1
|
Chen X, Yan Y, Liu Y, Yi Q, Xu Z. Tabersonine Enhances Olaparib Sensitivity through FHL1-Mediated Epithelial-Mesenchymal Transition in an Ovarian Tumor. JOURNAL OF NATURAL PRODUCTS 2024; 87:837-848. [PMID: 38417401 DOI: 10.1021/acs.jnatprod.3c01056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Ovarian cancer (OVC) is one of the most aggressive gynecological malignancies worldwide. Although olaparib treatment has shown favorable outcomes against the treatment of OVC, its effectiveness remains limited in some OVC patients. Investigating new strategies to improve the therapeutic efficacy of olaparib against OVC is imperative. Our study identified tabersonine, a natural indole alkaloid, for its potential to increase the chemosensitivity of olaparib in OVC. The combined treatment of olaparib and tabersonine synergistically inhibited cell proliferation in OVC cells and suppressed tumor growth in A2780 xenografts. The combined treatment effectively suppressed epithelial-mesenchymal transition (EMT) by altering the expression of E-cadherin, N-cadherin, and vimentin and induced DNA damage responses. Integrating quantitative proteomics, FHL1 was identified as a potential regulator to modulate EMT after tabersonine treatment. Increased expression of FHL1 was induced by tabersonine treatment, while downregulation of FHL1 reversed the inhibitory effects of tabersonine on OVC cells by mediating EMT. In vivo findings further reflected that the combined treatment of tabersonine and olaparib significantly inhibited tumor growth and OVC metastasis through upregulation of FHL1. Our findings reveal the role of tabersonine in improving the sensitivity of olaparib in OVC through FHL1-mediated EMT, suggesting that tabersonine holds promise for future application in OVC treatment.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
2
|
Zhao C, Qiu L, Wu D, Zhang M, Xia W, Lv H, Cheng L. Targeted reversal of multidrug resistance in ovarian cancer cells using exosome‑encapsulated tetramethylpyrazine. Mol Med Rep 2024; 29:25. [PMID: 38099342 PMCID: PMC10784732 DOI: 10.3892/mmr.2023.13148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The objective of the present study was to develop exosomes (EXOs) encapsulating tetramethylpyrazine (TMP) for the reversal of drug resistance in ovarian cancer therapy. Human A2780 cells were incubated with TMP for 48 h. Purified TMP‑primed EXOs (EXOs‑TMP) were isolated through ultracentrifugation. The developed EXOs‑TMP were characterized using techniques such as transmission electron microscopy, nanoparticle tracking analysis, Fluorescence microscopy and western blotting. Subsequently, MTT, western blotting and flow cytometry assays were performed to evaluate the biological effects in drug‑resistant A2780T cells. The results demonstrated that the incorporation of TMP into EXOs exhibited an anti‑ovarian cancer effect and markedly enhanced the antitumor efficacy of paclitaxel (PTX). Furthermore, it was identified that the ability of EXO‑TMP to reverse cell resistance was associated with the downregulation of multidrug resistance protein 1, multidrug resistant‑associated protein 1 and glutathione S‑transferase Pi protein expression. Flow cytometry analysis revealed that EXO‑TMP induced apoptosis in drug‑resistant cells and enhanced the apoptotic effect when combined with PTX. EXOs are naturally sourced, exhibit excellent biocompatibility and enable precise drug delivery to target sites, thereby reducing toxic side effects. Overall, EXO‑TMP exhibited direct targeting capabilities towards A2780T cells and effectively reduced their drug resistance. EXOs‑TMP provide a novel and effective drug delivery pathway for reversing drug resistance in ovarian cancer.
Collapse
Affiliation(s)
- Chenge Zhao
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
- Department of Pharmacy, The Fifth Affiliated Hospital of Jinan University, Heyuan, Guangdong 517000, P.R. China
| | - Lulu Qiu
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Di Wu
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Ming Zhang
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Wanying Xia
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Huiyi Lv
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
- Dalian Kexiang Technology Development Co. Ltd, Dalian, Liaoning 116044, P.R. China
| | - Lichun Cheng
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| |
Collapse
|
3
|
Lima EN, Lamichhane S, KC P, Ferreira ES, Koul S, Koul HK. Tetrandrine for Targeting Therapy Resistance in Cancer. Curr Top Med Chem 2024; 24:1035-1049. [PMID: 38445699 PMCID: PMC11259026 DOI: 10.2174/0115680266282360240222062032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 03/07/2024]
Abstract
During the last five decades, there has been tremendous development in our understanding of cancer biology and the development of new and novel therapeutics to target cancer. However, despite these advances, cancer remains the second leading cause of death across the globe. Most cancer deaths are attributed to the development of resistance to current therapies. There is an urgent and unmet need to address cancer therapy resistance. Tetrandrine, a bis-benzyl iso-quinoline, has shown a promising role as an anti-cancer agent. Recent work from our laboratory and others suggests that tetrandrine and its derivatives could be an excellent adjuvant to the current arsenal of anti-cancer drugs. Herein, we provide an overview of resistance mechanisms to current therapeutics and review the existing literature on the anti-cancer effects of tetrandrine and its potential use for overcoming therapy resistance in cancer.
Collapse
Affiliation(s)
- Ellen Nogueira Lima
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- Southeast Louisiana Veterans Health Care System, New Orleans – LA
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Santosh Lamichhane
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- Southeast Louisiana Veterans Health Care System, New Orleans – LA
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Pramod KC
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Elisa Silva Ferreira
- Brazilian Nanotechnology National Laboratory (LNNano) Brazilian Center for Research in Energy and Materials (CNPEM) Campinas, SP, Brazil
| | - Sweaty Koul
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- Department of Urology, LSUHSC-New Orleans
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Hari K Koul
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- Department of Biochemistry & Molecular Biology, LSUHSC-New Orleans
- Department of Urology, LSUHSC-New Orleans
- Southeast Louisiana Veterans Health Care System, New Orleans – LA
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
4
|
Shi L, Wang S, Zhang S, Wang J, Chen Y, Li Y, Liu Z, Zhao S, Wei B, Zhang L. Research progress on pharmacological effects and mechanisms of cepharanthine and its derivatives. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2843-2860. [PMID: 37338575 DOI: 10.1007/s00210-023-02537-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
Cepharanthine (CEP) is a bisbenzylisoquinoline alkaloid compound found in plants of the Stephania genus, which has biological functions such as regulating autophagy, inhibiting inflammation, oxidative stress, and apoptosis. It is often used for the treatment of inflammatory diseases, viral infections, cancer, and immune disorders and has great clinical translational value. However, there is no detailed research on its specific mechanism and dosage and administration methods, especially clinical research is limited. In recent years, CEP has shown significant effects in the prevention and treatment of COVID-19, suggesting its potential medicinal value waiting to be discovered. In this article, we comprehensively introduce the molecular structure of CEP and its derivatives, describe in detail the pharmacological mechanisms of CEP in various diseases, and discuss how to chemically modify and design CEP to improve its bioavailability. In summary, this work will provide a reference for further research and clinical application of CEP.
Collapse
Affiliation(s)
- Liangliang Shi
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Shuaizhe Wang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Shangzu Zhang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jiawei Wang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yaping Chen
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yangyang Li
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zhiwei Liu
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Sichen Zhao
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Benjun Wei
- Gansu University of Traditional Chinese Medicine, Lanzhou, China.
- Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Lanzhou, China.
| | - Liying Zhang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China.
- Key Laboratory of Traditional Chinese Medicine Exploration and Innovation Transformation in Gansu Province, Lanzhou, China.
| |
Collapse
|
5
|
Garg P, Garg R, Horne D, Awasthi S, Salgia R, Singhal SS. Prognostic significance of natural products against multidrug tumor resistance. Cancer Lett 2023; 557:216079. [PMID: 36736532 DOI: 10.1016/j.canlet.2023.216079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Cancer is a pervasive, constantly evolving, and significant public health concern. The number of new cancer cases has risen dramatically in the last decades, making it one of the top causes of poor health and mortality worldwide. Although various treatment strategies, including surgery, radiation, and pharmaceutical therapies, have evolved into more sophisticated, precise methods, there is not much improvement in the cancer-related death toll. Consequently, natural product-based therapeutic discoveries have recently been considered an alternative approach. According to an estimate, one-third of the top twenty medications in today's market have a natural plant-product-based origin. Accordingly, primary prevention is an essential component of worldwide cancer control. This review provides an overview of the mechanisms of action of bioactive ingredients in natural dietary products that may contribute to the prevention and management of multiple malignancies.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Rachana Garg
- Department of Surgery, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Sanjay Awasthi
- Cayman Health, CTMH Doctors Hospital, George Town, Grand Cayman, KY1-1104, Cayman Islands
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
6
|
Niu B, Wei S, Sun J, Zhao H, Wang B, Chen G. Deciphering the molecular mechanism of tetrandrine in inhibiting hepatocellular carcinoma and increasing sorafenib sensitivity by combining network pharmacology and experimental evaluation. PHARMACEUTICAL BIOLOGY 2022; 60:75-86. [PMID: 34962429 PMCID: PMC8725900 DOI: 10.1080/13880209.2021.2017468] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/27/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
CONTEXT The mechanism of tetrandrine (TET) in hepatocellular carcinoma (HCC) progression and sorafenib (Sora) chemosensitivity deserves investigation. OBJECTIVE Using network pharmacology approaches to elucidate the mechanisms of TET in HCC. MATERIALS AND METHODS CCK-8, colony formation, and flow cytometry assays were used to measure cell phenotypes. BALB/c nude mice were divided into Control, Sora (10 mg/kg), TET (50 mg/kg), and TET + Sora (10 mg/kg Sora plus 50 mg/kg TET) groups to evaluate the antitumor effects of TET for 21 days. Sora and TET were given by intraperitoneal injection or oral gavage. RESULTS For SMMC7721 (IC50 = 22.5 μM) and PLC8024 (IC50 = 18.4 μM), TET (10, 20 μM) reduced colony number (0.68 ± 0.04- and 0.50 ± 0.04-fold, 0.56 ± 0.04- and 0.42 ± 0.02-fold), induced cell cycle arrest at G0/G1 stage (1.22 ± 0.03- and 1.39 ± 0.07-fold, 1.37 ± 0.06- and 1.55 ± 0.05-fold), promoted apoptosis (2.49 ± 0.26- and 3.63 ± 0.33-fold, 2.74 ± 0.42- and 3.73 ± 0.61-fold), and inactivated PI3K/AKT/mTOR signalling. Sora (10 μM) decreased cell proliferation, enhanced apoptosis, and inhibited PI3K/AKT/mTOR signalling, and these effects were further aggravated in the combination group. Activating PI3K/AKT/mTOR reversed the effects of TET on cell proliferation and Sora sensitivity. In the combination group, tumour volumes and weights were decreased to 202.3 ± 17.4 mm3 and 151.5 ± 25.8 mg compared with Sora (510.6 ± 48.2 mm3 and 396.7 ± 33.5 mg). DISCUSSION AND CONCLUSIONS TET enhances Sora sensitivity by inactivating PI3K/AKT/mTOR, suggesting the potential of TET as a chemosensitizer in HCC.
Collapse
Affiliation(s)
- Biao Niu
- Department of Hepatobiliary and Pancreas Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Sidong Wei
- Department of Hepatobiliary and Pancreas Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jianjun Sun
- Department of Hepatobiliary and Pancreas Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Huibo Zhao
- Department of Hepatobiliary and Pancreas Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Bing Wang
- Department of Hepatobiliary and Pancreas Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Guoyong Chen
- Department of Hepatobiliary and Pancreas Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
7
|
Mo L, Zhang F, Chen F, Xia L, Huang Y, Mo Y, Zhang L, Huang D, He S, Deng J, Hao E, Du Z. Progress on structural modification of Tetrandrine with wide range of pharmacological activities. Front Pharmacol 2022; 13:978600. [PMID: 36052124 PMCID: PMC9424556 DOI: 10.3389/fphar.2022.978600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Tetrandrine (Tet), derived from the traditional Chinese herb Fangji, is a class of natural alkaloids with the structure of bisbenzylisoquinoline, which has a wide range of physiological activities and significant pharmacfological effects. However, studies and clinical applications have revealed a series of drawbacks such as its poor water solubility, low bioavailability, and the fact that it can be toxic to humans. The results of many researchers have confirmed that chemical structural modifications and nanocarrier delivery can address the limited application of Tet and improve its efficacy. In this paper, we summarize the anti-tumor efficacy and mechanism of action, anti-inflammatory efficacy and mechanism of action, and clinical applications of Tet, and describe the progress of Tet based on chemical structure modification and nanocarrier delivery, aiming to explore more diverse structures to improve the pharmacological activity of Tet and provide ideas to meet clinical needs.
Collapse
Affiliation(s)
- Liuying Mo
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
| | - Fan Zhang
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Feng Chen
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
| | - Lei Xia
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
| | - Yi Huang
- Office of the President, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuemi Mo
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
| | - Lingqiu Zhang
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
| | - Daquan Huang
- Guangxi Dahai Sunshine Pharmaceutical, Nanning, China
| | - Shunli He
- Guangxi Heli Pharmaceutical, Nanning, China
| | - Jiagang Deng
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- *Correspondence: Jiagang Deng, ; Erwei Hao, ; Zhengcai Du,
| | - Erwei Hao
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- *Correspondence: Jiagang Deng, ; Erwei Hao, ; Zhengcai Du,
| | - Zhengcai Du
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- *Correspondence: Jiagang Deng, ; Erwei Hao, ; Zhengcai Du,
| |
Collapse
|
8
|
Yang C, Mai Z, Liu C, Yin S, Cai Y, Xia C. Natural Products in Preventing Tumor Drug Resistance and Related Signaling Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113513. [PMID: 35684449 PMCID: PMC9181879 DOI: 10.3390/molecules27113513] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022]
Abstract
Drug resistance is still an obstacle in cancer therapy, leading to the failure of tumor treatment. The emergence of tumor drug resistance has always been a main concern of oncologists. Therefore, overcoming tumor drug resistance and looking for new strategies for tumor treatment is a major focus in the field of tumor research. Natural products serve as effective substances against drug resistance because of their diverse chemical structures and pharmacological effects. We reviewed the signaling pathways involved in the development of tumor drug resistance, including Epidermal growth factor receptor (EGFR), Renin-angiotensin system (Ras), Phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), Wnt, Notch, Transforming growth factor-beta (TGF-β), and their specific signaling pathway inhibitors derived from natural products. This can provide new ideas for the prevention of drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Chuansheng Yang
- Department of Head-Neck and Breast Surgery, Yuebei People’s Hospital of Shantou University, Shaoguan 512027, China;
| | - Zhikai Mai
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Can Liu
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuanghong Yin
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yantao Cai
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- Correspondence: (Y.C.); (C.X.)
| | - Chenglai Xia
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Correspondence: (Y.C.); (C.X.)
| |
Collapse
|
9
|
Plant-Derived Chinese Medicine Monomers on Ovarian Cancer via the Wnt/ β-Catenin Signaling Pathway: Review of Mechanisms and Prospects. JOURNAL OF ONCOLOGY 2021; 2021:6852867. [PMID: 34912456 PMCID: PMC8668291 DOI: 10.1155/2021/6852867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/03/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
Abstract
Ovarian cancer (OC) is a common malignant tumor of the female reproductive system and has a high morbidity and mortality rate. The progression and metastasis of OC are complex and involve multiple signaling pathways. The Wnt/β-catenin signaling pathway is closely related to OC, and therefore blocking the activation of the Wnt/β-catenin signaling directly or inhibiting related genes, and molecular targets is of great value in treating OC. Toxicities such as myelotoxicity, cardiotoxicity, genotoxicity, and vasospasm are the major side effects for common anticancer drugs and are well documented. There is, therefore, a need to develop new, effective, safer, and more affordable anticancer drugs from alternative sources. In recent years, plant-derived Chinese medicine monomers have drawn increasing attention due to their high safety, low toxicity, minimal side effects, and antitumor effects. Plant-derived Chinese medicine monomers are effective against multiple targets and can regulate the growth, proliferation, apoptosis, invasion, and migration of OC as well as reverse drug resistance by regulating the Wnt/β-catenin signaling pathway. In this review, we summarize and provide mechanisms and prospects for the use of plant-derived Chinese medicines for the prevention and treatment of OC.
Collapse
|
10
|
Cheng YC, Kuo CL, Hsu SY, Way TDER, Cheng CL, Chen JC, Liu KC, Peng SF, Ho WJ, Chueh FS, Huang WW. Tetrandrine Enhances H 2O 2-Induced Apoptotic Cell Death Through Caspase-dependent Pathway in Human Keratinocytes. In Vivo 2021; 35:2047-2057. [PMID: 34182480 DOI: 10.21873/invivo.12474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Tetrandrine, a bis-benzylisoquinoline alkaloid, induces apoptosis of many types of human cancer cell. Hydrogen peroxide (H2O2) is a reactive oxygen species inducer; however, there are no reports to show whether pre-treatment of tetrandrine with H2O2 induces more cell apoptosis than H2O2 alone. Thus, the present study investigated the effects of tetrandrine on H2O2-induced cell apoptosis of human keratinocytes, HaCaT, in vitro. MATERIALS AND METHODS HaCaT cells were pre-treated with and without tetrandrine for 1 h, and then treated with H2O2 for examining cell morphological changes and cell viability using contrast-phase microscopy and propidium iodide (PI) exclusion assay, respectively. Cells were measured apoptotic cell death by using annexin V/PI double staining and further analyzed by flow cytometer. Cells were further assessed for DNA condensation using 2-(4-amidinophenyl)-6-indolecarbamidine staining. Western blotting was used to measure expression of apoptosis-associated proteins and confocal laser microscopy was used to measure the protein expression and nuclear translocation from the cytoplasm to nuclei. RESULTS Pre-treatment of tetrandrine for 1 h and treatment with H2O2 enhanced H2O2-induced cell morphological changes and reduced cell viability, whilst increasing apoptotic cell death and DNA condensation. Furthermore, tetrandrine significantly increased expression of reactive oxygen species-associated proteins such as superoxide dismutase (Cu/Zn) and superoxide dismutase (Mn) but significantly reduced the level of catalase, which was also confirmed by confocal laser microscopy. It also increased expression of DNA repair-associated proteins ataxia telangiectasia mutated, ataxia-telangectasia and Rad3-related, phospho-P53, P53 and phosphorylated histone H2AX, and of pro-apoptotic proteins BCL2 apoptosis regulator-associated X-protein, caspase-3, caspase-8, caspase-9 and poly ADP ribose polymerase in HaCaT cells. CONCLUSION These are the first and novel findings showing tetrandrine enhances H2O2-induced apoptotic cell death of HaCaT cells and may provide a potent approach for the treatment of proliferated malignant keratinocytes.
Collapse
Affiliation(s)
- Yi-Ching Cheng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan, R.O.C
| | - Sheng-Yao Hsu
- Department of Ophthalmology, An Nan Hospital, China Medical University, Tainan, Taiwan, R.O.C.,Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan, R.O.C
| | - Tzong-DER Way
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Ching-Ling Cheng
- Progam of Digital Health Innovation, China Medical University, Taichung, Taiwan, R.O.C
| | - Jaw-Chyun Chen
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Changhua, Taiwan, R.O.C
| | - Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan, R.O.C
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Wai-Jane Ho
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Changhua, Taiwan, R.O.C
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan, R.O.C.
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.;
| |
Collapse
|
11
|
Zhang Y, Wang X, Chen X. Identification of core genes for early diagnosis and the EMT modulation of ovarian serous cancer by bioinformatics perspective. Aging (Albany NY) 2021; 13:3112-3145. [PMID: 33493131 PMCID: PMC7880353 DOI: 10.18632/aging.202524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/30/2020] [Indexed: 02/05/2023]
Abstract
Ovarian serous carcinoma (OSC), as a common malignant tumor, poses a serious threat to women's health in that epithelial-mesenchymal transformation (EMT)-related modulation becomes heavily implicated in the invasion and progression of OSC. In this study, two core genes (BUB1B and NDC80) among the 16 hub genes have been identified to be involved in the molecular regulation of EMT and associated with the poor early survival of OSC at stages I+II. Through the Gene Regulatory Networks (GRN) analysis of 15 EMT regulators and core genes, it was revealed that TFAP2A and hsa-miR-655 could elaborately modulate EMT development of OSC. Next genetic variation analysis indicated that EMT regulator ELF3 would also serve as a crucial part in the occurrence and progression of OSC. Eventually, survival investigation suggested that TFAP2A, ELF3 and hsa-miR-655 were significantly associated with the overall survival of progressive OSC patients. Thus, combined with diversified bioinformatic analyses, BUB1B, NDC80, TFAP2A, ELF3 and hsa-miR-655 may act as the key biomarkers for early clinical diagnosis and prognosis evaluation of OSC patients as well as potential therapeutic target-points.
Collapse
Affiliation(s)
- Yanna Zhang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, High Technological Development Zone, Chengdu 610041, Sichuan, People's Republic of China
| | - Xun Wang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, High Technological Development Zone, Chengdu 610041, Sichuan, People's Republic of China
| | - Xiancheng Chen
- State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, High Technological Development Zone, Chengdu 610041, Sichuan, People's Republic of China
| |
Collapse
|
12
|
Koni M, Pinnarò V, Brizzi MF. The Wnt Signalling Pathway: A Tailored Target in Cancer. Int J Mol Sci 2020; 21:E7697. [PMID: 33080952 PMCID: PMC7589708 DOI: 10.3390/ijms21207697] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the greatest public health challenges. According to the World Health Organization (WHO), 9.6 million cancer deaths have been reported in 2018. The most common cancers include lung, breast, colorectal, prostate, skin (non-melanoma) and stomach cancer. The unbalance of physiological signalling pathways due to the acquisition of mutations in tumour cells is considered the most common cancer driver. The Wingless-related integration site (Wnt)/β-catenin pathway is crucial for tissue development and homeostasis in all animal species and its dysregulation is one of the most relevant events linked to cancer development and dissemination. The canonical and the non-canonical Wnt/β-catenin pathways are known to control both physiological and pathological processes, including cancer. Herein, the impact of the Wnt/β-catenin cascade in driving cancers from different origin has been examined. Finally, based on the impact of Extracellular Vesicles (EVs) on tumour growth, invasion and chemoresistance, and their role as tumour diagnostic and prognostic tools, an overview of the current knowledge linking EVs to the Wnt/β-catenin pathway is also discussed.
Collapse
Affiliation(s)
| | | | - Maria Felice Brizzi
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy; (M.K.); (V.P.)
| |
Collapse
|