliferation and migration of osteosarcoma cells. IUBMB Life 2021; 73:705-717. [PMID: 33583123 DOI: 10.1002/iub.2452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE It is generally accepted that long noncoding RNAs (lncRNAs) function as vital regulators of tumor development and progression. Long intergenic non-coding RNA 1410 (LINC01410) is a newly discovered lncRNA, and its role in osteosarcoma (OS) is yet to be determined. MATERIALS AND METHODS The expression of LINC01410, microRNA-122-5p (miR-122-5p), and N-myc downstream-regulated gene 3 (NDRG3) in OS tissues was determined using reverse transcription-quantitative PCR. Interactions between LINC01410, miR-122-5p, and NDRG3 were predicted and verified using bioinformatics tools and luciferase assays. Cell proliferation, migration, and invasion were detected using cell counting Kit-8 and Transwell assays. RESULTS LINC01410 was overexpressed in OS tissues. Furthermore, it was confirmed that LINC01410 facilitated OS cell proliferation and migration. Our studies also showed that LINC01410 binds to miR-122-5p, and miR-122-5p binds to NDRG3. Finally, we observed that LINC01410 knockdown inhibited the proliferation, invasion, and migration of OS cells. Knockdown of LINC01410 resulted in the upregulation of miR-122-5p and downregulation of NDRG3. CONCLUSION Our results demonstrated that the LINC01410/miR-122-5p/NDRG3 axis is involved in the progression of OS.
Collapse
Affiliation(s)
- Weiguo Ma
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xin Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ning Xue
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yun Gao
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Qingxia Xu
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
19
|
Tan J, Zhu H, Tang G, Liu H, Wanggou S, Cao Y, Xin Z, Zhou Q, Zhan C, Wu Z, Guo Y, Jiang Z, Zhao M, Ren C, Jiang X, Yin W. Molecular Subtypes Based on the Stemness Index Predict Prognosis in Glioma Patients. Front Genet 2021; 12:616507. [PMID: 33732284 PMCID: PMC7957071 DOI: 10.3389/fgene.2021.616507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Glioma is the common histological subtype of malignancy in the central nervous system, with high morbidity and mortality. Glioma cancer stem cells (CSCs) play essential roles in tumor recurrence and treatment resistance. Thus, exploring the stem cell-related genes and subtypes in glioma is important. In this study, we collected the RNA-sequencing (RNA-seq) data and clinical information of glioma patients from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. With the differentially expressed genes (DEGs) and weighted gene correlation network analysis (WGCNA), we identified 86 mRNA expression-based stemness index (mRNAsi)-related genes in 583 samples from TCGA RNA-seq dataset. Furthermore, these samples from TCGA database could be divided into two significantly different subtypes with different prognoses based on the mRNAsi corresponding gene, which could also be validated in the CGGA database. The clinical characteristics and immune cell infiltrate distribution of the two stemness subtypes are different. Then, functional enrichment analyses were performed to identify the different gene ontology (GO) terms and pathways in the two different subtypes. Moreover, we constructed a stemness subtype-related risk score model and nomogram to predict the prognosis of glioma patients. Finally, we selected one gene (ETV2) from the risk score model for experimental validation. The results showed that ETV2 can contribute to the invasion, migration, and epithelial-mesenchymal transition (EMT) process of glioma. In conclusion, we identified two distinct molecular subtypes and potential therapeutic targets of glioma, which could provide new insights for the development of precision diagnosis and prognostic prediction for glioma patients.
Collapse
Affiliation(s)
- Jun Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hecheng Zhu
- Changsha Kexin Cancer Hospital, Changsha, China
| | - Guihua Tang
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Yudong Cao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoqi Xin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Quanwei Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Chaohong Zhan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoping Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Youwei Guo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhipeng Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhao
- Changsha Kexin Cancer Hospital, Changsha, China
| | - Caiping Ren
- Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Cancer Research Institute, Central South University, Changsha, China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wen Yin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Ashrafizadeh M, Zarabi A, Hushmandi K, Moghadam ER, Hashemi F, Daneshi S, Hashemi F, Tavakol S, Mohammadinejad R, Najafi M, Dudha N, Garg M. C-Myc Signaling Pathway in Treatment and Prevention of Brain Tumors. Curr Cancer Drug Targets 2021; 21:2-20. [PMID: 33069197 DOI: 10.2174/1568009620666201016121005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022]
Abstract
Brain tumors are responsible for high morbidity and mortality worldwide. Several factors such as the presence of blood-brain barrier (BBB), sensitive location in the brain, and unique biological features challenge the treatment of brain tumors. The conventional drugs are no longer effective in the treatment of brain tumors, and scientists are trying to find novel therapeutics for brain tumors. In this way, identification of molecular pathways can facilitate finding an effective treatment. c-Myc is an oncogene signaling pathway capable of regulation of biological processes such as apoptotic cell death, proliferation, survival, differentiation, and so on. These pleiotropic effects of c-Myc have resulted in much fascination with its role in different cancers, particularly brain tumors. In the present review, we aim to demonstrate the upstream and down-stream mediators of c-Myc in brain tumors such as glioma, glioblastoma, astrocytoma, and medulloblastoma. The capacity of c-Myc as a prognostic factor in brain tumors will be investigated. Our goal is to define an axis in which the c-Myc signaling pathway plays a crucial role and to provide direction for therapeutic targeting in these signaling networks in brain tumors.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Universite Caddesi No. 27, Orhanli, Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farid Hashemi
- DVM. Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of physiotherapy, Faculty of rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Namrata Dudha
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, Uttar Pradesh, India
| | - Manoj Garg
- Amity of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida-201313, India
| |
Collapse
|
21
|
Yuan W, Liang L, Huang K, Deng Y, Dong M, Wang G, Zou F. MiR-122-5p and miR-326-3p promote cadmium-induced NRK-52E cell apoptosis by downregulating PLD1. ENVIRONMENTAL TOXICOLOGY 2020; 35:1334-1342. [PMID: 32697411 DOI: 10.1002/tox.22998] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Cadmium is a toxic heavy metal distributed broadly in the environment and manufactory industry. Long-term exposure to cadmium, considered as a risk for kidney injury, leads to chronic kidney disease eventually. Phospholipase D1 (PLD1) promotes cell proliferation and inhibits apoptosis, and might be involved in cadmium-induced kidney injury. In this study, we used miRNA microarray assays and bioinformatics analysis to identify miRNAs, which may regulate PLD1 expression and exert an impact on cadmium-induced kidney injury. MiR-122-5p and miR-326-3p,selected as candidates, were explored for their regulatory functions in kidney injury, using NRK-52E cells. Both of these two miRNAs exhibited higher expression in kidneys of SD rats after exposure to cadmium for 6 weeks. Cadmium treatment also increased miR-122-5p and miR-326-3p and decreased PLD1 in NRK-52E cells. Both of miR-122-5p and miR-326-3p could downregulate PLD1 expression through targeting its 3'UTR and enhance cadmium-induced apoptosis, while inhibiting either of these two miRNAs could reverse such effects. In conclusion, our results suggest that miR-122-5p and miR-326-3p might enhance cadmium-induced NRK-52E cell apoptosis through downregulating PLD1 expression.
Collapse
Affiliation(s)
- Wenya Yuan
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lixia Liang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ke Huang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yaotang Deng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ming Dong
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Guanghai Wang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Luo G, He K, Xia Z, Liu S, Liu H, Xiang G. Regulation of microRNA-497 expression in human cancer. Oncol Lett 2020; 21:23. [PMID: 33240429 PMCID: PMC7681205 DOI: 10.3892/ol.2020.12284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs/miRs) are a type of non-coding single-stranded RNA, with a length of ~22 nt, which are encoded by endogenous genes and are involved in the post-transcriptional regulation of gene expression in animals and plants. Studies have demonstrated that miRNAs play an important role in the occurrence, development, metastasis, diagnosis and treatment of cancer. In recent years, miR-497 has been identified as one of the key miRNAs in a variety of cancer types and has been shown to be downregulated in a variety of solid tumors. However, the regulation of miR-497 expression involves a complex network, which is affected by several factors. The aim of the present review was to summarize the mechanism of regulation of miR-497 expression at the pre-transcriptional and transcriptional levels in cancer, as well as the role of miR-497 expression imbalance in cancer diagnosis, treatment and prognosis. The regulatory mechanisms of miR-497 expression may aid in our understanding of the causes of miR-497 expression imbalance and provide a reference value for further research on the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Guanshui Luo
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China.,Department of Postgraduate Studies, The Second Clinical College of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ke He
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Zhenglin Xia
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Shuai Liu
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Hong Liu
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Guoan Xiang
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| |
Collapse
|
23
|
MYC as a Multifaceted Regulator of Tumor Microenvironment Leading to Metastasis. Int J Mol Sci 2020; 21:ijms21207710. [PMID: 33081056 PMCID: PMC7589112 DOI: 10.3390/ijms21207710] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
The Myc family of oncogenes is deregulated in many types of cancer, and their over-expression is often correlated with poor prognosis. The Myc family members are transcription factors that can coordinate the expression of thousands of genes. Among them, c-Myc (MYC) is the gene most strongly associated with cancer, and it is the focus of this review. It regulates the expression of genes involved in cell proliferation, growth, differentiation, self-renewal, survival, metabolism, protein synthesis, and apoptosis. More recently, novel studies have shown that MYC plays a role not only in tumor initiation and growth but also has a broader spectrum of functions in tumor progression. MYC contributes to angiogenesis, immune evasion, invasion, and migration, which all lead to distant metastasis. Moreover, MYC is able to promote tumor growth and aggressiveness by recruiting stromal and tumor-infiltrating cells. In this review, we will dissect all of these novel functions and their involvement in the crosstalk between tumor and host, which have demonstrated that MYC is undoubtedly the master regulator of the tumor microenvironment. In sum, a better understanding of MYC’s role in the tumor microenvironment and metastasis development is crucial in proposing novel and effective cancer treatment strategies.
Collapse
|
24
|
Han W, Shi J, Cao J, Dong B, Guan W. Current advances of long non-coding RNAs mediated by wnt signaling in glioma. Pathol Res Pract 2020; 216:153008. [PMID: 32703485 DOI: 10.1016/j.prp.2020.153008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/14/2020] [Accepted: 05/10/2020] [Indexed: 12/21/2022]
Abstract
Glioma is the most common and aggressive brain tumor in the central nervous system (CNS), in which Wnt signaling pathway has been verified to play a pivotal role in regulating the initiation and progression. Currently, numerous studies have indicated that long non-coding RNAs (lncRNAs) have critical functions across biological processes including cell proliferation, colony formation, migration, invasion and apoptosis via Wnt signaling pathway in glioma. This review depicts canonical and non-canonical Wnt/β-catenin signaling pathway properties and relative processing mechanisms in gliomas, and summarizes the function and regulation of lncRNAs mediated by Wnt signaling pathway in the development and progression of glioma. Ultimately, we hope to seek out promising biomarkers and reliable therapeutic targets for glioma.
Collapse
Affiliation(s)
- Wei Han
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jia Shi
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jiachao Cao
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Bo Dong
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wei Guan
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|