1
|
Tuli TR, Mia M, Habib A. Integrated bioinformatics approach for the identification and validation of novel biomarkers in ACC progression and prognosis. Biomarkers 2025:1-15. [PMID: 40183287 DOI: 10.1080/1354750x.2025.2489453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
CONCLUSION In conclusion, the identified novel biomarkers and associated pathways, provides a comprehensive insight into the molecular mechanisms, prognosis, and potential clinical applications for the diagnosis and therapeutic interventions of ACC.
Collapse
Affiliation(s)
- Tonima Rahman Tuli
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| | - Mijan Mia
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| | - Ahsan Habib
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| |
Collapse
|
2
|
Su T, Trang N, Zhu J, Kong L, Cheung D, Chou V, Ellis L, Huang C, Camden N, McHugh CA. GRAS1 non-coding RNA protects against DNA damage and cell death by binding and stabilizing NKAP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.20.545783. [PMID: 38645172 PMCID: PMC11030241 DOI: 10.1101/2023.06.20.545783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Non-coding RNA (ncRNA) gene products are involved in diverse biological processes including splicing, epigenetic regulation, gene expression, proliferation, and metabolism. The biological mechanisms by which ncRNAs contribute to cell survival remain poorly understood. We found that the Growth Regulator Antisense 1 (GRAS1) long non-coding RNA (lncRNA) transcript promotes growth in multiple human cell types by protecting against DNA damage. Knockdown of GRAS1 induced DNA damage and cell death, along with significant expression changes in DNA damage response, intrinsic apoptotic signaling, and cellular response to environmental stimulus genes. Extensive DNA damage occurred after GRAS1 knockdown, with numerous double strand breaks occurring in each cell. The number of cells undergoing apoptosis and with fragmented nuclei increased significantly after GRAS1 knockdown. We used RNA antisense purification and mass spectrometry (RAP-MS) to identify the NF-κB activating protein (NKAP) as a direct protein interaction partner of GRAS1 lncRNA. NKAP protein was degraded after GRAS1 knockdown, in a proteasome-dependent manner. Overexpression of GRAS1 or NKAP mitigated the DNA damage effects of GRAS1 knockdown. In summary, GRAS1 and NKAP directly interact to protect against DNA damage and cell death in multiple human cell lines.
Collapse
Affiliation(s)
| | | | - Jonathan Zhu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Lingbo Kong
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Darin Cheung
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Vita Chou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Lauren Ellis
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Calvin Huang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Nichelle Camden
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Colleen A. McHugh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
3
|
Wang H, He D. LINC01123 acts as an oncogenic driver in lung adenocarcinoma by regulating the miR-4766-5p/PYCR1 axis. Histol Histopathol 2023; 38:1475-1486. [PMID: 36994814 DOI: 10.14670/hh-18-610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
BACKGROUND Lung adenocarcinoma remains one of the most significant threats to human life as it involves multiple etiologies, including alteration of oncogenes or tumor-inhibitory genes. Long non-coding RNAs (lncRNAs) have been reported to have both cancer promoting and cancer inhibiting effects. In this work, we investigated the function and mechanism of lncRNA LINC01123 in lung adenocarcinoma. METHODS The expression of LINC01123, miR-4766-5p, and PYCR1 (pyrroline-5-carboxylate reductase 1) mRNA was analyzed by RT-qPCR. The protein expression levels of PYCR1 and the apoptosis-related proteins (Bax and Bcl-2) were determined by western blotting. Cell proliferation and migration were determined by CCK-8 and wound-healing assays, respectively. Tumor growth in nude mice and Ki67 immunohistochemical staining were used to determine the in vivo role of LINC01123. The putative binding relationships miR-4766-5p has with LINC01123 and PYCR1, which had been identified by analysis of public databases, were validated through RIP and dual-luciferase reporter assays. RESULTS LINC01123 and PYCR1 overexpression and miR-4766-5p downregulation were shown to occur in lung adenocarcinoma samples. LINC01123 depletion repressed lung adenocarcinoma cell growth and migration and blocked the development of solid tumors in an animal model. Moreover, LINC01123 bound directly to miR-4766-5p, the downregulation of which attenuated the anticancer effects of LINC01123 depletion in lung adenocarcinoma cells. MiR-4766-5p directly targeted downstream PYCR1 to suppress PYCR1 expression. The repressive effects of PYCR1 knockdown on the migration and proliferation of lung adenocarcinoma cells were also partly abolished by miR-4766-5p downregulation. CONCLUSION Downregulation of LINC01123 represses lung adenocarcinoma progression. This suggests that LINC01123 functions as an oncogenic driver in lung adenocarcinoma by controlling the miR-4766-5p/PYCR1 axis.
Collapse
Affiliation(s)
- Hong Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China.
| | - Dongsheng He
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Xiao G, Zhang T, Tan B, Hao H. Hsa_circ_0026344 suppresses gastric cancer progression via modulating the miR-1290/FBP2 axis. Histol Histopathol 2023; 38:1017-1028. [PMID: 36515277 DOI: 10.14670/hh-18-564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) are a novel type of noncoding RNAs and play important roles in tumorigenesis, including gastric cancer (GC). However, the functions of most circRNAs remain poorly understood. In our study, we mainly learn the influence of hsa_circ_0026344 (circ_0026344) in GC progression. METHODS Circ_0026344, miR-1290 and Fructose-1,6-bisphosphatase 2 (FBP2) expression was determined by quantitative real-time polymerase chain reaction (qRT-PCR). GC cell proliferation, migration, and invasion were detected by colony formation, 5-ethynyl-2'-deoxyuridine (EdU), and transwell assays, respectively. The interaction between circ_0026344 and miR-1290 complex was evaluated by RNA pull-down assay. The interaction of miR-1290 with circ_0026344 or FBP2 was detected using dual-luciferase reporter assay. A xenograft model was established to determine the effect of circ_0026344 on GC tumor growth in vivo. RESULTS Circ_0026344 expression was dramatically decreased in GC cells and tissues. Circ_0026344 overexpression inhibited GC cell proliferation, migration and invasion. MiR-1290 was predicted as a target of circ_0026344 and miR-1290 overexpression attenuated the anti-tumor effect of circ_0026344 on GC cells. Furthermore, we predicted FBP2 as the target of miR-1290. FBP2 knockdown reversed the effects of circ_0026344 knockdown on GC cell malignant behaviors. Functional analysis showed that circ_0026344 upregulated FBP2 expression via miR-1290. Additionally, in vivo studies demonstrated that circ_0026344 suppressed GC tumor progression. CONCLUSION In conclusion, circ_0026344 inhibited GC cell proliferation via the miR-1290/FBP2 axis, which might provide a new therapeutic target for GC patients.
Collapse
Affiliation(s)
- GaoChun Xiao
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - TingTing Zhang
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - BinBin Tan
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Hu Hao
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China.
| |
Collapse
|
5
|
Li Z, Wang P, Liang Z, Wang D, Nie Y, Ma Q. Bismuth Nano-Nest/Ti 3CN Quantum Dot-Based Surface Plasmon Coupling Electrochemiluminescence Sensor for Ascites miRNA-421 Detection. Anal Chem 2023. [PMID: 37294618 DOI: 10.1021/acs.analchem.3c01946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, a novel surface plasmon-coupled electrochemiluminescence (SPC-ECL) biosensor was developed based on bismuth nano-nest and Ti3CN quantum dots (Ti3CN QDs). First, MXene derivative QDs (Ti3CN QDs) with excellent luminescence performance were prepared as the ECL luminescent. The N doping in Ti3CN QDs can effectively improve the luminescence performance and catalytic activity. Therefore, the luminescence performance of QDs has been effectively improved. Furthermore, the bismuth nano-nest structure with a strong localized surface plasmon resonance effect has been designed as the sensing interface via the electrochemical deposition method. It was worth noticed that the morphology of bismuth nanomaterials can be controlled effectively on the electrode surface by the step potential method. Due to the abundant surface plasmon hot spots generated between the bismuth nano-nests, the isotropic ECL signal of Ti3CN QDs can be not only significantly enhanced by 5.8 times but also converted into polarized emission. Finally, the bismuth nano-nest/Ti3CN QD-based SPC-ECL sensor was used to quantify miRNA-421 in the range of 1 fM to 10 nM. The biosensor has been successfully used for miRNA in ascites samples from gastric cancer patients, which indicated that the SPC-ECL sensor developed in this study has great potential for clinical analysis.
Collapse
Affiliation(s)
- Zhenrun Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zihui Liang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Dongyu Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yixin Nie
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
6
|
Usman M, Beilerli A, Sufianov A, Kudryashov V, Ilyasova T, Balaev P, Danilov A, Lu H, Gareev I. Investigations into the impact of non-coding RNA on the sensitivity of gastric cancer to radiotherapy. Front Physiol 2023; 14:1149821. [PMID: 36909247 PMCID: PMC9998927 DOI: 10.3389/fphys.2023.1149821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a newly discovered functional RNA different from messenger RNA, which can participate in regulating the occurrence and development of tumors. More and more research results show that ncRNAs can participate in the regulation of gastric cancer (GC) radiotherapy response, and its mechanism may be related to its effect on DNA damage repair, gastric cancer cell stemness, cell apoptosis, activation of epidermal growth factor receptor signaling pathway, etc. This article summarizes the relevant mechanisms of ncRNAs regulating the response to radiotherapy in gastric cancer, which will be directly important for the introduction of ncRNAs particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) into clinical medicine as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Medical Imaging, Central Hospital Affiliated to Chongqing University of Technology, Chongqing, China
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, Tyumen, Russia
| | - Albert Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Valentin Kudryashov
- Gastric Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Pavel Balaev
- Department of Oncology and Radiology, Ural State Medical University, Yekaterinburg, Russia
| | - Andrei Danilov
- Department of Clinical Pharmacology, Smolensk State Medical University, Smolensk, Russia
| | - Hong Lu
- Department of Medical Imaging, Central Hospital Affiliated to Chongqing University of Technology, Chongqing, China
| | - Ilgiz Gareev
- Educational and Scientific Institute of Neurosurgery, Рeoples' Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
7
|
Exosomal circPRRX1 functions as a ceRNA for miR-596 to promote the proliferation, migration, invasion, and reduce radiation sensitivity of gastric cancer cells via the upregulation of NF-κB activating protein. Anticancer Drugs 2022; 33:1114-1125. [PMID: 36206097 DOI: 10.1097/cad.0000000000001358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Exosomes, which are small extracellular vesicles, have been unveiled to carry circular RNAs (circRNAs). CircRNA paired-related homeobox 1 (circPRRX1) can be transferred by exosomes derived from gastric cancer cells. Here, we investigated the activity and mechanism of exosomal circPRRX1 in gastric tumorigenesis and radiation sensitivity. CircPRRX1, microRNA (miR)-596, and NF-κB activating protein (NKAP) were quantified by quantitative real-time PCR and immunoblotting. Cell proliferation, motility, and invasion were detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide and transwell assays, respectively. Cell colony formation and survival were assessed by colony formation assays. Dual-luciferase reporter assays were performed to verify the direct relationship between miR-596 and circPRRX1 or NKAP. In-vivo xenograft studies were used to evaluate the role of exosomal circPRRX1 in tumor growth. Our data showed that circPRRX1 expression was elevated in human gastric cancer, and circPRRX1 could be transferred by exosomes from gastric cancer cells. Exosomal circPRRX1 affected cell proliferation, motility, invasion, and radiation sensitivity in vitro and tumor growth in vivo. Mechanistically, circPRRX1 directly regulated miR-596 expression, and exosomal circPRRX1 affected cell biological functions at least in part through miR-596. NKAP was identified as a direct target and functionally downstream effector of miR-596. Exosomal circPRRX1 modulated NKAP expression by acting as a competing endogenous RNA (ceRNA) for miR-596. Our findings suggest a new mechanism, the exosomal circPRRX1/miR-596/NKAP ceRNA crosstalk, in regulating gastric tumorigenesis and radiation sensitivity.
Collapse
|
8
|
Sun S, Gao T, Pang B, Su X, Guo C, Zhang R, Pang Q. RNA binding protein NKAP protects glioblastoma cells from ferroptosis by promoting SLC7A11 mRNA splicing in an m 6A-dependent manner. Cell Death Dis 2022; 13:73. [PMID: 35064112 PMCID: PMC8783023 DOI: 10.1038/s41419-022-04524-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
Ferroptosis is a form of cell death characterized by lipid peroxidation. Previous studies have reported that knockout of NF-κB activating protein (NKAP), an RNA-binding protein, increased lipid peroxidation level in naive T cells and induced cell death in colon cancer cells. However, there was no literature reported the relationship between NKAP and ferroptosis in glioblastoma cells. Notably, the mechanism of NKAP modulating ferroptosis is still unknown. Here, we found NKAP knockdown induced cell death in glioblastoma cells. Silencing NKAP increased the cell sensitivity to ferroptosis inducers both in vitro and in vivo. Exogenous overexpression of NKAP promoted cell resistance to ferroptosis inducers by positively regulating a ferroptosis defense protein, namely cystine/glutamate antiporter (SLC7A11). The regulation of SLC7A11 by NKAP can be weakened by the m6A methylation inhibitor cycloleucine and knockdown of the m6A writer METTL3. NKAP combined the “RGAC” motif which was exactly in line with the m6A motif “RGACH” (R = A/G, H = A/U/C) uncovered by the m6A-sequence. RNA Immunoprecipitation (RIP) and Co-Immunoprecipitation (Co-IP) proved the interaction between NKAP and m6A on SLC7A11 transcript. Following its binding to m6A, NKAP recruited the splicing factor proline and glutamine-rich (SFPQ) to recognize the splice site and then conducted transcription termination site (TTS) splicing event on SLC7A11 transcript and the retention of the last exon, screened by RNA-sequence and Mass Spectrometry (MS). In conclusion, NKAP acted as a new ferroptosis suppressor by binding to m6A and then promoting SLC7A11 mRNA splicing and maturation.
Collapse
Affiliation(s)
- Shicheng Sun
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Taihong Gao
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Bo Pang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiangsheng Su
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Changfa Guo
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Rui Zhang
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Qi Pang
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
9
|
IL-1β promotes hypoxic vascular endothelial cell proliferation through the miR-24-3p/NKAP/NF-kB axis. Biosci Rep 2022; 42:230630. [PMID: 35005769 PMCID: PMC8766822 DOI: 10.1042/bsr20212062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose: Our previous data indicated that miR-24-3p is involved in the regulation of vascular endothelial cell (EC) proliferation and migration/invasion. However, whether IL-1β affects hypoxic HUVECs by miR-24-3p is still unclear. Therefore, the present study aimed to investigate the role and underlying mechanism of interleukin 1β (IL-1β) in hypoxic HUVECs. Methods: We assessed the mRNA expression levels of miR-24-3p, hypoxia-inducible factor-1α (HIF1A) and NF-κB-activating protein (NKAP) by quantitative real-time polymerase chain reaction (RT-qPCR). ELISA measured the expression level of IL-1β. Cell counting kit-8 (CCK-8) assays evaluated the effect of miR-24-3p or si-NKAP+miR-24 on cell proliferation (with or without IL-1β). Transwell migration and invasion assays were used to examine the effects of miR-24-3p or si-NKAP+miR-24-3p on cell migration and invasion (with or without IL-1β). Luciferase reporter assays were used to identify the target of miR-24-3p. Results: We demonstrated that in acute myocardial infarction (AMI) patient blood samples, the expression of miR-24-3p is down-regulated, the expression of IL-1β or NKAP is up-regulated, and IL-1β or NKAP is negatively correlated with miR-24-3p. Furthermore, IL-1β promotes hypoxic HUVECs proliferation by down-regulating miR-24-3p. In addition, IL-1β also significantly promotes the migration and invasion of hypoxic HUVECs; overexpression of miR-24-3p can partially rescue hypoxic HUVECs migration and invasion. Furthermore, we discovered that NKAP is a novel target of miR-24-3p in hypoxic HUVECs. Moreover, both the overexpression of miR-24-3p and the suppression of NKAP can inhibit the NF-κB/pro-IL-1β signaling pathway. However, IL-1β mediates suppression of miR-24-3p activity, leading to activation of the NKAP/NF-κB pathway. In conclusion, our results reveal a new function of IL-1β in suppressing miR-24-3p up-regulation of the NKAP/NF-κB pathway.
Collapse
|
10
|
Dashti F, Mirazimi SMA, Rabiei N, Fathazam R, Rabiei N, Piroozmand H, Vosough M, Rahimian N, Hamblin MR, Mirzaei H. The role of non-coding RNAs in chemotherapy for gastrointestinal cancers. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:892-926. [PMID: 34760336 PMCID: PMC8551789 DOI: 10.1016/j.omtn.2021.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, hepatic, esophageal, and pancreatic tumors, are responsible for large numbers of deaths around the world. Chemotherapy is the most common approach used to treat advanced GI cancer. However, chemoresistance has emerged as a critical challenge that prevents successful tumor elimination, leading to metastasis and recurrence. Chemoresistance mechanisms are complex, and many factors and pathways are involved. Among these factors, non-coding RNAs (ncRNAs) are critical regulators of GI tumor development and subsequently can induce resistance to chemotherapy. This occurs because ncRNAs can target multiple signaling pathways, affect downstream genes, and modulate proliferation, apoptosis, tumor cell migration, and autophagy. ncRNAs can also induce cancer stem cell features and affect the epithelial-mesenchymal transition. Thus, ncRNAs could possibly act as new targets in chemotherapy combinations to treat GI cancer and to predict treatment response.
Collapse
Affiliation(s)
- Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fathazam
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Piroozmand
- Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
11
|
Chen H, Wu C, Luo L, Wang Y, Peng F. circ_0000467 promotes the proliferation, metastasis, and angiogenesis in colorectal cancer cells through regulating KLF12 expression by sponging miR-4766-5p. Open Med (Wars) 2021; 16:1415-1427. [PMID: 34616917 PMCID: PMC8464181 DOI: 10.1515/med-2021-0358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
Background Circular RNAs have been identified as crucial players in the initiation and progression of cancers, including colorectal cancer (CRC). The Has_circ_0000467 (circ_0000467) expression has been found to be upregulated in CRC, but its function and mechanism remain unclear. Methods The expression levels of circ_0000467, microRNA-4766-5p (miR-4766-5p), and Krueppel-like factor 12 (KLF12) were examined using reverse transcription-quantitative polymerase chain reaction. Cell proliferation was analyzed by cell counting kit-8 assay and colony formation assay. The apoptosis was measured by flow cytometry. Transwell migration and invasion assays were applied to evaluate cell metastatic ability. Angiogenesis was detected using tube formation assay. All protein expressions were quantified by western blot assay. Dual-luciferase reporter assay was used to analyze intergenic binding. Xenograft models were constructed for the experiment of circ_0000467 in vivo. Results The expression of circ_0000467 was upregulated in CRC tissues and cells. Knockdown of circ_0000467 repressed cell proliferation, metastasis, and angiogenesis, but it induced apoptosis in CRC cells. circ_0000467 targeted miR-4766-5p and inhibited the expression of miR-4766-5p. Silencing of circ_0000467 inhibited CRC progression by upregulating miR-4766-5p. miR-4766-5p suppressed the expression of target gene KLF12 and KLF12 overexpression reversed the effects of miR-4766-5p on CRC cell behaviors. circ_0000467 positively regulated the expression of KLF12 by targeting miR-4766-5p. circ_0000467 downregulation in vivo reduced CRC tumorigenesis by regulating miR-4766-5p and KLF12. Conclusion circ_0000467 acted as an oncogene in CRC through regulating KLF12 expression by sponging miR-4766-5p. Therefore, circ_0000467 can be used as an effective target in CRC diagnosis and therapy.
Collapse
Affiliation(s)
- Hui Chen
- Department of Gastroenterology and General Surgery, Sichuan Mianyang 404 Hospital, 621000, Mianyang, Sichuan, China
| | - Chen Wu
- Department of Gastroenterology and General Surgery, Sichuan Mianyang 404 Hospital, 621000, Mianyang, Sichuan, China
| | - Liang Luo
- Department of Gastroenterology and General Surgery, Sichuan Mianyang 404 Hospital, 621000, Mianyang, Sichuan, China
| | - Yuan Wang
- Department of Pediatric Infectious Diseases, Sichuan Mianyang 404 Hospital, 621000, Mianyang, China
| | - Fangxing Peng
- Department of Gastroenterology and General Surgery, Sichuan Mianyang 404 Hospital, No. 56, Yuejin Street, Fucheng District, 621000, Mianyang, Sichuan, China
| |
Collapse
|
12
|
Zhou PL, Wu Z, Zhang W, Xu M, Ren J, Zhang Q, Sun Z, Han X. Circular RNA hsa_circ_0000277 sequesters miR-4766-5p to upregulate LAMA1 and promote esophageal carcinoma progression. Cell Death Dis 2021; 12:676. [PMID: 34226522 PMCID: PMC8257720 DOI: 10.1038/s41419-021-03911-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022]
Abstract
Growing evidence has indicated that circular RNAs (circRNAs) play a pivotal role as functional RNAs in diverse cancers. However, most circRNAs involved in esophageal squamous cell carcinoma (ESCC) remain undefined, and the underlying molecular mechanisms mediated by circRNAs are largely unclear. Here, we screened human circRNA expression profiles in ESCC tissues and found significantly increased expression of hsa_circ_0000277 (termed circPDE3B) in ESCC tissues and cell lines compared to the normal controls. Moreover, higher circPDE3B expression in patients with ESCC was correlated with advanced tumor-node-metastasis (TNM) stage and dismal prognosis. Functional experiments demonstrated that circPDE3B promoted the tumorigenesis and metastasis of ESCC cells in vitro and in vivo. Mechanistically, bioinformatics analysis, a dual-luciferase reporter assay, and anti-AGO2 RNA immunoprecipitation showed that circPDE3B could act as a competing endogenous RNA (ceRNA) by harboring miR-4766-5p to eliminate the inhibitory effect on the target gene laminin α1 (LAMA1). In addition, LAMA1 was significantly upregulated in ESCC tissues and was positively associated with the aggressive oncogenic phenotype. More importantly, rescue experiments revealed that the oncogenic role of circPDE3B in ESCC is partly dependent on the miR-4766-5p/LAMA1 axis. Furthermore, bioinformatics analysis combined with validation experiments showed that epithelial-mesenchymal transition (EMT) activation was involved in the oncogenic functions of the circPDE3B-miR-4766-5p/LAMA1 axis in ESCC. Taken together, we demonstrate for the first time that the circPDE3B/miR-4766-5p/LAMA1 axis functions as an oncogenic factor in promoting ESCC cell proliferation, migration, and invasion by inducing EMT, implying its potential prognostic and therapeutic significance in ESCC.
Collapse
Affiliation(s)
- Peng Li Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhengyang Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenguang Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Miao Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianzhuang Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qinhui Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhanguo Sun
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
13
|
Xu L, Ni N, Gao H, Hu P. MicroRNA-1301-3p promotes the progression of non-small cell lung cancer by targeting Thy-1 and predicts poor prognosis of patients. Oncol Lett 2021; 21:327. [PMID: 33692859 PMCID: PMC7933762 DOI: 10.3892/ol.2021.12589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/26/2020] [Indexed: 12/25/2022] Open
Abstract
The role of microRNA (miR)-1301-3p has been investigated in breast cancer and colorectal cancer. Dysregulation of miR-1301-3p expression in non-small cell lung cancer (NSCLC) is speculated to be associated with tumor progression, which was systemically investigated in the present study. Reverse transcription-quantitative PCR analysis was performed to detect miR-1301-3p expression in 124 paired tissue samples and cultured cell lines. The results demonstrated that miR-1301-3p expression was regulated by transfection with miR-1301-3p mimic or inhibitor, and the proliferation, migration and invasion of the transfected cells were assessed via the Cell Counting Kit-8 and Transwell assays. In addition, miR-1301-3p expression was significantly upregulated in NSCLC tissues and cells compared with normal tissues and normal cells, respectively. Notably, upregulated miR-1301-3p expression in NSCLC tissues was significantly associated with the TNM stage, lymph node metastasis and poor prognosis of patients with NSCLC. Furthermore, upregulated miR-1301-3p expression in NSCLC cells promoted cell proliferation, migration and invasion, the effects of which were reversed following miR-1301-3p knockdown. Thy-1 was identified as a direct target of miR-1301-3p, which serves as a tumor promoter in the progression of NSCLC. Taken together, the results of the present study suggest that upregulated miR-1301-3p expression in NSCLC acts as an independent prognostic factor and a tumor promoter by targeting thy-1, thus provides a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Ling Xu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
| | - Na Ni
- Department of Clinical Medical Laboratory, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
| | - Haiyang Gao
- Department of Emergency, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
| | - Pengbo Hu
- Department of Emergency, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
| |
Collapse
|
14
|
Ma Y, Zhou A, Song J. Upregulation of miR-1307-3p and its function in the clinical prognosis and progression of gastric cancer. Oncol Lett 2020; 21:91. [PMID: 33376524 PMCID: PMC7751337 DOI: 10.3892/ol.2020.12352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is one of the major causes of cancer-associated mortality worldwide. miR-1307-3p has been demonstrated to serve multiple roles in the development of various types of cancer. The present study aimed to evaluate the expression and functional role of miR-1307-3p in the progression of gastric cancer. The expression of miR-1307-3p in gastric cancer tissues and cell lines was detected by reverse transcription quantitative PCR. Furthermore, the correlation between miR-1307-3p expression and the clinicopathological characteristics and prognosis of patients was evaluated. Cell Counting Kit-8 and Transwell assays were performed to analyze the effects of miR-1307-3p on the proliferation and the migratory and invasive abilities of gastric cancer cells, respectively. Dual-luciferase reporter assay was conducted to reveal the potential underlying mechanism of miR-1307-3p. In gastric cancer tissues and cells, miR-1307-3p expression was significantly upregulated compared with the normal tissues and cell lines. In addition, the expression of miR-1307-3p was associated with the Tumor-Node Metastasis stage of patients. The results from Cox regression analysis demonstrated that miR-1307-3p may serve as an independent predictor for the prognosis of patients with gastric cancer. Furthermore, the upregulation of miR-1307-3p in gastric cancer cell lines significantly promoted the cell proliferation and migratory and invasive abilities by targeting DAB2 interacting protein. In conclusion, the findings from the present study suggested that miR-1307-3p may serve as a tumor promoter of gastric cancer and that miR-1307-3p expression in tumor tissues may be used as a prognostic indicator for patients with gastric cancer.
Collapse
Affiliation(s)
- Yanhui Ma
- Department of Laboratory, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - Aifeng Zhou
- Department of Laboratory, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - Juan Song
- Department of Laboratory, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| |
Collapse
|
15
|
Peng L, Chen Z, Wang G, Tian S, Kong S, Xu T, An X, Chen Y. Long noncoding RNA LBX2-AS1-modulated miR-4766-5p regulates gastric cancer development through targeting CXCL5. Cancer Cell Int 2020; 20:497. [PMID: 33061849 PMCID: PMC7552510 DOI: 10.1186/s12935-020-01579-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (LncRNAs) have been reported to critically regulate gastric cancer (GC). Recently, it was reported that LBX2 antisense RNA 1 (LBX2-AS1) is abnormally expressed in GC. However, the role of LBX2-AS1 in the malignancy of GC is worth further discussion. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the LBX2-AS1, miR-4766-5p and C-X-C motif chemokine (CXCL5) expression in GC tissues and cells. Dual-luciferase reporter assay was applied to examine the target relationship between LBX2-AS1 and miR-4766-5p or miR-4766-5p and CXCL5. Cell counting kit-8 (CCK-8) and Transwell assays were used to detect cell proliferation, migration and invasion rates. The protein expression of CXCL5 was confirmed using western blot. The RNA pull down experiment was used to verify the specificity of LBX2-AS1 and miR-4766-5p on BGC-823 and SGC-7901 cells. RESULTS LBX2-AS1 was up-regulated in GC tissues and cells, and its knockdown suppressed proliferation, migration and invasion of GC cells. While, overexpression of LBX2-AS1 increased proliferation and increased CXCL5 mRNA level. CXCL5 improved cell proliferation, migration and invasion of GC cells. LBX2-AS1 could bind to miR-4766-5p to regulate CXCL5 expression. Overexpression of CXCL5 overturned those effects of miR-4766-5p in GC cells. RNA Pull down shown that BGC-823 and SGC-7901 cells, miR-4766-5p specifically binds to LBX2-AS1. CONCLUSIONS In short, this study demonstrated that LBX2-AS1 promoted proliferation, migration and invasion through up-regulation CXCL5 mediated by miR-4766-5p in GC. The LBX2-AS1/miR-4766-5p/CXCL5 regulatory axis provides a theoretical basis for the research on lncRNA-directed therapeutics in GC.
Collapse
Affiliation(s)
- LiPan Peng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, China
| | - ZeZhong Chen
- Department of General Surgery, No. 1 People’s Hospital of NingYang County, Taian, 271400 China
| | - GuangChuan Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 China
| | - ShuBo Tian
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, China
| | - Shuai Kong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, China
| | - Tao Xu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, China
| | - XiaoHua An
- Department of Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 China
| | - YueZhi Chen
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, China
| |
Collapse
|
16
|
Huang G, Yang Y, Lv M, Huang T, Zhan X, Kang W, Hou J. Novel lncRNA SFTA1P Promotes Tumor Growth by Down-Regulating miR-4766-5p via PI3K/AKT/mTOR Signaling Pathway in Hepatocellular Carcinoma. Onco Targets Ther 2020; 13:9759-9770. [PMID: 33061455 PMCID: PMC7533222 DOI: 10.2147/ott.s248660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a common malignancy worldwide with a high mortality rate. lncRNA SFTA1P is highly expressed in HCC. We aimed to study the role of SFTA1P in HCC and its relationship with miR-4766-5p. Materials and Methods The levels of SFTA1P in HCC tissues and cell lines were determined. Relationship between SFTA1P and clinical features and prognosis was studied. The influence of SFTA1P on HCC cell viability, migration, invasion and apoptosis was studied in vitro. Rescue experiments were conducted after the binding site between SFTA1P and miR-4766-5p confirmed by dual-luciferase assay. The protein expression of AKT, p-AKT, mTOR and p-mTOR in HCC cells with knockdown of SFTA1P was determined by Western blotting. A tumor study in nude mice was conducted in order to assess the effects of SFTA1P on tumor growth characteristics. Results SFTA1P was up-regulated in HCC tissues and cell lines. SFTA1P expression was closely related to tumor size, vascular invasion and TNM stage. Knockdown of SFTA1P inhibited HCC cell viability, migration and invasion and promoted cell apoptosis. MiR-4766-5p was a target of SFTA1P and knockdown of SFTA1P could decrease the protein expression of p-AKT and p-mTOR. Rescue experiments showed that miR-4766-5p mimics could attenuate the promoting role of SFTA1P on HCC cell viability, invasion and migration, and inhibiting role on cell apoptosis. Moreover, we used nude mice models and also found that the knockdown of SFTA1P reduced tumor volume and weight. Conclusion lncRNA SFTA1P could promote tumor development in HCC by down-regulating miR-4766-5p expression via PI3K/AKT/mTOR signaling pathway. It may be a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Guohong Huang
- Clinical Research Center of Kunming Maternal and Child Health Hospital, Kunming 650031, People's Republic of China
| | - Yimei Yang
- Clinical Research Center of Kunming Maternal and Child Health Hospital, Kunming 650031, People's Republic of China
| | - Mengxin Lv
- Clinical Research Center of Kunming Maternal and Child Health Hospital, Kunming 650031, People's Republic of China
| | - Tian Huang
- Clinical Research Center of Kunming Maternal and Child Health Hospital, Kunming 650031, People's Republic of China
| | - Xiaoyan Zhan
- Clinical Research Center of Kunming Maternal and Child Health Hospital, Kunming 650031, People's Republic of China
| | - Wei Kang
- Clinical Research Center of Kunming Maternal and Child Health Hospital, Kunming 650031, People's Republic of China
| | - Jianghou Hou
- Clinical Research Center of Kunming Maternal and Child Health Hospital, Kunming 650031, People's Republic of China
| |
Collapse
|
17
|
Sun D, Wang G, Xiao C, Xin Y. Hsa_circ_001988 attenuates GC progression in vitro and in vivo via sponging miR-197-3p. J Cell Physiol 2020; 236:612-624. [PMID: 32592202 DOI: 10.1002/jcp.29888] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022]
Abstract
Hsa_circ_001988 has been identified as a tumor suppressor gene in several carcinomas. However, its expression pattern and role in gastric cancer (GC) have still remained elusive. This study aimed to explore the functions of hsa_circ_001988 in GC. Quantitative reverse transcription polymerase chain reaction assay was performed to assess the expressions of hsa_circ_001988, miR-197-3p, FBXW7, CCDC6, and U2AF65 in GC tissues. The correlation analysis was undertaken to find out the relationship between hsa_circ_001988 expression and clinicopathological factors. A series of cellular experiments were carried out to describe the effects of hsa_circ_001988 on GC in vivo and in vitro. Besides, RNA immunoprecipitation (RIP) assay was performed to verify the relationship among EIF4A3, U2AF65, and hsa_circ_001988. We first found that the expression of hsa_circ_001988 was decreased in 341 GC patients that was related to World Health Organization histological types, Lauren types, and tumor invasion depth (p < .05). Silencing of hsa_circ_001988 facilitated proliferation, colony formation, migration, and invasion of GC cells, while overexpression of hsa_circ_001988 reversed the effect on GC progression in vitro. Additionally, the results of subcutaneous xenotransplanted tumor model demonstrated that overexpressing hsa_circ_001988 significantly suppressed the subcutaneous tumor growth in vivo. Mechanistically, hsa_circ_001988 attenuated the miR-197-3p expression possibly due to its molecular sponge effect, and then, positively promoted FBXW7 expression. Afterwards, FBXW7 regulated the expressions of yes-associated protein 1, cyclinD1, CCDC6, and EMT-related proteins. Notably, RIP assay showed the enrichment relationship among EIF4A3, U2AF65, and hsa_circ_001988. Additionally, EIF4A3 or U2AF65 promoted cyclization of hsa_circ_001988 in GC. Hsa_circ_001988 inhibits the proliferation and metastasis of GC via modulating EIF4A3/U2AF65-mediated hsa_circ_001988/miR-197-3p/FBXW7 axis.
Collapse
Affiliation(s)
- Dan Sun
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, Heping, Shenyang, Liaoning, China
| | - Gang Wang
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, Heping, Shenyang, Liaoning, China
| | - Chang Xiao
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, Heping, Shenyang, Liaoning, China
| | - Yan Xin
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, Heping, Shenyang, Liaoning, China
| |
Collapse
|