1
|
Jin J, Ren M. The biological function of miR-128-2 in hepatocellular carcinoma and its molecular mechanism functioning. Pathol Res Pract 2024; 254:155178. [PMID: 38309020 DOI: 10.1016/j.prp.2024.155178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) represents the major type of primary liver cancers, which is a most prevalent malignancy, as well as seriously threatens people's life and health. MiR-128-2 was reported to be associated with several human cancers, and is participated in the pathogenesis and development of cancers. Our research was performed to explore the expression profile and diagnostic significance of miR-128-2 in HCC. METHODS The serum miR-128-2 expression was measured in 130 HCC subjects and 118 healthy people using quantitative real-time polymerase chain reaction (qRT-PCR) assay. Chi-square (ÿ2) test was utilized to estimate the relationship of miR-128-2 level with clinicopathological characteristic. In addition, the diagnostic accuracy of miR-128-2 in HCC was estimated via receiver operating characteristic (ROC) curve analysis. RESULTS Compared with healthy individuals, the level of miR-128-2 was obviously up-regulated in HCC cases (P < 0.01). And its level was closely related to AFP level (P = 0.013), TNM stage (P = 0.009) and differentiation (P = 0.036). Nevertheless, there was no obvious relationship with age, gender, tumor size, HBV status, ALT or metastasis (all P > 0.05). According to the ROC curve, serum miR-128-2 had a high value in discriminating HCC cases from control individuals, with a AUC value of 0.880 combing with the sensitivity of 79.2% and the specificity of 83.9%. CONCLUSION The serum level of miR-128-2 in cases with HCC was obviously increased, which was related to the malignant progression of HCC. Due to the reasonable sensitivity and specificity, miR-128-2 might be as a new and effective marker for the diagnosis of HCC.
Collapse
Affiliation(s)
- Jingzhe Jin
- Department of Oncology, Dandong First Hospital, Dandong 118000, Liaoning, China.
| | - Mingcheng Ren
- Department of Oncology, Dandong Cancer Hospital, Dandong 118000, Liaoning, China
| |
Collapse
|
2
|
Molecular Interactions of the Long Noncoding RNA NEAT1 in Cancer. Cancers (Basel) 2022; 14:cancers14164009. [PMID: 36011001 PMCID: PMC9406559 DOI: 10.3390/cancers14164009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
As one of the best-studied long noncoding RNAs, nuclear paraspeckle assembly transcript 1 (NEAT1) plays a pivotal role in the progression of cancers. NEAT1, especially its isoform NEAT1-1, facilitates the growth and metastasis of various cancers, excluding acute promyelocytic leukemia. NEAT1 can be elevated via transcriptional activation or stability alteration in cancers changing the aggressive phenotype of cancer cells. NEAT1 can also be secreted from other cells and be delivered to cancer cells through exosomes. Hence, elucidating the molecular interaction of NEAT1 may shed light on the future treatment of cancer. Herein, we review the molecular function of NEAT1 in cancer progression, and explain how NEAT1 interacts with RNAs, proteins, and DNA promoter regions to upregulate tumorigenic factors.
Collapse
|
3
|
Zhao X, Liu W, Liu B, Zeng Q, Cui Z, Wang Y, Cao J, Gao Q, Zhao C, Dou J. Exploring the underlying molecular mechanism of liver cancer cells under hypoxia based on RNA sequencing. BMC Genom Data 2022; 23:38. [PMID: 35590240 PMCID: PMC9121577 DOI: 10.1186/s12863-022-01055-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 05/06/2022] [Indexed: 12/18/2022] Open
Abstract
Background The aim of our study was to use the differentially expressed mRNAs (DEmRNAs) and differentially expressed miRNAs (DEmiRNAs) to illustrate the underlying mechanism of hypoxia in liver cancer. Methods In this study, a cell model of hypoxia was established, and autophagy activity was measured with western blotting and transmission electron microscopy. The effect of hypoxia conditions on the invasion of liver cancer cell was evaluated. RNA sequencing was used to identify DEmRNAs and DEmiRNAs to explore the mechanism of hypoxia in liver cancer cells. Results We found that autophagy activation was triggered by hypoxia stress and hypoxia might promote liver cancer cell invasion. In addition, a total of 407 shared DEmRNAs and 57 shared DEmiRNAs were identified in both HCCLM3 hypoxia group and SMMC-7721 hypoxia group compared with control group. Furthermore, 278 DEmRNAs and 24 DEmiRNAs were identified as cancer hypoxia-specific DEmRNAs and DEmiRNAs. Finally, we obtained 19 DEmiRNAs with high degree based on the DEmiRNA-DEmRNA interaction network. Among them, hsa-miR-483-5p, hsa-miR-4739, hsa-miR-214-3p and hsa-miR-296-5p may be potential gene signatures related to liver cancer hypoxia. Conclusions Our study may help to understand the potential molecular mechanism of hypoxia in liver cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01055-9.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang City, 050051, Hebei Province, China
| | - Wenpeng Liu
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang City, 050051, Hebei Province, China
| | - Baowang Liu
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang City, 050051, Hebei Province, China
| | - Qiang Zeng
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang City, 050051, Hebei Province, China
| | - Ziqiang Cui
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang City, 050051, Hebei Province, China
| | - Yang Wang
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang City, 050051, Hebei Province, China
| | - Jinglin Cao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang City, 050051, Hebei Province, China
| | - Qingjun Gao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang City, 050051, Hebei Province, China
| | - Caiyan Zhao
- Department of Infectious Disease, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jian Dou
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang City, 050051, Hebei Province, China.
| |
Collapse
|
4
|
Integrated Analysis of the Altered lncRNA, microRNA, and mRNA Expression in HBV-Positive Hepatocellular Carcinoma. Life (Basel) 2022; 12:life12050701. [PMID: 35629368 PMCID: PMC9146868 DOI: 10.3390/life12050701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatitis B virus (HBV) infection is the most prominent risk factor for developing hepatocellular carcinoma (HCC), which can increase the incidence of HCC by more than 100 times. Accumulated evidence has revealed that non-coding RNAs (ncRNAs) play a regulatory role in various tumors through the long non-coding RNA (lncRNA)–microRNA (miRNA)–mRNA regulation axis. However, the involvement of the ncRNA regulatory network in the progression of HBV infection-induced HCC remains elusive. In the current work, five tumor samples from patients with hepatitis B surface antigen (HBsAg)-positive HCC and three tumor samples from patients with HBsAg-negative HCC were collected for whole-transcriptome sequencing. Between the two groups, 841 lncRNAs, 54 miRNAs, and 1118 mRNAs were identified to be differentially expressed (DE). The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that DE genes were mainly involved in cancer-related pathways, including Wnt and MAPK signaling pathways. The Gene Expression Omnibus (GEO) analysis further validated the selected DE mRNAs. The DE lncRNA–miRNA–mRNA network was built to explore the effect of HBV infection on the regulation of ncRNAs in HCC. These findings provide novel insights into the role of HBV infection in the progression of HCC.
Collapse
|
5
|
Zhou H, Wang Y, Liu Z, Zhang Z, Xiong L, Wen Y. Recent advances of NEAT1-miRNA interactions in cancer. Acta Biochim Biophys Sin (Shanghai) 2022; 54:153-162. [PMID: 35538025 PMCID: PMC9827865 DOI: 10.3724/abbs.2021022] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/20/2021] [Indexed: 11/25/2022] Open
Abstract
With high incidence rate, cancer is the main cause of death in humans. Non-coding RNAs, as novel master regulators, especially long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), play important roles in the regulation of tumorigenesis. lncRNA NEAT1 has recently gained much attention, as it is dysregulated in a broad spectrum of cancers, where it acts as either an oncogene or a tumor suppressor gene. Accumulating evidence shows that NEAT1 is correlated with the process of carcinogenesis, including proliferation, invasion, survival, drug resistance, and metastasis. NEAT1 is considered to be a biomarker and a novel therapeutic target for the diagnosis and prognosis of different cancer types. The mechanisms by which NEAT1 plays a critical role in cancers are mainly via interactions with miRNAs. NEAT1-miRNA regulatory networks play significant roles in tumorigenesis, which has attracted much attention from researchers around the world. In this review, we summarize the interaction of NEAT1 with miRNAs in the regulation of protein-coding genes in cancer. A better understanding of the NEAT1-miRNA interactions in cancer will help develop new diagnostic biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Hui Zhou
- />Department of General SurgerySecond Xiangya HospitalCentral South UniversityChangsha410011China
| | - Yongxiang Wang
- />Department of General SurgerySecond Xiangya HospitalCentral South UniversityChangsha410011China
| | - Zhongtao Liu
- />Department of General SurgerySecond Xiangya HospitalCentral South UniversityChangsha410011China
| | - Zijian Zhang
- />Department of General SurgerySecond Xiangya HospitalCentral South UniversityChangsha410011China
| | - Li Xiong
- />Department of General SurgerySecond Xiangya HospitalCentral South UniversityChangsha410011China
| | - Yu Wen
- />Department of General SurgerySecond Xiangya HospitalCentral South UniversityChangsha410011China
| |
Collapse
|
6
|
Zhang S, Mang Y, Li L, Ran J, Zhao Y, Li L, Gao Y, Li W, Chen G, Ma J. Long noncoding RNA NEAT1 changes exosome secretion and microRNA expression carried by exosomes in hepatocellular carcinoma cells. J Gastrointest Oncol 2021; 12:3033-3049. [PMID: 35070428 PMCID: PMC8748037 DOI: 10.21037/jgo-21-729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/14/2021] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND This study aimed to investigate the roles and functions of nuclear-enriched abundant transcript 1 (NEAT1) in exosome secretion and exosomal microRNA (miRNA) changes in hepatocellular carcinoma (HCC) cells. METHODS HepG2 and HuH-7 cells were divided into two groups: Lv-control (which were infected with lentivirus without NEAT1 expression) and Lv-NEAT1 (which were infected with lentivirus with NEAT1 overexpression). Each group was used to study cell function (proliferation, invasion, and apoptosis) and exosome secretion by nanoparticle tracking analysis (NTA), electron microscopy, and nanoflow cytometry (nanoFCM). Different levels of messenger RNA (mRNA), miRNA, and exosomal miRNA were detected by RNA sequencing. Next, potential target RNAs were verified by reverse transcription polymerase chain reaction (RT-PCR). Changed exosomal miRNAs were found and miRNA mimics were used to study cell function in NEAT1-overexpression and NEAT1-knockdown HCC cells. RESULTS The data showed that NEAT1-overexpression promoted exosome secretion. The overexpression of NEAT1 altered global genes, including exosome-related genes. Compared with the control group, we observed that several miRNAs changed in the exosomes secreted by NEAT1-overexpressing cells. Our study found that these changed exosomal miRNAs played a suppressor role in HCC. Transfection of miR-634, miR-638, and miR-3960 reversed the enhanced invasion and proliferation in HCC cells with a high level of NEAT1 expression. CONCLUSIONS These results suggested that NEAT1 regulates exosome-related genes, which might be associated with increasing exosome secretion by NEAT1-overexpressing cells. Furthermore, NEAT1 promotes cell invasion and proliferation via downregulation of miR-634, miR-638, and miR-3960 in exosomes. This study may provide potential targets for exosome-mediated miRNA transfer in HCCs with a high level of NEAT1 expression therapy.
Collapse
Affiliation(s)
- Shengning Zhang
- Department of Hepato-Biliary-Pancreatic Surgery and Liver Transplantation Center, the Calmette Affiliated Hospital of Kunming Medical University, the First People's Hospital of Kunming, Clinical Medical Center for Organ Transplantation of Yunnan Province, Kunming, China
| | - Yuanyi Mang
- Department of Hepato-Biliary-Pancreatic Surgery and Liver Transplantation Center, the Calmette Affiliated Hospital of Kunming Medical University, the First People's Hospital of Kunming, Clinical Medical Center for Organ Transplantation of Yunnan Province, Kunming, China
| | - Li Li
- Department of Hepato-Biliary-Pancreatic Surgery and Liver Transplantation Center, the Calmette Affiliated Hospital of Kunming Medical University, the First People's Hospital of Kunming, Clinical Medical Center for Organ Transplantation of Yunnan Province, Kunming, China
| | - Jianghua Ran
- Department of Hepato-Biliary-Pancreatic Surgery and Liver Transplantation Center, the Calmette Affiliated Hospital of Kunming Medical University, the First People's Hospital of Kunming, Clinical Medical Center for Organ Transplantation of Yunnan Province, Kunming, China
| | - Yingpeng Zhao
- Department of Hepato-Biliary-Pancreatic Surgery and Liver Transplantation Center, the Calmette Affiliated Hospital of Kunming Medical University, the First People's Hospital of Kunming, Clinical Medical Center for Organ Transplantation of Yunnan Province, Kunming, China
| | - Laibang Li
- Department of Hepato-Biliary-Pancreatic Surgery and Liver Transplantation Center, the Calmette Affiliated Hospital of Kunming Medical University, the First People's Hospital of Kunming, Clinical Medical Center for Organ Transplantation of Yunnan Province, Kunming, China
| | - Yang Gao
- Department of Hepato-Biliary-Pancreatic Surgery and Liver Transplantation Center, the Calmette Affiliated Hospital of Kunming Medical University, the First People's Hospital of Kunming, Clinical Medical Center for Organ Transplantation of Yunnan Province, Kunming, China
| | - Wang Li
- Department of Hepato-Biliary-Pancreatic Surgery and Liver Transplantation Center, the Calmette Affiliated Hospital of Kunming Medical University, the First People's Hospital of Kunming, Clinical Medical Center for Organ Transplantation of Yunnan Province, Kunming, China
| | - Guoyu Chen
- Department of Hepato-Biliary-Pancreatic Surgery and Liver Transplantation Center, the Calmette Affiliated Hospital of Kunming Medical University, the First People's Hospital of Kunming, Clinical Medical Center for Organ Transplantation of Yunnan Province, Kunming, China
| | - Jun Ma
- Department of Hepato-Biliary-Pancreatic Surgery and Liver Transplantation Center, the Calmette Affiliated Hospital of Kunming Medical University, the First People's Hospital of Kunming, Clinical Medical Center for Organ Transplantation of Yunnan Province, Kunming, China
| |
Collapse
|
7
|
Zhang J, Wang P, Cui Y. Long noncoding RNA NEAT1 inhibits the acetylation of PTEN through the miR-524-5p /HDAC1 axis to promote the proliferation and invasion of laryngeal cancer cells. Aging (Albany NY) 2021; 13:24850-24865. [PMID: 34837887 PMCID: PMC8660614 DOI: 10.18632/aging.203719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 11/11/2021] [Indexed: 12/14/2022]
Abstract
Long noncoding RNA nuclear paraspeckle assembly transcript 1 (lncRNA NEAT1) is abnormally expressed in numerous tumors and functions as an oncogene, but the role of NEAT1 in laryngocarcinoma is largely unknown. Our study validated that NEAT1 expression was markedly upregulated in laryngocarcinoma tissues and cells. Downregulation of NEAT1 dramatically suppressed cell proliferation and invasion through inhibiting miR-524-5p expression. Additionally, NEAT1 overexpression promoted cell growth and metastasis, while overexpression of miR-524-5p could reverse the effect. NEAT1 increased the expression of histone deacetylase 1 gene (HDAC1) via sponging miR-524-5p. Mechanistically, overexpression of HDAC1 recovered the cancer-inhibiting effects of miR-524-5p mimic or NEAT1 silence by deacetylation of tensin homolog deleted on chromosome ten (PTEN) and inhibiting AKT signal pathway. Moreover, in vivo experiments indicated that silence of NEAT1 signally suppressed tumor growth. Taken together, knockdown of NEAT1 suppressed laryngocarcinoma cell growth and metastasis by miR-524-5p/HDAC1/PTEN/AKT signal pathway, which provided a potential therapeutic target for laryngocarcinoma.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Laboratory, The Affiliated Hospital of Henan Polytechnic University, The Second People's Hospital of Jiaozuo, Jiaozuo 454001, Henan, P.R. China
| | - Ping Wang
- Department of Hematology, The Affiliated Hospital of Henan Polytechnic University, The Second People's Hospital of Jiaozuo, Jiaozuo 454001, Henan, P.R. China
| | - Yanli Cui
- Department of Laboratory, The Affiliated Hospital of Henan Polytechnic University, The Second People's Hospital of Jiaozuo, Jiaozuo 454001, Henan, P.R. China
| |
Collapse
|
8
|
Chen C, Su N, Li G, Shen Y, Duan X. Long non-coding RNA TMCC1-AS1 predicts poor prognosis and accelerates epithelial-mesenchymal transition in liver cancer. Oncol Lett 2021; 22:773. [PMID: 34589152 PMCID: PMC8442226 DOI: 10.3892/ol.2021.13034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNA transmembrane and coiled-coil domain family 1 antisense RNA 1 (TMCC1-AS1) has been frequently reported to be associated with prognosis in patients with liver cancer (LC). However, the biological role of TMCC1-AS1 in LC in vitro remains unclear. The expression levels of TMCC1-AS1 in primary tumor tissues and LC cell lines were determined using reverse transcription-quantitative PCR. The associations between TMCC1-AS1 expression and the clinicopathological factors of patients with LC were statistically analyzed using the χ2 test. The role of TMCC1-AS1 in LC prognosis was assessed using Kaplan-Meier curves and proportional hazards model (Cox) analysis. Cell proliferation was determined by Cell Counting Kit-8 and colony formation assays. Transwell assays were performed to determine migration and invasion. TMCC1-AS1 expression was found to be significantly upregulated in LC tissues and cell lines compared with the corresponding controls. High TMCC1-AS1 expression was associated with advanced TNM stage and lymph node metastasis. Furthermore, high TMCC1-AS1 expression predicted poor survival in patients with LC. Knockdown of TMCC1-AS1 significantly inhibited the proliferation, migration and invasion of HepG2 and SNU-182 cells, while overexpression of TMCC1-AS1 had the opposite effect in HepG2 and SNU-182 cells. At the molecular level, downregulation of TMCC1-AS1 expression resulted in increased E-cadherin expression and decreased proliferating cell nuclear antigen, Ki67, N-cadherin and Vimentin expression in HepG2 cells. Overexpression of TMCC1-AS1 had the opposite effects on these factors in SNU-182 cells. In conclusion, the present findings indicated that TMCC1-AS1 might be considered as a novel oncogene, which promotes cell proliferation and migration, and may be a potential therapeutic target for LC.
Collapse
Affiliation(s)
- Cheng Chen
- Oncology Department II, Affiliated Hospital of Hebei Engineering University, Handan, Hebei 056000, P.R. China
| | - Na Su
- Oncology Department II, Affiliated Hospital of Hebei Engineering University, Handan, Hebei 056000, P.R. China
| | - Guiying Li
- Department of Nephrology, Affiliated Hospital of Hebei Engineering University, Handan, Hebei 056000, P.R. China
| | - Yanfeng Shen
- Oncology Department II, Affiliated Hospital of Hebei Engineering University, Handan, Hebei 056000, P.R. China
| | - Xiaoting Duan
- Department of Nephrology, Affiliated Hospital of Hebei Engineering University, Handan, Hebei 056000, P.R. China
| |
Collapse
|
9
|
Li K, Yao T, Zhang Y, Li W, Wang Z. NEAT1 as a competing endogenous RNA in tumorigenesis of various cancers: Role, mechanism and therapeutic potential. Int J Biol Sci 2021; 17:3428-3440. [PMID: 34512157 PMCID: PMC8416723 DOI: 10.7150/ijbs.62728] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022] Open
Abstract
The nuclear paraspeckle assembly transcript 1 (NEAT1) is a long non-coding RNA (lncRNA) that is upregulated in a variety of human cancer types. Increasing evidence has shown that the elevation of NEAT1 in cancer cells promotes cell growth, migration, and invasion and inhibits cell apoptosis. It is also known that lncRNAs act as a competing endogenous RNA (ceRNA) by sponging microRNAs (miRNAs) to alter the expression levels of their target genes in the development of cancers. Therefore, it is important to understand the molecular mechanisms underlying this observation. In this review, specific emphasis was placed on NEAT1's role in tumor development. We also summarize and discuss the feedback roles of NEAT1/miRNA/target network in the progression of various cancers. As our understanding of the role of NEAT1 during tumorigenesis improves, its therapeutic potential as a biomarker and/or target for cancer also becomes clearer.
Collapse
Affiliation(s)
- Kun Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Tongyue Yao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Yu Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Wen Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Ziqiang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China.,Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| |
Collapse
|
10
|
Cao X, Ma Q, Wang B, Qian Q, Xi Y. Circ-E2F3 promotes cervical cancer progression by inhibiting microRNA-296-5p and increasing STAT3 nuclear translocation. Ann N Y Acad Sci 2021; 1507:84-98. [PMID: 34468993 DOI: 10.1111/nyas.14653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 05/18/2021] [Accepted: 06/02/2021] [Indexed: 01/03/2023]
Abstract
Circular RNA E2F transcription factor 3 (circ-E2F3) has been demonstrated to be differentially expressed in some diseases and cancers. However, the role of circ-E2F3 in cervical cancer (CC) progression remains unclear. Therefore, we aimed to elucidate the mechanism of circ-E2F3 regulation of CC progression. Circ-E2F3 expression was determined in CC samples, and its correlation with the clinicopathological characteristics of CC patients and cell biological processes was examined. The interaction among circ-E2F3, microRNA-296-5p (miR-296-5p), and signal transducer and activator of transcription 3 (STAT3) was analyzed by dual luciferase reporter gene and fluorescence in situ hybridization assays. Circ-E2F3-depleted CaSki cells were implanted into nude mice to verify the function of circ-E2F3 in vivo. Circ-E2F3 was upregulated in both CC tissues and cell lines, and this correlated with the clinicopathological features and poor prognosis of CC patients. Moreover, circ-E2F3 promoted the proliferation, invasion, and migration of CC cells and tumor growth in vivo. It was also observed that circ-E2F3 promoted the nuclear translocation of STAT3 through inhibition of miR-296-5p, thus affecting the expression of cyclin D1. Taken together, the key findings of our study demonstrate that circ-E2F3 induces inhibition of miR-296-5p, which triggers activation and nuclear translocation of STAT3 that then upregulates cyclin D1 expression.
Collapse
Affiliation(s)
- Xiangke Cao
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Qinghua Ma
- Department of Preventive Health, The Third People's Hospital of Xiangcheng District in Suzhou, Suzhou, China
| | - Bin Wang
- Department of Pediatrics, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Qingqiang Qian
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, China
| | - Yinan Xi
- Department of Obstetrics and Gynecology, Tangshan People's Hospital, Tangshan, China
| |
Collapse
|
11
|
Zhang R, Chen L, Huang F, Wang X, Li C. Long non-coding RNA NEAT1 promotes lipopolysaccharide-induced acute lung injury by regulating miR-424-5p/MAPK14 axis. Genes Genomics 2021; 43:815-827. [PMID: 33904112 DOI: 10.1007/s13258-021-01103-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Many long non-coding RNAs (lncRNAs) have been suggested to play critical roles in acute lung injury (ALI) pathogenesis, including lncRNA nuclear enriched abundant transcript 1 (NEAT1). OBJECTIVE We aimed to further elucidate the functions and molecular mechanism of NEAT1 in ALI. METHODS Human pulmonary alveolar epithelial cells (HPAEpiCs) stimulated by lipopolysaccharide (LPS) were served as a cellular model of ALI. Cell viability and cell apoptosis were determined by cell counting kit-8 (CCK-8) assay and flow cytometry, respectively. The expression of NEAT1, microRNA-424-5p (miR-424-5p), and mitogen-activated protein kinase 14 (MAPK14) was measured by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot analysis. Caspase activity was determined by caspase activity kit. The inflammatory responses were evaluated using enzyme-linked immunosorbent assay (ELISA). The oxidative stress factors were analyzed by corresponding kits. RESULTS NEAT1 was upregulated in LPS-stimulated HPAEpiCs. NEAT1 knockdown weakened LPS-induced injury by inhibiting apoptosis, inflammation and oxidative stress in HPAEpiCs. Moreover, miR-424-5p was a direct target of NEAT1, and its knockdown reversed the effects caused by NEAT1 knockdown in LPS-induced HPAEpiCs. Furthermore, MAPK14 was a downstream target of miR-424-5p, and its overexpression attenuated the effects of miR-424-5p on reduction of LPS-induced injury in HPAEpiCs. Besides, NEAT1 acted as a sponge of miR-424-5p to regulate MAPK14 expression. CONCLUSION NEAT1 knockdown alleviated LPS-induced injury of HPAEpiCs by regulating miR-424-5p/MAPK14 axis, which provided a potential therapeutic target for the treatment of ALI.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Paediatrics, Suizhou Hospital, Hubei University of Medicine, Long Men Street 60th, Zeng Du District, Suizhou, 441300, Hubei, China
| | - Lina Chen
- Department of Paediatrics, Suizhou Hospital, Hubei University of Medicine, Long Men Street 60th, Zeng Du District, Suizhou, 441300, Hubei, China
| | - Fei Huang
- Department of Paediatrics, Suizhou Hospital, Hubei University of Medicine, Long Men Street 60th, Zeng Du District, Suizhou, 441300, Hubei, China
| | - Xiaorong Wang
- Department of Paediatrics, Suizhou Hospital, Hubei University of Medicine, Long Men Street 60th, Zeng Du District, Suizhou, 441300, Hubei, China
| | - Cuihong Li
- Department of Paediatrics, Suizhou Hospital, Hubei University of Medicine, Long Men Street 60th, Zeng Du District, Suizhou, 441300, Hubei, China.
| |
Collapse
|
12
|
Zhang J, Li Y, Liu Y, Xu G, Hei Y, Lu X, Liu W. Long non‑coding RNA NEAT1 regulates glioma cell proliferation and apoptosis by competitively binding to microRNA‑324‑5p and upregulating KCTD20 expression. Oncol Rep 2021; 46:125. [PMID: 33982764 PMCID: PMC8129970 DOI: 10.3892/or.2021.8076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Previous studies have demonstrated that long non‑coding RNAs (lncRNAs) serve a key role in the development and progression of several types of cancer, including glioma. The lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) contributes to cancer growth through its effects on cell proliferation, migration, invasion and drug resistance. However, the exact regulatory mechanisms via which NEAT1 acts in glioma are unclear. In the present study, the expression levels and function of NEAT1 in glioma tissues and cell lines were examined in vitro and in vivo. By reverse transcription‑quantitative PCR and fluorescence in situ hybridization analysis, NEAT1 expression was upregulated in glioma tissues compared with in adjacent normal brain tissues, and elevated NEAT1 levels were associated with poor prognosis. Cell Counting Kit‑8, colony formation, ethynyldeoxyuridine, flow cytometry and western blotting assays were performed to detect the effects of NEAT1 on cell biological behavior. Knockdown of NEAT1 in glioma cell lines was associated with cell cycle arrest at the G0/G1 phase, decreased proliferation and elevated apoptosis in vitro, and resulted in reduced tumor growth and increased survival in a mouse xenograft model of glioma. Using bioinformatics analysis, RNA immunoprecipitation experiments and luciferase reporter assays, it was demonstrated that NEAT1 may competitively bind to microRNA (miR)‑324‑5p, thus blocking its interaction with target mRNAs. Potassium channel tetramerization protein domain containing 20 (KCTD20) was identified as a specific miR‑324‑5p target. Accordingly, the inhibition of NEAT1 resulted in the downregulation of KCTD20 through competitive binding with miR‑324‑5p, decreased cell proliferation and increased apoptosis. Concomitant NEAT1 knockdown and inhibition of miR‑324‑5p partially reversed the effects of NEAT1 knockdown on cell proliferation and apoptosis, and further regulated KCTD20 expression. Collectively, the present findings demonstrated that NEAT1 acted as a competing endogenous RNA for miR‑324‑5p, and identified the NEAT1/miR‑324‑5p/KCTD20 axis as a novel regulatory axis and a potential therapeutic target for human glioma.
Collapse
Affiliation(s)
- Jiale Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yangyang Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yuqi Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Guangzhi Xu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yue Hei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaoming Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weiping Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
13
|
Qin M, Meng Y, Luo C, He S, Qin F, Yin Y, Huang J, Zhao H, Hu J, Deng Z, Qiu Y, Hu G, Pan H, Qin Z, Huang Z, Yi T. lncRNA PRR34-AS1 promotes HCC development via modulating Wnt/β-catenin pathway by absorbing miR-296-5p and upregulating E2F2 and SOX12. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:37-52. [PMID: 34168917 PMCID: PMC8190132 DOI: 10.1016/j.omtn.2021.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 04/20/2021] [Indexed: 12/30/2022]
Abstract
Hepatocellular carcinoma (HCC) belongs to the most frequent cancer with a high death rate worldwide. Thousands of long non-coding RNAs (lncRNAs) have been confirmed to influence the development of human cancers, including HCC. Nevertheless, the biological role of PRR34 antisense RNA 1 (PRR34-AS1) in HCC remains obscure. Here, we observed via quantitative real-time reverse transcriptase polymerase chain reaction (quantitative real-time RT-PCR) that PRR34-AS1 was highly expressed in HCC cells. Functional assays revealed that PRR34-AS1 promoted HCC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) process in vitro and facilitated tumor growth in vivo. In addition, western blot analysis and TOP Flash/FOP Flash reporter assays verified that PRR34-AS1 stimulated Wnt/β-catenin pathway in HCC cells. Furthermore, RNA immunoprecipitation (RIP), RNA pull-down, and luciferase reporter assays uncovered that PRR34-AS1 sequestered microRNA-296-5p (miR-296-5p) to positively modulate E2F transcription factor 2 (E2F2) and SRY-box transcription factor 12 (SOX12) in HCC cells. Importantly, chromatin immunoprecipitation (ChIP) and luciferase reporter assays uncovered that E2F2 transcriptionally activated PRR34-AS1 in turn. Further, rescue experiments reflected that PRR34-AS1 affected HCC progression through targeting miR-296-5p/E2F2/SOX12/Wnt/β-catenin axis. Our findings found that PRR34-AS1 elicited oncogenic functions in HCC, which indicated that PRR34-AS1 might be a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Minzhen Qin
- Gastrointestinal Medicine, People’s Hospital of Baise, Baise, Guangxi 533000, P.R. China
| | - Yiliang Meng
- Department of Radiation Oncology, People’s Hospital of Baise, Baise, Guangxi 533000, P.R. China
| | - Chunying Luo
- Laboratory Medicine, Affiliated Hospital of YouJiang Medical University of Nationalities, Baise, Guangxi 533000, P.R. China
| | - Shougao He
- Gastrointestinal Medicine, Affiliated Hospital of YouJiang Medical University of Nationalities, Baise, Guangxi 533000, P.R. China
| | - Fengxue Qin
- Laboratory Medicine, Affiliated Hospital of YouJiang Medical University of Nationalities, Baise, Guangxi 533000, P.R. China
| | - Yixia Yin
- Gastrointestinal Medicine, Affiliated Hospital of YouJiang Medical University of Nationalities, Baise, Guangxi 533000, P.R. China
| | - Junling Huang
- Gastrointestinal Medicine, Affiliated Hospital of YouJiang Medical University of Nationalities, Baise, Guangxi 533000, P.R. China
| | - Hailiang Zhao
- Gastrointestinal Medicine, Affiliated Hospital of YouJiang Medical University of Nationalities, Baise, Guangxi 533000, P.R. China
| | - Jing Hu
- Gastrointestinal Medicine, Affiliated Hospital of YouJiang Medical University of Nationalities, Baise, Guangxi 533000, P.R. China
| | - Zhihua Deng
- Gastrointestinal Medicine, Affiliated Hospital of YouJiang Medical University of Nationalities, Baise, Guangxi 533000, P.R. China
| | - Yiying Qiu
- Gastrointestinal Medicine, Affiliated Hospital of YouJiang Medical University of Nationalities, Baise, Guangxi 533000, P.R. China
| | - Gaoyu Hu
- Gastrointestinal Medicine, Affiliated Hospital of YouJiang Medical University of Nationalities, Baise, Guangxi 533000, P.R. China
| | - Hanhe Pan
- Gastrointestinal Medicine, Affiliated Hospital of YouJiang Medical University of Nationalities, Baise, Guangxi 533000, P.R. China
| | - Zongshuai Qin
- Gastrointestinal Medicine, Affiliated Hospital of YouJiang Medical University of Nationalities, Baise, Guangxi 533000, P.R. China
| | - Zansong Huang
- Gastrointestinal Medicine, Affiliated Hospital of YouJiang Medical University of Nationalities, Baise, Guangxi 533000, P.R. China
- Corresponding author: Zansong Huang, Gastrointestinal Medicine, Affiliated Hospital of YouJiang Medical University of Nationalities, Baise, Guangxi 533000, P.R. China.
| | - Tingzhuang Yi
- Gastrointestinal Medicine, Affiliated Hospital of YouJiang Medical University of Nationalities, Baise, Guangxi 533000, P.R. China
- Corresponding author: Tingzhuang Yi, Gastrointestinal Medicine, Affiliated Hospital of YouJiang Medical University of Nationalities, Baise, Guangxi 533000, P.R. China.
| |
Collapse
|
14
|
Long non-coding RNA NEAT1 promotes lipopolysaccharide-induced injury in human tubule epithelial cells by regulating miR-93-5p/TXNIP axis. Med Microbiol Immunol 2021; 210:121-132. [PMID: 33885954 DOI: 10.1007/s00430-021-00705-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/03/2021] [Indexed: 12/17/2022]
Abstract
Many long non-coding RNAs (lncRNAs) have been found to play crucial roles in sepsis-induced acute kidney injury (AKI), including lncRNA nuclear-enriched abundant transcript 1 (NEAT1). We aimed to further elucidate the functions and molecular mechanism of NEAT1 in sepsis-induced AKI. Sepsis-induced AKI cell model was established by treatment with lipopolysaccharide (LPS) in human tubule epithelial (HK2) cells. Cell viability and apoptosis were determined by Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. Western blot assay was performed to measure all protein levels. The concentrations of inflammatory factors were evaluated using enzyme-linked immunosorbent assay (ELISA). The expression levels of inflammatory factors, NEAT1, microRNA-93-5p (miR-93-5p), and thioredoxin-interacting protein (TXNIP) were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The oxidative stress factors were detected using corresponding kits. The interaction between miR-93-5p and NEAT1 or TXNIP was predicted by bioinformatics analysis and verified by dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. NEAT1 was upregulated in serum of sepsis patients and LPS-induced HK2 cells. NEAT1 silence alleviated LPS-induced HK2 cell injury by inhibiting apoptosis, inflammation and oxidative stress. Moreover, miR-93-5p was a direct target of NEAT1, and suppression of NEAT1 weakened LPS-induced injury by upregulating miR-93-5p in HK2 cells. Furthermore, TXNIP was a downstream target of miR-93-5p, and miR-93-5p attenuated LPS-induced HK2 cell injury by downregulating TXNIP. In addition, NEAT1 regulated TXNIP expression by acting as a sponge of miR-93-5p. NEAT1 might aggravate LPS-induced injury in HK2 cells by regulating miR-93-5p/TXNIP axis, providing a potential therapeutic strategy for sepsis-associated AKI.
Collapse
|
15
|
Zan J, Zhao X, Deng X, Ding H, Wang B, Lu M, Wei Z, Huang Z, Wang S. Paraspeckle Promotes Hepatocellular Carcinoma Immune Escape by Sequestering IFNGR1 mRNA. Cell Mol Gastroenterol Hepatol 2021; 12:465-487. [PMID: 33667716 PMCID: PMC8255817 DOI: 10.1016/j.jcmgh.2021.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is the most common type of hepatic malignancies, with poor prognosis and low survival rate. Paraspeckles, which are unique subnuclear structures, are recently found to be involved in the development of various tumors, including HCC, and are related to induction in chemoresistance of HCC. This study aimed to investigate the possibility of paraspeckle in HCC cells participating in immune escape and its underlying mechanism in vitro and in vivo. METHODS Expression of NEAT1_2, the framework of paraspeckle, in HCC cells and tissues was detected by qRT-PCR and RNA-FISH. mRNAs interacted with NEAT1_2 were pull-downed and sequenced in C-terminal S1-aptamer-tagged NEAT1_2 endogenously expressed HCC cells constructed using CRISPR-CAS9 knock-in technology. The effects of paraspeckle on HCC sensitivity to T-cell-mediated cytolysis were detected by T-cell mediated tumor cell killing assay. The roles of NEAT1_2 or NONO on IFNGR1 expression and IFN-γ signaling by applying gene function loss analysis in HCC cells were detected by qRT-PCR, RNA immunoprecipitation, Western blotting, and ELISA. The role of paraspeckle during adoptive T-cell transfer therapy for HCC in vivo was performed with a subcutaneous xenograft mouse. RESULTS Paraspeckle in HCC cells is negatively related to T-cell-mediated cytolysis. Destruction of paraspeckle in HCC cells by knockdown of NEAT1_2 or NONO significantly improved the sensibility of resistant HCC cells to T-cell killing effects. Furthermore, IFNGR1 mRNA, which is sequestered by NEAT1_2 and NONO, is abundant in paraspeckle of T-cell killing-resistant HCC cells. Incapable IFN-γ-IFNGR1 signaling accounts for paraspeckle mediated-adoptive T-cell therapy resistance. Moreover, NEAT1_2 expression negatively correlates with IFNGR1 expression in clinical HCC tissues. CONCLUSIONS Paraspeckle in HCC cells helps tumor cells escape from immunosurveillance through sequestering IFNGR1 mRNA to inhibiting IFN-γ-IFNGR1 signaling, thereby avoiding T-cell killing effects. Collectively, our results hint that NEAT1_2 highly expressed HCC patient is more resistant to T-cell therapy in clinic, and NEAT1_2 may be potential target for HCC immunotherapy.
Collapse
Affiliation(s)
- Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou
| | - Xuya Zhao
- Department of Interventional Radiology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang
| | - Xiya Deng
- School of Life Sciences, Westlake University, Hangzhou
| | - Hongda Ding
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bi Wang
- School of Basic Medical Science, Guizhou Medical University, Guiyang, China
| | - Minyi Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou
| | - Zijing Wei
- Department of interventional radiology, the Affiliated Hosptial of Guizhou Medical University, Guiyang, China
| | - Zhi Huang
- Department of interventional radiology, the Affiliated Hosptial of Guizhou Medical University, Guiyang, China; School of Basic Medical Science, Guizhou Medical University, Guiyang, China.
| | - Shuai Wang
- School of Life Sciences, Westlake University, Hangzhou.
| |
Collapse
|
16
|
Zhao MM, Ge LY, Yang LF, Zheng HX, Chen G, Wu LZ, Shi SM, Wang N, Hang YP. LncRNA NEAT1/ miR-204/ NUAK1 Axis is a Potential Therapeutic Target for Non-Small Cell Lung Cancer. Cancer Manag Res 2020; 12:13357-13368. [PMID: 33402847 PMCID: PMC7778439 DOI: 10.2147/cmar.s277524] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) is a key part of non-coding RNA, and more and more evidence has revealed that it plays a vital role in tumors. NEAT1 is a lncRNA discovered in the early stage. However, it is still unclear whether NEAT1 and miR-204 play a regulatory role in lung cancer (LC). This research aimed to determine the biological function of NEAT1/miR-204 in non-small cell lung cancer (NSCLC). Materials and Methods In order to research the function of NEAT1 in NSCLC, RT-PCR, Western blot, luciferase assay and RNA immunoprecipitation assay were used to determine the relationship between NEAT1, miR-204 and NUAK1. CCK8 test, cell migration and invasion test were used to explore the influence of NEAT1 on proliferation and metastasis of LC cells. Tumor allotransplantation was used to detect the influence of NEAT1 on the growth of LC. Results The results revealed that NEAT1 was obviously enhanced in LC cell lines. Further functional analysis showed that low expression of NEAT1 obviously suppressed the growth, migration and invasion of NSCLC and facilitated cell apoptosis. Determination of luciferase reporter gene revealed that miR-204 was the direct target of NEAT1 in LC. In addition, NUAK1 was called the direct target of miR-204, and miR-204/NUAK1 had saved the role of NEAT1 in NSCLC cells. Tumor allotransplantation experiments showed that knocking down NEAT1 could inhibit the growth of LC. Conclusion In summary, our results showed that the down-regulation of NEAT1 in NSCLC inhibited its growth, migration and invasion through the miR-204/NUAK1 axis.
Collapse
Affiliation(s)
- Ming-Ming Zhao
- Department of Respiratory and Critical Care Medicine, People's Hospital of Gaochun, Nanjing 211300, People's Republic of China
| | - Lin-Yang Ge
- Department of Respiratory and Critical Care Medicine, People's Hospital of Gaochun, Nanjing 211300, People's Republic of China
| | - Liang-Feng Yang
- Department of Respiratory and Critical Care Medicine, People's Hospital of Gaochun, Nanjing 211300, People's Republic of China
| | - Hai-Xia Zheng
- Department of Respiratory and Critical Care Medicine, People's Hospital of Gaochun, Nanjing 211300, People's Republic of China
| | - Gang Chen
- Department of Respiratory and Critical Care Medicine, People's Hospital of Gaochun, Nanjing 211300, People's Republic of China
| | - Li-Zheng Wu
- Department of Respiratory and Critical Care Medicine, People's Hospital of Gaochun, Nanjing 211300, People's Republic of China
| | - Shao-Ming Shi
- Department of Respiratory and Critical Care Medicine, People's Hospital of Gaochun, Nanjing 211300, People's Republic of China
| | - Nan Wang
- Department of Respiratory and Critical Care Medicine, People's Hospital of Gaochun, Nanjing 211300, People's Republic of China
| | - Yan-Ping Hang
- Department of Respiratory and Critical Care Medicine, People's Hospital of Gaochun, Nanjing 211300, People's Republic of China
| |
Collapse
|
17
|
Zhao T, Du J, Zeng H. Interplay between endoplasmic reticulum stress and non-coding RNAs in cancer. J Hematol Oncol 2020; 13:163. [PMID: 33267910 PMCID: PMC7709275 DOI: 10.1186/s13045-020-01002-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
To survive, cancer cells are subjected to various internal and external adverse factors, including genetic mutations, hypoxia, nutritional deficiencies, and drug toxicity. All of these factors result in the accumulation of unfolded proteins in the endoplasmic reticulum, which leads to a condition termed endoplasmic reticulum stress (ER stress) and triggers the unfolded protein response (UPR). UPR downstream components strictly control transcription and translation reprogramming to ensure selective gene expression, including that of non-coding RNA (ncRNAs), to adapt to adverse environments. NcRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play important roles in regulating target gene expression and protein translation, and their aberrant expression is related to tumor development. Dysregulation of ncRNAs is involved in the regulation of various cellular characteristics of cancer cells, including growth, apoptosis, metastasis, angiogenesis, drug sensitivity, and tumor stem cell properties. Notably, ncRNAs and ER stress can regulate each other and collaborate to determine the fate of tumor cells. Therefore, investigating the interaction between ER stress and ncRNAs is crucial for developing effective cancer treatment and prevention strategies. In this review, we summarize the ER stress-triggered UPR signaling pathways involved in carcinogenesis followed by the mutual regulation of ER stress and ncRNAs in cancer, which provide further insights into the understanding of tumorigenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Tianming Zhao
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Juan Du
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
18
|
Song Z, Zhang Y, Chen Z, Zhang B. Identification of key genes in lung adenocarcinoma based on a competing endogenous RNA network. Oncol Lett 2020; 21:60. [PMID: 33281971 PMCID: PMC7709547 DOI: 10.3892/ol.2020.12322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/30/2020] [Indexed: 12/25/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most commonly diagnosed type of lung cancer and exhibits a high morbidity. The present study aimed to investigate the long non-coding RNA (lncRNA)-associated competing endogenous RNA (ceRNA) mechanisms in LUAD. The receptor activity modifying protein 2-antisense RNA 1 (RAMP2-AS1) was identified using GSE113852 and GSE130779 datasets downloaded from the Gene Expression Omnibus database, and the downregulation of RAMP2-AS1 was the most significant in LUAD. In addition, microRNA (miR)-296-5p was identified to bind to RAMP2-AS1 via bioinformatics analysis. Subsequently, CD44, cyclin D3 (CCND3), neurocalcin δ (NCALD), microtubule actin crosslinking factor 1 (MACF1) and potassium channel tetramerization domain containing 15 were obtained by intersecting the predicted target genes of miR-296-5p and 368 differentially expressed mRNAs in LUAD. According to the Gene Expression Profiling Interactive Analysis and UALCAN databases, these five mRNAs were downregulated in LUAD, and their expression levels were positively correlated with those of RAMP2-AS1. CD44, CCND3, NCALD and MACF1 were selected as key mRNAs in LUAD based on prognostic analyses. Furthermore, functional enrichment analyses were performed and an interaction network was constructed to reveal the functions of the RAMP2-AS1-associated ceRNA in LUAD. The results indicated that the functions were mainly enriched in generic transcription pathways, cyclin D-associated events in G1 and epithelial stromal transformation. Reverse transcription-quantitative PCR assays revealed that RAMP2-AS1, CD44, CCND3, NCALD and MACF1 expression was lower in tumor tissues than in normal tissues, while miR-296-5p expression was higher in tumor tissues compared with in normal tissues. The association between RAMP2-AS1 and MACF1 was further confirmed using in vitro experiments. Overall, the present results indicated that RAMP2-AS1, miR-296-5p, CD44, CCND3, NCALD and MACF1 may be involved in LUAD progression and may therefore serve as potential biomarkers and provide a theoretical basis for the study of the pathogenesis of LUAD.
Collapse
Affiliation(s)
- Zikun Song
- Department of Intensive Care Medicine, The People's Second Hospital of Liaocheng, Linqing, Shandong 252601, P.R. China
| | - Yinjiang Zhang
- School of Pharmacy, Minzu University of China, Beijing 100081, P.R. China
| | - Zheren Chen
- Department of Oncology, Renmin Hospital of Shishou, Jingzhou, Hubei 434400, P.R. China
| | - Bicheng Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
19
|
Bu FT, Wang A, Zhu Y, You HM, Zhang YF, Meng XM, Huang C, Li J. LncRNA NEAT1: Shedding light on mechanisms and opportunities in liver diseases. Liver Int 2020; 40:2612-2626. [PMID: 32745314 DOI: 10.1111/liv.14629] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/10/2020] [Accepted: 07/26/2020] [Indexed: 12/24/2022]
Abstract
With advances in genome and transcriptome research technology, the function and mechanism of lncRNAs in physiological and pathological states have been gradually revealed. Nuclear Enriched Abundant Transcript 1 (NEAT1, a long non-coding RNA), a vital component of paraspeckles, plays an indispensable role in the formation and integrity of paraspeckles. Throughout the research history, NEAT1 is mostly aberrantly upregulated in various cancers, and high expression of NEAT1 often contributes to poor prognosis of patients. Notably, the role and mechanism of NEAT1 in liver diseases have been increasingly reported. NEAT1 accelerates the progression of non-alcoholic fatty liver disease (NAFLD), liver fibrosis and hepatocellular carcinoma, while exerting a protective role in the pathogenesis of acute-on-chronic liver failure by inhibiting the inflammatory response. In this review, we will elaborate on relevant studies on the different casting of NEAT1 in liver diseases, especially focusing on its regulatory mechanisms and new opportunities for alcoholic liver disease.
Collapse
Affiliation(s)
- Fang-Tian Bu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Ao Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yan Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Hong-Mei You
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Ya-Fei Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
Xufei F, Xiujuan Z, Jianyi L, Liyan Y, Ting Y, Min H. Up-regulation of LncRNA NEAT1 induces apoptosis of human placental trophoblasts. Free Radic Res 2020; 54:678-686. [PMID: 32998583 DOI: 10.1080/10715762.2020.1826468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The trophoblast apoptosis induced by placental oxidative stress is a contributor to the pathological development of preeclampsia (PE), whereas the molecular mechanism remains unclear. In this study, we explored the role and mechanism of Long non-coding RNA (LncRNA) NEAT1 in trophoblasts apoptosis. In the placenta tissues of PE patients and H2O2-treated human trophoblast cell line HTR-8/SVneo, the expressions of LncRNA NEAT1, p53, and estrogen receptor α (ESRα) were increased whereas miR-18a-5p expression was decreased. ESRα expression was up-regulated by LncRNA NEAT1 overexpression and down-regulated by miR-18a-5p overexpression in HTR-8/SVneo cells. LncRNA NEAT1 could release ESRα expression through sponging miR-18a-5p and the transcription of LncRNA NEAT1 was promoted by p53. miR-18a-5p overexpression suppressed H2O2-induced cell apoptosis in HTR-8/SVneo cells, while the inhibitory effect of miR-18a-5p overexpression on cell apoptosis was abrogated by LncRNA NEAT1 overexpression. In summary, LncRNA NEAT1 transcription was induced by p53 under oxidative stress condition, the high expression of LncRNA NEAT1 subsequently increased ESRα expression by sponging miR-18a-5p, thus inducing trophoblasts apoptosis.
Collapse
Affiliation(s)
- Fan Xufei
- Department of Obstetrics and Gynecology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Zheng Xiujuan
- Department of Obstetrics and Gynecology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Lou Jianyi
- Department of Obstetrics and Gynecology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Ye Liyan
- Department of Obstetrics and Gynecology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yan Ting
- Department of Obstetrics and Gynecology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Hu Min
- Department of Obstetrics and Gynecology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
21
|
Chen Z, Xie H, Hu M, Huang T, Hu Y, Sang N, Zhao Y. Recent progress in treatment of hepatocellular carcinoma. Am J Cancer Res 2020; 10:2993-3036. [PMID: 33042631 PMCID: PMC7539784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death worldwide. In the past decade, there have been improvements in non-drug therapies and drug therapies for HCC treatment. Non-drug therapies include hepatic resection, liver transplantation, transarterial chemoembolization (TACE) and ablation. The former two surgical treatments are beneficial for patients with early and mid-stage HCC. As the first choice for non-surgical treatment, different TACE methods has been developed and widely used in combination therapy. Ablation has become an important alternative therapy for the treatment of small HCC or cases of unresectable surgery. Meanwhile, the drugs including small molecule targeted drugs like sorafenib and lenvatinib, monoclonal antibodies such as nivolumab are mainly used for the systematic treatment of advanced HCC. Besides strategies described above are recommended as first-line therapies due to their significant increase in mean overall survival, there are also potential drugs in clinical trials or under preclinical development. In addition, a number of potential preclinical surgical or adjuvant therapies are being studied, such as oncolytic virus, mesenchymal stem cells, biological clock, gut microbiome composition and peptide vaccine, all of which have shown different degrees of inhibition on HCC. With some potential anti-HCC drugs being reported, many promising therapeutic targets in related taxonomic signaling pathways including cell cycle, epigenetics, tyrosine kinase and so on that affect the progression of HCC have also been found. Together, the rational application of existing therapies and drugs as well as the new strategies will bring a bright future for the global cure of HCC in the coming decades.
Collapse
Affiliation(s)
- Zhiqian Chen
- West China School of Pharmacy, Sichuan UniversityChengdu 610041, China
| | - Hao Xie
- West China School of Pharmacy, Sichuan UniversityChengdu 610041, China
| | - Mingming Hu
- West China School of Pharmacy, Sichuan UniversityChengdu 610041, China
| | - Tianyi Huang
- West China School of Pharmacy, Sichuan UniversityChengdu 610041, China
| | - Yanan Hu
- West China School of Pharmacy, Sichuan UniversityChengdu 610041, China
| | - Na Sang
- Cancer Center, West China Hospital, West China Medical School, and Collaborative Innovation Center for Biotherapy, Sichuan UniversityChengdu 610041, China
| | - Yinglan Zhao
- West China School of Pharmacy, Sichuan UniversityChengdu 610041, China
- Cancer Center, West China Hospital, West China Medical School, and Collaborative Innovation Center for Biotherapy, Sichuan UniversityChengdu 610041, China
| |
Collapse
|