1
|
Guo Y, Tian S, Li H, Zuo S, Yu C, Sun C. Transcription factor KLF9 inhibits the proliferation, invasion, and migration of pancreatic cancer cells by repressing KIAA1522. Asia Pac J Clin Oncol 2024; 20:423-432. [PMID: 38520660 DOI: 10.1111/ajco.14048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 03/25/2024]
Abstract
AIM Pancreatic cancer (PC) has a poor prognosis and high mortality. Kruppel-like factor 9 (KLF9), a transcription factor, is aberrantly expressed in various neoplasms. The current study sought to analyze the functional role of KLF9 in the proliferation, invasion, and migration of PC cells. METHODS The expression patterns of KLF9 and KIAA1522 in normal pancreatic cells (HPDE-C7) and PC cells (Panc 03.27, BxPc3, SW1990) were determined by real-time quantitative polymerase chain reaction and Western blot assay. After treatment of KLF9 overexpression, proliferation, invasion, and migration were evaluated by cell counting kit-8, 5-ethynyl-2'-deoxyuridine staining, and Transwell assays. The binding of KLF9 to the KIAA1522 promoter was analyzed by dual-luciferase assay and chromatin immunoprecipitation. The rescue experiment was conducted to analyze the role of KIAA1522. RESULTS KLF9 was downregulated, while KIAA1522 was upregulated in PC cells. KLF9 overexpression mitigated the proliferation, invasion, and migration of PC cells. Enrichment of KLF9 led to inhibition of the KIAA1522 promoter and repressed KIAA1522 expression. KIAA1522 overexpression neutralized the inhibitory role of KLF9 in PC cell functions. CONCLUSION KLF9 is enriched in the KIAA1522 promoter and negatively regulates KIAA1522 expression, thereby mitigating the proliferation, invasion, and migration of PC cells.
Collapse
Affiliation(s)
- Yuting Guo
- Department of General Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - She Tian
- Department of General Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Haiyang Li
- Guizhou Medical University, Guiyang, China
| | - Shi Zuo
- Guizhou Medical University, Guiyang, China
| | - Chao Yu
- Department of General Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chengyi Sun
- Guizhou Medical University, Guiyang, China
- Soochow University, Suzhou, China
| |
Collapse
|
2
|
Simmen FA, Alhallak I, Simmen RCM. Krüppel-like Factor-9 and Krüppel-like Factor-13: Highly Related, Multi-Functional, Transcriptional Repressors and Activators of Oncogenesis. Cancers (Basel) 2023; 15:5667. [PMID: 38067370 PMCID: PMC10705314 DOI: 10.3390/cancers15235667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 02/12/2024] Open
Abstract
Specificity Proteins/Krüppel-like Factors (SP/KLF family) are a conserved family of transcriptional regulators. These proteins share three highly conserved, contiguous zinc fingers in their carboxy-terminus, requisite for binding to cis elements in DNA. Each SP/KLF protein has unique primary sequence within its amino-terminal and carboxy-terminal regions, and it is these regions which interact with co-activators, co-repressors, and chromatin-modifying proteins to support the transcriptional activation and repression of target genes. Krüppel-like Factor 9 (KLF9) and Krüppel-like Factor 13 (KLF13) are two of the smallest members of the SP/KLF family, are paralogous, emerged early in metazoan evolution, and are highly conserved. Paradoxically, while most similar in primary sequence, KLF9 and KLF13 display many distinct roles in target cells. In this article, we summarize the work that has identified the roles of KLF9 (and to a lesser degree KLF13) in tumor suppression or promotion via unique effects on differentiation, pro- and anti-inflammatory pathways, oxidative stress, and tumor immune cell infiltration. We also highlight the great diversity of miRNAs, lncRNAs, and circular RNAs which provide mechanisms for the ubiquitous tumor-specific suppression of KLF9 mRNA and protein. Elucidation of KLF9 and KLF13 in cancer biology is likely to provide new inroads to the understanding of oncogenesis and its prevention and treatments.
Collapse
Affiliation(s)
- Frank A. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Iad Alhallak
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
| | - Rosalia C. M. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
3
|
Abstract
OBJECTIVE To investigate the correlation between the expression of Kruppel-like transcription factor 9 (KLF9) and the prognostic value of tumors as well as its relationship with tumor immune invasion. METHODS A series of bioinformatics methods were used to analyze the relationship between KLF9 and tumor prognosis, tumor mutation burden, microsatellite instability (MSI), and immune cell infiltration in multiple carcinomas. RESULTS In multiple tumor tissues, the expression of KLF9 was lower compared with paracancerous tissues. Therefore, KLF9 can serve as a protective factor to improve the prognosis of carcinoma patients with certain tumor types. KLF9 was closely related to the clinical staging of various carcinomas. The expression of KLF9 was not only associated with tumor mutation burden and MSI in some tumor types, but also positively correlated with immune and stromal cells in multiple tumors. Further studies have found that, the level of immune cell infiltration was significantly related to the expression of KLF9. CONCLUSION KLF9 can affect the prognosis of pan-carcinoma, which is related to immune invasion. Therefore, KLF9 can be used as a potential biomarker for the prognosis of pan-carcinoma.
Collapse
Affiliation(s)
- Weichao Cai
- Department of Plastic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Yecheng Li
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, P. R. China
- *Correspondence: Weihong Cao, Department of Plastic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No. 150 XiMen Road, Taizhou, Zhejiang 317000, China (e-mail: ) and Yecheng Li, Department of General Surgery, Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, Jiangsu 215004, P. R. China (e-mail: )
| | - Weihong Cao
- Department of Plastic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
- *Correspondence: Weihong Cao, Department of Plastic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No. 150 XiMen Road, Taizhou, Zhejiang 317000, China (e-mail: ) and Yecheng Li, Department of General Surgery, Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, Jiangsu 215004, P. R. China (e-mail: )
| |
Collapse
|
4
|
Huang Y, Wang J, Zhang H, Xiang Y, Dai Z, Zhang H, Li J, Li H, Liao X. LncRNA TPTEP1 inhibits the migration and invasion of gastric cancer cells through miR-548d-3p/KLF9/PER1 axis. Pathol Res Pract 2022; 237:154054. [PMID: 35985238 DOI: 10.1016/j.prp.2022.154054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite the development of many methods and new therapeutic agents, the survival and prognosis of patients with gastric cancer are still poor. The role of TPTEP1 in gastric cancer has not been reported. METHODS Wound healing assay and transwell assay analysis TPTEP1/miR-548d-3p/KLF9/PER1 effect on migration and invasiveness of gastric cells. Western blot and RT-qPCR certificate TPTEP1/miR-548d-3p/KLF9/PER1transcription and expression of migration and invasion related genes. Luciferase assay was used to determine the adsorption of miR-548d-3p by TPTEP1 sponge, the targeting of miR-548d-3p to KLF9, and the binding of KLF9 to the promoter of PER1. immunohistochemical assay and H&E staining prove the function of TPTEP1 and miR-548d-3p in nude mice model of gastric cancer. RESULTS TPTEP1 inhibited its expression by sponge adsorption of miR-548d-3p. miR-548d-3p targets KLF9 3'UTR to inhibit its expression, and KLF9 binds to the PER1 promoter to promote its expression.TPTEP1/KLF9/PER1 inhibits gastric cancer cell migration and invasion, and miR-548d-3p does the opposite. CONCLUSIONS Our data suggest that TPTEP1 affects gastric cancer progression by regulating the miR-548d-3p/KLF9/PER1 axis. Targeting this pathway may provide new therapeutic opportunities for gastric cancer.
Collapse
Affiliation(s)
- You Huang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Jun Wang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Hangsheng Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Yuan Xiang
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430014, PR China
| | - Zhoutong Dai
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Huimin Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Jiapeng Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Hui Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Xinghua Liao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China.
| |
Collapse
|
5
|
Zhao J, He S, Xiang C, Zhang S, Chen X, Lu X, Yao Q, Yang L, Ma L, Tian W. KLF9 promotes autophagy and apoptosis in T-cell acute lymphoblastic leukemia cells by inhibiting AKT/mTOR signaling pathway. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
ID1 marks the tumorigenesis of pancreatic ductal adenocarcinoma in mouse and human. Sci Rep 2022; 12:13555. [PMID: 35941362 PMCID: PMC9359991 DOI: 10.1038/s41598-022-17827-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a deadly disease that has an increasing death rate but no effective treatment to now. Although biological and immunological hallmarks of PDAC have been frequently reported recently, early detection and the particularly aggressive biological features are the major challenges remaining unclear. In the current study, we retrieved multiple scRNA-seq datasets and illustrated the genetic programs of PDAC development in genetically modified mouse models. Notably, the transcription levels of Id1 were elevated specifically along with the PDAC development. Pseudotime trajectory analysis revealed that Id1 was closely correlated with the malignancy of PDAC. The gene expression patterns of human PDAC cells were determined by the comparative analysis of the scRNA-seq data on human PDAC and normal pancreas tissues. ID1 levels in human PDAC cancer cells were dramatically increased compared to normal epithelial cells. ID1 deficiency in vitro significantly blunt the invasive tumor-formation related phenotypes. IPA analysis on the differentially expressed genes suggested that EIF2 signaling was the core pathway regulating the development of PDAC. Blocking EFI2 signaling remarkably decreased the expression of ID1 and attenuated the tumor-formation related phenotypes. These observations confirmed that ID1 was regulated by EIF2 signaling and was the critical determinator of PDAC development and progression. This study suggests that ID1 is a potential malignant biomarker of PDAC in both mouse models and human and detecting and targeting ID1 may be a promising strategy to treat or even rescue PDAC.
Collapse
|
7
|
Jin Y, Xu L, Zhao B, Bao W, Ye Y, Tong Y, Sun Q, Liu J. Tumour-suppressing functions of the lncRNA MBNL1-AS1/miR-889-3p/KLF9 axis in human breast cancer cells. Cell Cycle 2022; 21:908-920. [PMID: 35112997 PMCID: PMC9037535 DOI: 10.1080/15384101.2022.2034254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study aimed to explore the role and potential mechanism of the long non-coding (lncRNA) MBNL1-AS1 in human breast cancer. We included 80 patients with breast cancer in this study. Breast cancer cell lines, including MCF7, SKBR3, MDA-MB-231 and MDA-MB-415, and the normal human breast cell line MCF10A were used in this study. MBNL1-AS1, miR-889-3p mimics, si-Krüppel-like factor 9 (KLF9) or their controls were transfected in the cells. Quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blotting and immunohistochemistry assay were performed to detect the expression of MBNL1-AS1, miR-889-3p and KLF9. Cell proliferation, invasion and migration were detected. Luciferase reporter gene and pull-down assay were performed to verify the target relationship among MBNL1-AS1, miR-889-3p and KLF9. Glycolysis was also detected after transfection. The expression of the lncRNA MBNL1-AS1 was low in the breast cancer tissues and cells. Lower expression levels of the lncRNA MBNL1-AS1 were associated with poor prognosis of breast cancer. Overexpression of the lncRNA MBNL1-AS1 decreased proliferation, invasion, migration and glycolysis of breast cancer cells. The lncRNA MBNL1-AS1 could interact with miR-889-3p, and KLF9 was the downstream target of miR-889-3p. Moreover, miR-889-3p was negatively correlated with KLF9 and lncRNA MBNL1-AS1. Both miR-889-3p and si-KLF9 could reverse the overexpression of lncRNA MBNL1-AS1 in breast cancer development. The lncRNA MBNL1-AS1 decreased proliferation, invasion, migration and glycolysis of breast cancer via the miR-889-3p/KLF9 axis, which might be a potential biomarker for the diagnosis of breast cancer.
Collapse
Affiliation(s)
- Yongmei Jin
- Department of Nursing, Shanghai Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingli Xu
- Department of General Surgery, Shanghai Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Zhao
- Department of General Surgery, Shanghai Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,CONTACT Bin Zhao Department of General Surgery, Shanghai Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Shanghai200135, China
| | - Wenqing Bao
- School of Medicine, Tongji University, Shanghai, China
| | - Ying Ye
- Central Laboratory, Shanghai Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Tong
- Department of General Surgery, Shanghai Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiyu Sun
- Department of Traditional Medicine, Shanghai Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianping Liu
- Department of General Surgery, Shanghai Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Li T, Xu Q, Wei Y, Lin R, Hong Z, Zeng R, Hu W, Wu X. Overexpression of miRNA-93-5p Promotes Proliferation and Migration of Bladder Urothelial Carcinoma via Inhibition of KLF9. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8911343. [PMID: 35495878 PMCID: PMC9042641 DOI: 10.1155/2022/8911343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/17/2022] [Accepted: 02/04/2022] [Indexed: 11/25/2022]
Abstract
We focused on studying the effects of a key miRNA-mRNA axis in bladder urothelial carcinoma (BUC). Firstly, miRNAs and mRNAs differentially expressed in BUC were analyzed. Clinical information in the TCGA database was used for survival analysis, and the regulator of miRNA-93-5p was predicted. miRNA-93-5p and KLF9 mRNA expression were detected by qRT-PCR. Protein level detection and targeting measurement were, respectively, achieved by western blot and dual-luciferase approaches. The proliferative, invasive, and migratory abilities were tested through CCK-8, Transwell, and wound healing methods. Cell apoptosis in each group was detected through flow cytometry. As discovered, miRNA-93-5p level was markedly high in BUC cells while KLF9 expression was remarkably low. miRNA-93-5p overexpression promoted BUC cell abilities. Besides, miRNA-93-5p inhibited KLF9 expression. Furthermore, KLF9 overexpression dramatically attenuated such promotion on cancer cell abilities. On the whole, miRNA-93-5p/KLF9 axis facilitated BUC progression, offering a new potential target for BUC patients.
Collapse
Affiliation(s)
- Tao Li
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Qingjiang Xu
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Yongbao Wei
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Rongcheng Lin
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Zhiwei Hong
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Rong Zeng
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Weilie Hu
- Department of Urology, Guangdong Hydropower Hospital, Guangzhou 511340, China
| | - Xiang Wu
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| |
Collapse
|
9
|
The Development of Three-DNA Methylation Signature as a Novel Prognostic Biomarker in Patients with Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3497810. [PMID: 33294438 PMCID: PMC7714567 DOI: 10.1155/2020/3497810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/18/2020] [Accepted: 10/28/2020] [Indexed: 11/25/2022]
Abstract
Aims The prognosis of colorectal cancer (CRC) remains poor. This study aimed to develop and validate DNA methylation-based signature model to predict overall survival of CRC patients. Methods The methylation array data of CRC patients were retrieved from The Cancer Genome Atlas (TCGA) database. These patients were divided into training and validation datasets. A risk score model was established based on Kaplan-Meier and multivariate Cox regression analysis of training cohort and tested in validation cohort. Results Among total 14,626 DNA methylation candidate markers, we found that a three-DNA methylation signature (NR1H2, SCRIB, and UACA) was significantly associated with overall survival of CRC patients. Subgroup analysis indicated that this signature could predict overall survival of CRC patients regardless of age and gender. Conclusions We established a prognostic model consisted of 3-DNA methylation sites, which could be used as potential biomarker to evaluate the prognosis of CRC patients.
Collapse
|
10
|
Yin X, Li X, Feng G, Qu Y, Wang H. LINC00565 Enhances Proliferative Ability in Endometrial Carcinoma by Downregulating KLF9. Onco Targets Ther 2020; 13:6181-6189. [PMID: 32636642 PMCID: PMC7334012 DOI: 10.2147/ott.s249133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/13/2020] [Indexed: 12/26/2022] Open
Abstract
Objective To detect LINC00565 expression level in endometrial carcinoma (EC) samples and cell lines, and the correlations between LINC00565 and clinical features of EC patients. After intervening LINC00565, the underlying mechanism about proliferative ability in EC cell lines is observed. Methods Relative levels of LINC00565 and KLF9 in 52 paired EC and paracancerous tissues were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The relationship between relative level of LINC00565 or KLF9 and clinical features of EC patients was analyzed. After knockdown of LINC00565 and KLF9, potential regulations of them on biological functions of EC were examined by Cell Counting Kit (CCK-8), colony formation assay and in vivo xenograft model in nude mice, respectively. At last, dual-luciferase reporter assay and rescue experiments were conducted to illustrate the mechanisms of LINC00565 and KLF9 in mediating the development of EC. Results LINC00565 was upregulated in EC tissues. Chi-square analysis showed that a high level of LINC00565 predicted large tumor size, advanced pathological staging and poor prognosis in EC. Silence of LINC00565 decreased proliferative ability in EC cells and tumor growth in nude mice bearing EC. KLF9 was the target gene of LINC00565. The negative interaction between LINC00565 and KLF9 was responsible for stimulating the malignant development of EC. Knockdown of KLF9 could abolish the regulatory effects of silenced LINC00565 on proliferative ability and tumorigenesis in EC. Conclusion LINC00565 is upregulated in EC tissues and closely linked to tumor size, pathological staging and poor prognosis in EC patients. LINC00565 stimulates proliferative ability in EC by downregulating KLF9.
Collapse
Affiliation(s)
- Xiuyan Yin
- Department of Ophthalmology, Yantai Yuhuangding Hospital, Yantai 264000, People's Republic of China
| | - Xiaohong Li
- Department of Obstetrics and Gynecology, Yantai Yuhuangding Hospital, Yantai 264000, People's Republic of China
| | - Guijiao Feng
- Department of the Outpatient, Yantai Yuhuangding Hospital, Yantai, People's Republic of China
| | - Yuejie Qu
- Department of Obstetrics and Gynecology, Yantai Yuhuangding Hospital, Yantai 264000, People's Republic of China
| | - Hong Wang
- Department of Ophthalmology, Yantai Yuhuangding Hospital, Yantai 264000, People's Republic of China
| |
Collapse
|