1
|
Ke F, Zhang R, Chen R, Guo X, Song C, Gao X, Zeng F, Liu Q. The role of Rhizoma Paridis saponins on anti-cancer: The potential mechanism and molecular targets. Heliyon 2024; 10:e37323. [PMID: 39296108 PMCID: PMC11407946 DOI: 10.1016/j.heliyon.2024.e37323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer is a disease characterized by uncontrolled cell proliferation, leading to excessive growth and invasion that can spread to other parts of the body. Traditional Chinese medicine has made new advancements in the treatment of cancer, providing new perspectives and directions for cancer treatment. Rhizoma Paridis is a widely used Chinese herbal medicine with documented anti-cancer effects dating back to ancient times. Modern research has shown that Rhizoma Paridis saponins (RPS) have various pharmacological activities. RPS can inhibit cancer in multiple ways, such as suppressing tumor growth, inducing cell cycle arrest, promoting cell apoptosis, enhancing cell autophagy, inducing ferroptosis, reducing inflammation, inhibiting angiogenesis, as well as inhibiting metastasis and invasion, and these findings demonstrate the potent anti-cancer activity of RPS. Polyphyllin I, polyphyllin II, polyphyllin VI, and polyphyllin VII have been widely reported as the main active ingredients with anti-cancer properties. Polyphyllin D, polyphyllin E, and polyphyllin G have also been confirmed to possess strong anti-cancer activity in recent years. Therefore, this review dives deep into the molecular mechanisms underlying the anti-cancer effects of RPS to serve as a valuable reference for future scientific research and their potential applications in cancer treatment.
Collapse
Affiliation(s)
- Famin Ke
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Ranqi Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Rui Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiurong Guo
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Can Song
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiaowei Gao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
2
|
Song X, Duan L, Dong Y. Diagnostic Accuracy of Exosomal Long Noncoding RNAs in Diagnosis of NSCLC: A Meta-Analysis. Mol Diagn Ther 2024; 28:455-468. [PMID: 38837024 DOI: 10.1007/s40291-024-00715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE Globally, non-small cell lung cancer (NSCLC) is the primary cause of cancer-related mortality, both early and accurate diagnosis are essential for effective treatment and improved patient outcomes. Exosomal noncoding RNAs (ncRNAs) have emerged as promising biomarkers for NSCLC diagnosis. This meta-analysis aims to assess the diagnostic accuracy of exosomal long noncoding RNAs (lncRNAs) for diagnosing NSCLC. METHODS A comprehensive literature search was conducted to identify relevant studies that assessed the diagnostic performance of exosomal lncRNAs in NSCLC. Quality assessment and data extraction were performed independently by two reviewers. Pooled sensitivity, specificity, and other relevant diagnostic parameters were calculated using a bivariate random-effects model. Subgroup analyses and meta-regression were conducted to explore potential sources of heterogeneity. RESULTS Sixteen studies, comprising 1843 NSCLC cases and 1298 controls, were included in this meta-analysis. The pooled sensitivity and specificity of nine exosomal lncRNAs for diagnosing NSCLC were 0.74 [95% confidence interval (CI) 0.69-0.79] and 0.78 (95% CI 0.68-0.85). The pooled area under the receiver operating characteristic curve (AUC) for fifteen lncRNAs was 0.80 (95% CI 0.768-0.831). Meta-regression could not find any source for interstudy heterogeneity. CONCLUSION Exosomal lncRNAs, particularly AL139294.1, GAS5, LUCAT1, and SOX2-OT, have excellent diagnostic accuracy and promising diagnostic potential in NSCLC. Therefore, they can be used as diagnostic tools for early detection of NSCLC.
Collapse
Affiliation(s)
- Xiaodong Song
- Lung Disease Department, Yantai Hospital of Traditional Chinese Medicine, Yantai, 264000, Shandong, China
| | - Linlin Duan
- Blood Disease Department, Yantai Hospital of Traditional Chinese Medicine, Yantai, 264000, Shandong, China
| | - Yongshuai Dong
- General Surgery, Yantai Hospital of Traditional Chinese Medicine, Yantai, 264000, Shandong, China.
| |
Collapse
|
3
|
Li J, Jia J, Zhu W, Chen J, Zheng Q, Li D. Therapeutic effects on cancer of the active ingredients in rhizoma paridis. Front Pharmacol 2023; 14:1095786. [PMID: 36895945 PMCID: PMC9989034 DOI: 10.3389/fphar.2023.1095786] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Cancer is a major threat to human health, with high mortality and a low cure rate, continuously challenging public health worldwide. Extensive clinical application of traditional Chinese medicine (TCM) for patients with poor outcomes of radiotherapy and chemotherapy provides a new direction in anticancer therapy. Anticancer mechanisms of the active ingredients in TCM have also been extensively studied in the medical field. As a type of TCM against cancer, Rhizoma Paridis (Chinese name: Chonglou) has important antitumor effects in clinical application. The main active ingredients of Rhizoma Paridis (e.g., total saponins, polyphyllin I, polyphyllin II, polyphyllin VI, and polyphyllin VII) have shown strong antitumor activities in various cancers, such as breast cancer, lung cancer, colorectal cancer, hepatocellular carcinoma (HCC), and gastric cancer. Rhizoma Paridis also has low concentrations of certain other active ingredients with antitumor effects, such as saponins polyphyllin E, polyphyllin H, Paris polyphylla-22, gracillin, and formosanin-C. Many researchers have studied the anticancer mechanism of Rhizoma Paridis and its active ingredients. This review article describes research progress regarding the molecular mechanism and antitumor effects of the active ingredients in Rhizoma Paridis, suggesting that various active ingredients in Rhizoma Paridis may be potentially therapeutic against cancer.
Collapse
Affiliation(s)
- Jie Li
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Jinhao Jia
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Weiwei Zhu
- Clinical Trial Agency, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Jianfei Chen
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Qiusheng Zheng
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Defang Li
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
4
|
Anticancer Effect of Polyphyllin I in Suppressing Stem Cell-Like Properties of Hepatocellular Carcinoma via the AKT/GSK-3β/β-Catenin Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4031008. [PMID: 36317061 PMCID: PMC9617736 DOI: 10.1155/2022/4031008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/29/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022]
Abstract
Polyphyllin I (PPI), also called Chong Lou saponin I, is a steroidal saponin isolated from the rhizome of Paris polyphylla. PPI has been demonstrated to have strong anticancer activity. However, its effect on the stemness of liver cancer stem cells (LCSCs) is not completely understood. Herein, we aimed to investigate the effect of PPI on the stem cell-like features of LCSCs and hepatocellular carcinoma (HCC). LCSCs were enriched in a serum-free medium and treated with PPI, sorafenib (Sora), or PPI and Sora. Several endpoints, including spheroid formation and differentiation, cell proliferation, surface markers of LCSCs, PPI binding targets, and stemness-associated protein expression, were evaluated. Immunofluorescence staining, quantitative real-time polymerase chain reaction, siRNA transfection, and coimmunoprecipitation ubiquitination assays were conducted for in-depth mechanistic studies. Evaluation of in vivo antitumor efficacy demonstrated that PPI effectively inhibited the proliferation of liver cancer cells and the self-renewal and differentiation of LCSCs. Flow cytometry indicated that PPI suppressed the expression of the stem cell surface markers EpCAM and CD13. Molecular docking showed a high affinity between PPI and proteins of the Wnt/β-catenin signaling pathway, including AKT, GSK-3β, and β-catenin, with the binding energies of -5.51, -5.32, and -5.40 kcal/mol, respectively, which suggested that PPI might regulate the Wnt/β-catenin signaling pathway to affect the stem cell-like properties of HCC. Further ex vivo experiments implied that PPI activated the AKT/GSK-3β-mediated ubiquitin proteasomal degradation of β-catenin and subsequently attenuated the prooncogenic effect of LCSCs. Finally, the anticancer property of PPI was confirmed in vivo. It was found that PPI inhibited the tumor growth in an HCC cell line xenograft model. Taken together, molecular docking analysis and experimental data highlighted the novel function of PPI in suppressing the stem cell-like characteristics of LCSCs via the AKT/GSK-3β/β-catenin signaling pathway.
Collapse
|
5
|
Zhang T, Wang C, Wang K, Liang Y, Liu T, Feng L, Yang X. RacGAP1 promotes the malignant progression of cervical cancer by regulating AP-1 via miR-192 and p-JNK. Cell Death Dis 2022; 13:604. [PMID: 35831303 PMCID: PMC9279451 DOI: 10.1038/s41419-022-05036-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 01/21/2023]
Abstract
Cervical cancer (CC) is the most frequently diagnosed genital tract cancer in females worldwide. Rac GTPase-activating protein 1 (RacGAP1) is one of the specific GTPase-activating proteins. As a novel tumor protooncogene, overexpression of RacGAP1 was related to the occurrence of various tumors, but its function in CC is still unclear. In this study, bioinformatics analyses showed that RacGAP1 might be a key candidate gene in the progression of CC. RacGAP1 was significantly overexpressed in CC tissues. High RacGAP1 expression was positively associated with poor prognosis. Downregulating RacGAP1 significantly inhibited the proliferation, migration, and invasion of CC cells, while overexpressing RacGAP1 had the opposite effects. Further research showed that miR-192, which plays as a tumor suppressor in CC, was identified as a downstream target of RacGAP1 in CC cells. miR-192 inhibition could partially rescue the decrease in cell proliferation, migration, and invasion caused by RacGAP1 downregulation. In opposite, miR-192 overexpression could decrease the promotion of malignant progression caused by RacGAP1 upregulation. Mechanism studies revealed that RacGAP1 could regulate the expression and phosphorylation of c-Jun, which was the component of AP-1, via miR-192 and p-JNK separately. These findings suggested that RacGAP1 promoted tumorigenicity, migration, and invasion of CC. Therefore, it represented a potential novel prognostic marker in CC and may probably be a therapeutic target.
Collapse
Affiliation(s)
- Tianli Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Key Laboratory of Gynecologic Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Chunyan Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Key Laboratory of Gynecologic Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Kun Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Key Laboratory of Gynecologic Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Ying Liang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Ting Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Liping Feng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Xingsheng Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
6
|
Shen Z, Wang J, Ke K, Chen R, Zuo A, Zhang R, Wan W, Xie X, Li X, Song N, Fu H, Zhang Z, Cai E, Shen J, Zhang Q, Shi X. Polyphyllin I, a lethal partner of Palbociclib, suppresses non-small cell lung cancer through activation of p21/CDK2/Rb pathway in vitro and in vivo. Cell Cycle 2021; 20:2494-2506. [PMID: 34658297 PMCID: PMC8794533 DOI: 10.1080/15384101.2021.1991121] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/03/2021] [Indexed: 01/09/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) are hyperactive in many cancers and have served as cancer therapeutic targets for decades. Palbociclib (Palb) is the first approved CDK4/6 inhibitor to treat hormone receptor (HR)-positive, HER2-negative advanced breast cancer. Acquired drug resistance is one obstacle of Palb be utilized in other cancer. CDK2 compensation of CDK4/6 loss is one of the causes that cancer cells are resistant to Palb. Hence, targeting multiple CDKs could be a novel strategy to prevent the drug resistance of cancer cells and expand the application of Palb in other cancer. In this study, we initially indicated Polyphyllin I (PPI) significantly inhibits non-small lung cancer cell (NSCLC) proliferation, promotes cell apoptosis in vitro and in vivo. Mechanistically, PPI can inhibit Rb through the p21/CDK2/Rb signaling pathway in NSCLC. A combination of PPI and Palb exerts a significant synergistic anti-cancer ability on NSCLC. Of note, PPI can reverse Palb drug resistance. Herein, we first time demonstrated PPI can disturb CDK2 function through upregulation of p21. The PPI effect on CDK2 provides a choice for a chemotherapeutic strategy for the elimination of NSCLC. Our study highlighted the clinical significance of simultaneously blocking of CDK2 and CDK4/6 for NSCLC treatment.
Collapse
Affiliation(s)
- Zhengchao Shen
- Department of Physiology, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jian Wang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Kunbin Ke
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Rong Chen
- Department of Physiology, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Aixue Zuo
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Rongping Zhang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Weiping Wan
- Department of Anorectal, The Third Clinical Medical College, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Xingxing Xie
- Department of Teaching and Research of Formulas of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xuhua Li
- Department of Pathology, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Na Song
- Department of Teaching and Research of Formulas of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Hao Fu
- Department of Anorectal, The Third Clinical Medical College, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Zhiwei Zhang
- Department of Oncology, Affiliated Hospital of Hebei University of Engineering, Hebei, Handan, China
| | - Enli Cai
- Department of Nursing, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jihong Shen
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qingyu Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xinan Shi
- Department of Pathology, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Molecular Biology of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- XingYi People’ Hospital, XingYi, Guizhou, China
| |
Collapse
|
7
|
Wang Q, Hong L, Chen M, Shi J, Lin X, Huang L, Tang T, Guo Y, Yuan X, Jiang S. Targeting M2 Macrophages Alleviates Airway Inflammation and Remodeling in Asthmatic Mice via miR-378a-3p/GRB2 Pathway. Front Mol Biosci 2021; 8:717969. [PMID: 34589519 PMCID: PMC8473897 DOI: 10.3389/fmolb.2021.717969] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/31/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Asthma is a complex respiratory disease characterized by airway inflammation and remodeling. MicroRNAs (miRNAs) mediate various cellular processes including macrophage polarization and play an important role in the pathogenesis of asthma. In present study, we aimed to screen miRNA profiling involved in macrophage polarization and investigate its possible functions and mechanisms. Methods: An OVA-sensitized mouse model was established and 2-chloroadenosine (2-CA) was used to interfere with macrophages. The airway inflammation and remodeling were assessed. The identification and function of M2 alveolar macrophages were assessed by flow cytometry, RT-qPCR, arginase activity and co-culture experiment. Microarray screening was used to select miRNAs which were related to macrophage polarization and RNA interference (RNAi) technique was performed to confirm the function of the selected miRNA and its target gene. Results: Alveolar macrophages of asthmatic mice showed significant M2 polarization. 2-CA alleviated airway inflammation and remodeling as well as M2 polarization. In vitro, IL-4-induced M2 macrophages promoted the proliferation of α-SMA-positive cells. And miRNA profiling showed a remarkable increased expression of miR-378a-3p in IL-4 induced M2 macrophages. Dual luciferase reporter assay confirmed growth factor receptor binding protein 2 (GRB2) was a target gene of miR-378a-3p. A miR-378a-3p inhibitor and knockdown of GRB2 repolarized alveolar macrophages from M1 to M2 phenotype. Conclusion: Our findings suggest that miR-378a-3p/GRB2 pathway regulates the polarization of alveolar macrophages which acts as a potential therapeutic target for airway inflammation and remodeling in asthma.
Collapse
Affiliation(s)
- Qiujie Wang
- Division of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Luna Hong
- Division of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Ming Chen
- Division of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Jiangting Shi
- Division of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Xiaoling Lin
- Division of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Linjie Huang
- Division of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Tiantian Tang
- Division of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Yimin Guo
- Division of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shanping Jiang
- Division of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Gao M, Cui Z, Li S, Li N, Tong L, Wang Y, Song M, Zhou B, Yin Z. Survival Outcome and Clinicopathologicl analysis of Homeobox gene cluster-embedded LncRNAs in Human Cancers: A Systematic Review and Meta-analysis. Expert Rev Mol Diagn 2021; 21:1211-1221. [PMID: 34410213 DOI: 10.1080/14737159.2021.1970536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
OBJECTIVE The ectopic expression of Homeobox (HOX) gene cluster-embedded long non-coding RNAs (LncRNAs) have been involved several carcinogenic development and progressions. This meta-analysis aimed to summarize the LncRNAs to validate the functions and the prognostic values in several kinds of cancer. METHODS The retrospective study was conducted to analyze the association between HOX gene-related LncRNAs and the survival outcomes. Cochran's Q and I2 test were used for calculated heterogeneity, and I2 > 50%, P < 0.05 was conformed to the random effect model. Publication bias was indicated by Begg's and Egger's test. RESULTS Total 15,315 patients extracting from 121 studies focused on assessing the association between LncRNAs and the survival outcomes and 12,110 participants were enrolled to address the clinicopathological features. The results demonstrated that the overexpression of HOX gene cluster-embedded LncRNAs revealed notable association among tumor size (pooled OR = 1.80), lymph node metastasis (LNM) stage (pooled OR = 3.00), tumor node metastasis (TNM) stage (pooled OR = 2.86), histological differentiation (pooled OR = 1.59) and distant metastasis (pooled OR = 2.49). Additionally, the up-regulated LncRNAs predicted a poor prognosis in overall survival (pooled HR = 1.95, 95%CI = 1.86-2.04), and also disclosed worse prognosis among the stratified analysis included HOX clusters, LncRNAs, ethnicity, and tumor classification (pooled HRs >1). CONCLUSION In summary, the findings proved that HOX gene cluster-embedded LncRNAs acted as potential biomarkers for clinical treatment of several tumors and the overexpression might be a candidate hallmark for prognosis outcome.
Collapse
Affiliation(s)
- Min Gao
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, PR China
| | - Zhigang Cui
- Department of Science and Education, School of Nursing, China Medical University, Liaoning, Pr, China
| | - Sixuan Li
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, PR China
| | - Na Li
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, PR China
| | - Lianwei Tong
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, PR China
| | - Ying Wang
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, PR China
| | - Mingyang Song
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, PR China
| | - Baosen Zhou
- Department of Clinical Epidemiology and Evidence-based Medicine, First Affiliated Hospital of China Medical University, Liaoning, Pr China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Liaoning, PR China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Liaoning, PR China
| |
Collapse
|
9
|
Yu S, Gao W, Zeng P, Chen C, Liu Z, Zhang Z, Liu J. Exploring the effect of Polyphyllin I on hepatitis B virus-related liver cancer through network pharmacology and in vitro experiments. Comb Chem High Throughput Screen 2021; 25:934-944. [PMID: 34397325 DOI: 10.2174/1386207324666210816141436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE To investigate the effect of Polyphyllin I (PPI) on HBV-related liver cancer through network pharmacology and in vitro experiments, and to explore its mechanism of action. MATERIALS AND METHODS Use bioinformatics software to predict the active ingredient target of PPI and the disease target of liver cancer, and perform active ingredient-disease target analysis. The results of network pharmacology through molecular docking and in vitro experiments can be further verified. The HepG2 receptor cells (HepG2. 2. 15) were transfected with HBV plasmid for observation, with the human liver cancer HepG2 being used as the control. RESULTS Bioinformatics analysis found that PPI had totally 161 protein targets, and the predicted target and liver cancer targets were combined to obtain 13 intersection targets. The results of molecular docking demonstrated that PPI had good affinity with STAT3, PTP1B, IL2, and BCL2L1. The results of the in vitro experiments indicated that the PPI inhibited cell proliferation and metastasis in a concentration-dependent manner (P<0.01). Compared with the vehicle group, the PPI group of 1.5, 3, and 6 μmol/L can promote the apoptosis of liver cancer to different degrees (P<0.01). CONCLUSION The present study revealed the mechanism of PPI against liver cancer through network pharmacology and in vitro experiments. Its mechanism of action is related to the inhibition of PPI on the proliferation of HBV-related liver cancer through promoting the apoptosis of liver cancer cells. Additionally, in vitro experiments have also verified that PPI can promote the apoptosis of HepG2 and HepG2.2.15 cells.
Collapse
Affiliation(s)
- Shuxian Yu
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenhui Gao
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Puhua Zeng
- Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, China
| | - Chenglong Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhuo Liu
- Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, China
| | - Zhen Zhang
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jiyong Liu
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
10
|
Regulation of Nuclear Factor-KappaB (NF-κB) signaling pathway by non-coding RNAs in cancer: Inhibiting or promoting carcinogenesis? Cancer Lett 2021; 509:63-80. [PMID: 33838282 DOI: 10.1016/j.canlet.2021.03.025] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/18/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
The nuclear factor-kappaB (NF-κB) signaling pathway is considered as a potential therapeutic target in cancer therapy. It has been well established that transcription factor NF-κB is involved in regulating physiological and pathological events including inflammation, immune response and differentiation. Increasing evidences suggest that deregulated NF-κB signaling can enhance cancer cell proliferation, metastasis and also mediate radio-as well as chemo-resistance. On the contrary, non-coding RNAs (ncRNAs) have been found to modulate NF-κB signaling pathway under different settings. MicroRNAs (miRNAs) can dually inhibit/induce NF-κB signaling thereby affecting the growth and migration of cancer cells. Furthermore, the response of cancer cells to radiotherapy and chemotherapy may also be regulated by miRNAs. Regulation of NF-κB by miRNAs may be mediated via binding to 3/-UTR region. Interestingly, anti-tumor compounds can increase the expression of tumor-suppressor miRNAs in inhibiting NF-κB activation and the progression of cancers. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can also effectively modulate NF-κB signaling thus affecting tumorigenesis. It is noteworthy that several studies have demonstrated that lncRNAs and circRNAs can affect miRNAs in targeting NF-κB activation. They can act as competing endogenous RNA (ceRNA) thereby reducing miRNA expression to induce NF-κB activation that can in turn promote cancer progression and malignancy.
Collapse
|
11
|
Poulet C, Njock MS, Moermans C, Louis E, Louis R, Malaise M, Guiot J. Exosomal Long Non-Coding RNAs in Lung Diseases. Int J Mol Sci 2020; 21:E3580. [PMID: 32438606 PMCID: PMC7279016 DOI: 10.3390/ijms21103580] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Within the non-coding genome landscape, long non-coding RNAs (lncRNAs) and their secretion within exosomes are a window that could further explain the regulation, the sustaining, and the spread of lung diseases. We present here a compilation of the current knowledge on lncRNAs commonly found in Chronic Obstructive Pulmonary Disease (COPD), asthma, Idiopathic Pulmonary Fibrosis (IPF), or lung cancers. We built interaction networks describing the mechanisms of action for COPD, asthma, and IPF, as well as private networks for H19, MALAT1, MEG3, FENDRR, CDKN2B-AS1, TUG1, HOTAIR, and GAS5 lncRNAs in lung cancers. We identified five signaling pathways targeted by these eight lncRNAs over the lung diseases mentioned above. These lncRNAs were involved in ten treatment resistances in lung cancers, with HOTAIR being itself described in seven resistances. Besides, five of them were previously described as promising biomarkers for the diagnosis and prognosis of asthma, COPD, and lung cancers. Additionally, we describe the exosomal-based studies on H19, MALAT1, HOTAIR, GAS5, UCA1, lnc-MMP2-2, GAPLINC, TBILA, AGAP2-AS1, and SOX2-OT. This review concludes on the need for additional studies describing the lncRNA mechanisms of action and confirming their potential as biomarkers, as well as their involvement in resistance to treatment, especially in non-cancerous lung diseases.
Collapse
Affiliation(s)
- Christophe Poulet
- Department of Rheumatology, University Hospital of Liège (CHULiege), 4000 Liège, Belgium; (M.-S.N.); (M.M.)
- Fibropôle Research Group, University Hospital of Liège (CHULiege), 4000 Liège, Belgium; (E.L.); (R.L.)
- GIGA-I3 Research Group, GIGA Institute, University of Liège (ULiege) and University Hospital of Liège (CHULiege), 4000 Liège, Belgium;
| | - Makon-Sébastien Njock
- Department of Rheumatology, University Hospital of Liège (CHULiege), 4000 Liège, Belgium; (M.-S.N.); (M.M.)
- Fibropôle Research Group, University Hospital of Liège (CHULiege), 4000 Liège, Belgium; (E.L.); (R.L.)
- GIGA-I3 Research Group, GIGA Institute, University of Liège (ULiege) and University Hospital of Liège (CHULiege), 4000 Liège, Belgium;
- Department of Respiratory Diseases, University Hospital of Liège (CHULiege), 4000 Liège, Belgium
| | - Catherine Moermans
- GIGA-I3 Research Group, GIGA Institute, University of Liège (ULiege) and University Hospital of Liège (CHULiege), 4000 Liège, Belgium;
- Department of Respiratory Diseases, University Hospital of Liège (CHULiege), 4000 Liège, Belgium
| | - Edouard Louis
- Fibropôle Research Group, University Hospital of Liège (CHULiege), 4000 Liège, Belgium; (E.L.); (R.L.)
- GIGA-I3 Research Group, GIGA Institute, University of Liège (ULiege) and University Hospital of Liège (CHULiege), 4000 Liège, Belgium;
- Department of Gastroenterology, University Hospital of Liège (CHULiege), 4000 Liège, Belgium
| | - Renaud Louis
- Fibropôle Research Group, University Hospital of Liège (CHULiege), 4000 Liège, Belgium; (E.L.); (R.L.)
- GIGA-I3 Research Group, GIGA Institute, University of Liège (ULiege) and University Hospital of Liège (CHULiege), 4000 Liège, Belgium;
- Department of Respiratory Diseases, University Hospital of Liège (CHULiege), 4000 Liège, Belgium
| | - Michel Malaise
- Department of Rheumatology, University Hospital of Liège (CHULiege), 4000 Liège, Belgium; (M.-S.N.); (M.M.)
- Fibropôle Research Group, University Hospital of Liège (CHULiege), 4000 Liège, Belgium; (E.L.); (R.L.)
- GIGA-I3 Research Group, GIGA Institute, University of Liège (ULiege) and University Hospital of Liège (CHULiege), 4000 Liège, Belgium;
| | - Julien Guiot
- Fibropôle Research Group, University Hospital of Liège (CHULiege), 4000 Liège, Belgium; (E.L.); (R.L.)
- GIGA-I3 Research Group, GIGA Institute, University of Liège (ULiege) and University Hospital of Liège (CHULiege), 4000 Liège, Belgium;
- Department of Respiratory Diseases, University Hospital of Liège (CHULiege), 4000 Liège, Belgium
| |
Collapse
|