1
|
Hashemi M, Esbati N, Rashidi M, Gholami S, Raesi R, Bidoki SS, Goharrizi MASB, Motlagh YSM, Khorrami R, Tavakolpournegari A, Nabavi N, Zou R, Mohammadnahal L, Entezari M, Taheriazam A, Hushmandi K. Biological landscape and nanostructural view in development and reversal of oxaliplatin resistance in colorectal cancer. Transl Oncol 2024; 40:101846. [PMID: 38042134 PMCID: PMC10716031 DOI: 10.1016/j.tranon.2023.101846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023] Open
Abstract
The treatment of cancer patients has been mainly followed using chemotherapy and it is a gold standard in improving prognosis and survival rate of patients. Oxaliplatin (OXA) is a third-platinum anti-cancer agent that reduces DNA synthesis in cancer cells to interfere with their growth and cell cycle progression. In spite of promising results of using OXA in cancer chemotherapy, the process of drug resistance has made some challenges. OXA is commonly applied in treatment of colorectal cancer (CRC) as a malignancy of gastrointestinal tract and when CRC cells increase their proliferation and metastasis, they can obtain resistance to OXA chemotherapy. A number of molecular factors such as CHK2, SIRT1, c-Myc, LATS2 and FOXC1 have been considered as regulators of OXA response in CRC cells. The non-coding RNAs are able to function as master regulator of other molecular pathways in modulating OXA resistance. There is a close association between molecular mechanisms such as apoptosis, autophagy, glycolysis and EMT with OXA resistance, so that apoptosis inhibition, pro-survival autophagy induction and stimulation of EMT and glycolysis can induce OXA resistance in CRC cells. A number of anti-tumor compounds including astragaloside IV, resveratrol and nobiletin are able to enhance OXA sensitivity in CRC cells. Nanoparticles for increasing potential of OXA in CRC suppression and reversing OXA resistance have been employed in cancer chemotherapy. These subjects are covered in this review article to shed light on molecular factors resulting in OXA resistance.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Nastaran Esbati
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Shahabadin Bidoki
- Faculty of medicine, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Leila Mohammadnahal
- Department of Health Services Management, School of Health, Tehran University of Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Ramal M, Corral S, Kalisz M, Lapi E, Real FX. The urothelial gene regulatory network: understanding biology to improve bladder cancer management. Oncogene 2024; 43:1-21. [PMID: 37996699 DOI: 10.1038/s41388-023-02876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
The urothelium is a stratified epithelium composed of basal cells, one or more layers of intermediate cells, and an upper layer of differentiated umbrella cells. Most bladder cancers (BLCA) are urothelial carcinomas. Loss of urothelial lineage fidelity results in altered differentiation, highlighted by the taxonomic classification into basal and luminal tumors. There is a need to better understand the urothelial transcriptional networks. To systematically identify transcription factors (TFs) relevant for urothelial identity, we defined highly expressed TFs in normal human bladder using RNA-Seq data and inferred their genomic binding using ATAC-Seq data. To focus on epithelial TFs, we analyzed RNA-Seq data from patient-derived organoids recapitulating features of basal/luminal tumors. We classified TFs as "luminal-enriched", "basal-enriched" or "common" according to expression in organoids. We validated our classification by differential gene expression analysis in Luminal Papillary vs. Basal/Squamous tumors. Genomic analyses revealed well-known TFs associated with luminal (e.g., PPARG, GATA3, FOXA1) and basal (e.g., TP63, TFAP2) phenotypes and novel candidates to play a role in urothelial differentiation or BLCA (e.g., MECOM, TBX3). We also identified TF families (e.g., KLFs, AP1, circadian clock, sex hormone receptors) for which there is suggestive evidence of their involvement in urothelial differentiation and/or BLCA. Genomic alterations in these TFs are associated with BLCA. We uncover a TF network involved in urothelial cell identity and BLCA. We identify novel candidate TFs involved in differentiation and cancer that provide opportunities for a better understanding of the underlying biology and therapeutic intervention.
Collapse
Affiliation(s)
- Maria Ramal
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sonia Corral
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mark Kalisz
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Eleonora Lapi
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- CIBERONC, Madrid, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
3
|
Plage H, Samtleben H, Hofbauer S, Kornienko K, Weinberger S, Bruch PG, Elezkurtaj S, Roßner F, Schallenberg S, Kluth M, Lennartz M, Blessin NC, Marx AH, Fisch M, Rink M, Slojewski M, Kaczmarek K, Ecke T, Hallmann S, Koch S, Adamini N, Minner S, Simon R, Sauter G, Klatte T, Schlomm T, Horst D, Zecha H. GATA3 expression loss is linked to stage progression but is unrelated to prognosis in muscle-invasive urothelial carcinoma of the bladder. Hum Pathol 2022; 130:10-17. [PMID: 36152841 DOI: 10.1016/j.humpath.2022.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
The transcription factor GATA binding protein 3 (GATA3) is commonly used in surgical pathology as a diagnostic marker to distinguish urothelial carcinomas from other cancer entities. However, the clinical relevance of GATA3 expression in urothelial bladder cancer is not completely clarified. In this study, we investigated GATA3 immunostaining on 2710 urothelial bladder carcinomas on a tissue microarray platform by using two different antibodies to better understand its impact in relation to pathological parameters of disease progression and patient outcome. Nuclear GATA3 immunostaining was regularly seen in normal urothelium and found in 74%/82% of interpretable urothelial neoplasms depending on the antibody used. Within pTa tumors, the rate of GATA3 positive tumors decreased with advancing grade. GATA3 positivity was seen in 98.6%/99.8% of pTaG2 low-grade, 98.6%/100% of pTaG2 high-grade, and 94.9%/99.2% of pTaG3 high-grade tumors (P = .0002). As compared to pTa tumors, GATA3 positivity was markedly less common in muscle-invasive urothelial carcinoma (59.9%/71.6%; P < .0001). Within pT2-4 cancers, high-level GATA3 immunostaining was associated with the presence of lymph node metastasis (P = .0034), and blood vessel (P = .0290) or lymphatic invasion (P = .0005) but unrelated to pT stage. GATA3 immunostaining results for both antibodies were not associated with overall survival in 586 patients treated by cystectomy for pT2-4 urothelial carcinoma. The results of our study identify GATA3 expression as a frequent event in noninvasive urothelial carcinomas with favorable tumor features. Loss of GATA3 immunostaining is linked with muscle-invasive disease but is largely unrelated to pathological parameters and patient prognosis.
Collapse
Affiliation(s)
- Henning Plage
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Henrik Samtleben
- Department of Pathology, Academic Hospital Fuerth, 90766 Fuerth, Germany
| | - Sebastian Hofbauer
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Kira Kornienko
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Sarah Weinberger
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Paul Giacomo Bruch
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Sefer Elezkurtaj
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Florian Roßner
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Simon Schallenberg
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Niclas C Blessin
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andreas H Marx
- Department of Pathology, Academic Hospital Fuerth, 90766 Fuerth, Germany
| | - Margit Fisch
- Department of Urology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Rink
- Department of Urology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marcin Slojewski
- Department of Urology and Urological Oncology, Pomeranian Medical University, 70-204 Szczeci, Poland
| | - Krystian Kaczmarek
- Department of Urology and Urological Oncology, Pomeranian Medical University, 70-204 Szczeci, Poland
| | - Thorsten Ecke
- Department of Urology, Helios Hospital Bad Saarow, 15526 Bad Saarow, Germany
| | - Steffen Hallmann
- Department of Urology, Helios Hospital Bad Saarow, 15526 Bad Saarow, Germany
| | - Stefan Koch
- Department of Pathology, Helios Hospital Bad Saarow, 15526 Bad Saarow, Germany
| | - Nico Adamini
- Department of Urology, Albertinen Hospital, 22457 Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tobias Klatte
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Henrik Zecha
- Department of Urology, Albertinen Hospital, 22457 Hamburg, Germany
| |
Collapse
|
4
|
Kui XY, Gao Y, Liu XS, Zeng J, Yang JW, Zhou LM, Liu XY, Zhang Y, Zhang YH, Pei ZJ. Comprehensive Analysis of SLC17A9 and Its Prognostic Value in Hepatocellular Carcinoma. Front Oncol 2022; 12:809847. [PMID: 35957868 PMCID: PMC9357942 DOI: 10.3389/fonc.2022.809847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/21/2022] [Indexed: 12/24/2022] Open
Abstract
Background Solute carrier family 17 member 9 (SLC17A9) encodes a member of a family of transmembrane proteins that are involved in the transport of small molecules. SLC17A9 is involved in the occurrence and development of various cancers, but its biological role in liver hepatocellular carcinoma (LIHC) is unclear. Methods The expression level of SLC17A9 was assessed using The Cancer Genome Atlas (TCGA) database and immunohistochemistry of tumor tissues and adjacent normal liver tissues. The receiver operating characteristic (ROC) and R software package performed diagnosis and prognosis. Gene Ontology/Kyoto Encyclopedia of Genes and Genomes functional enrichment and co-expression of SLC17A9, gene–gene interaction (GGI), and protein–protein interaction (PPI) networks were performed using R, GeneMANIA, and STRING. Western blot, real-time quantitative PCR (RT-qPCR), immunofluorescence, colony formation, wound scratch assay, ATP production assays, and high connotation were applied to determine the effect of SLC17A9 knockdown on HEPG2 (hepatocellular liver carcinoma) cells. TIMER, GEPIA, and TCGA analyzed the relationship between SLC17A9 expression and immune cells, m6A modification, and ferroptosis. Results SLC17A9 expression in LIHC tissues was higher than in normal liver tissues (p < 0.001), and SLC17A9 was related to sex, DSS (disease-specific survival), and PFI (progression-free interval) (p = 0.015, 0.006, and 0.023). SLC17A9 expression has diagnostic (AUC: 0.812; CI: 0.770–0.854) and prognostic potential (p = 0.015) in LIHC. Gene Ontology/Kyoto Encyclopedia of Genes and Genomes (GO/KEGG) functional enrichment analysis showed that SLC17A9 was closely related to neuronal cell body, presynapse, axonogenesis, PI3K/Akt signaling pathway. GGI showed that SLC17A9 was closely related to MYO5A. PPI showed that SLC17A9 was closely related to SLC18A3. SLC17A9 silencing inhibited HepG2 cells proliferation, migration, colony formation, and reduced their ATP level. SLC17A9 expression level was related to immune cells: B cells (r = 0.094, P = 8.06E-02), CD4+ T cells (r = 0.184, P = 5.95E-04), and macrophages (r = 0.137, P = 1.15E-02); m6A modification: HNRNPC (r = 0.220, p < 0.001), METTL3 (r = 0.180, p < 0.001), and WTAP (r = 0.130, p = 0.009); and ferroptosis: HSPA5 (r = 0.240, p < 0.001), SLC7A11 (r = 0.180, p < 0.001), and FANCD2 (r = 0.280, p < 0.001). Conclusion Our data show that SLC17A9 may influence LIHC progression. SLC17A9 expression correlates with tumor immune infiltration, m6A modification, and ferroptosis in LIHC and may have diagnostic and prognostic value in LIHC.
Collapse
Affiliation(s)
- Xue-Yan Kui
- Postgraduate Training Basement of Jinzhou Medical University, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan Gao
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xu-Sheng Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jing Zeng
- Department of Infection Control, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jian-Wei Yang
- Department of Nuclear Medicine, Xiangyang Cenral Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Lu-Meng Zhou
- Department of Nuclear Medicine, Huanggang Central Hospital, Huanggang, China
| | - Xiao-Yu Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yu Zhang
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yao-Hua Zhang
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhi-Jun Pei
- Postgraduate Training Basement of Jinzhou Medical University, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, China
- *Correspondence: Zhi-Jun Pei,
| |
Collapse
|
5
|
Are We Ready to Implement Molecular Subtyping of Bladder Cancer in Clinical Practice? Part 1: General Issues and Marker Expression. Int J Mol Sci 2022; 23:ijms23147819. [PMID: 35887164 PMCID: PMC9319819 DOI: 10.3390/ijms23147819] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022] Open
Abstract
Bladder cancer (BC) is a heterogeneous disease with highly variable clinical and pathological features, and resulting in different outcomes. Such heterogeneity ensues from distinct pathogenetic mechanisms and may consistently affect treatment responses in single patients. Thus, over the last few years, several groups have developed molecular classification schemes for BC, mainly based on their mRNA expression profiles. A “consensus” classification has recently been proposed to combine the published systems, agreeing on a six-cluster scheme with distinct prognostic and predictive features. In order to implement molecular subtyping as a risk-stratification tool in routine practice, immunohistochemistry (IHC) has been explored as a readily accessible, relatively inexpensive, standardized surrogate method, achieving promising results in different clinical settings. The first part of this review deals with the steps resulting in the development of a molecular subtyping of BC, its prognostic and predictive implications, and the main features of immunohistochemical markers used as surrogates to stratify BC into pre-defined molecular clusters.
Collapse
|
6
|
López-Cortés R, Vázquez-Estévez S, Fernández JÁ, Núñez C. Proteomics as a Complementary Technique to Characterize Bladder Cancer. Cancers (Basel) 2021; 13:cancers13215537. [PMID: 34771699 PMCID: PMC8582709 DOI: 10.3390/cancers13215537] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Although immunohistochemistry is a routine technique in clinics, and genomics has been rapidly incorporated, proteomics is a step behind. This general situation is also the norm in bladder cancer research. This review shows the contributions of proteomics to the molecular classification of bladder cancer, and to the study of histopathology due to tissue insults caused by tumors. Furthermore, the importance of proteomics for understanding the cellular and molecular changes as a consequence of the therapy of bladder cancer cannot be neglected. Abstract Bladder cancer (BC) is the most common tumor of the urinary tract and is conventionally classified as either non-muscle invasive or muscle invasive. In addition, histological variants exist, as organized by the WHO-2016 classification. However, innovations in next-generation sequencing have led to molecular classifications of BC. These innovations have also allowed for the tracing of major tumorigenic pathways and, therefore, are positioned as strong supporters of precision medicine. In parallel, immunohistochemistry is still the clinical reference to discriminate histological layers and to stage BC. Key contributions have been made to enlarge the panel of protein immunomarkers. Moreover, the analysis of proteins in liquid biopsy has also provided potential markers. Notwithstanding, their clinical adoption is still low, with very few approved tests. In this context, mass spectrometry-based proteomics has remained a step behind; hence, we aimed to develop them in the community. Herein, the authors introduce the epidemiology and the conventional classifications to review the molecular classification of BC, highlighting the contributions of proteomics. Then, the advances in mass spectrometry techniques focusing on maintaining the integrity of the biological structures are presented, a milestone for the emergence of histoproteomics. Within this field, the review then discusses selected proteins for the comprehension of the pathophysiological mechanisms of BC. Finally, because there is still insufficient knowledge, this review considers proteomics as an important source for the development of BC therapies.
Collapse
Affiliation(s)
- Rubén López-Cortés
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
| | - Sergio Vázquez-Estévez
- Oncology Division, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain; (S.V.-E.); (J.Á.F.)
| | - Javier Álvarez Fernández
- Oncology Division, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain; (S.V.-E.); (J.Á.F.)
| | - Cristina Núñez
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
- Correspondence:
| |
Collapse
|
7
|
Elzohery N, Ismael NS, Khairy RA, Soliman SAM. Expression of GATA3 and Cytokeratin 14 in Urinary Bladder Carcinoma (Histopathological and Immunohistochemical Study). Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Urothelial carcinoma (UC) with squamous differentiation (SD) is the most common histologic variant of bladder carcinoma and its presence is associated with poor prognosis which may need early radical cystectomy to avoid progression and recurrence. It is difficult to detect few foci of SD, especially nonkeratinizing or early switch from urothelial to squamous epithelium on only morphological basis. Combination of GATA3 and Cytokeratin 14 (CK14) could be helpful in differentiating pure UC, UC with SD and pure squamous cell carcinoma (SCC).
AIM: Assessment of GATA3 and CK14 expression in urinary bladder carcinoma and correlation with clinical and histopathological variables, for both diagnostic and prognostic purposes.
MATERIALS AND METHODS: Sixty cases of archived paraffin blocks of urinary bladder carcinoma were tested for GATA3 and CK14 expression by immunohistochemistry using a rabbit monoclonal antibody against human CK 14 and mouse monoclonal antibody against GATA3, respectively.
RESULTS: There is a significant correlation between GATA3 immunohistochemical expression and histological tumor subtypes of bladder carcinoma (p < 0.001), i.e. the GATA3 is a useful marker for urothelial origin especially in papillary UC. There is a significant correlation between GATA3 immunohistochemical expression and UC grade (p < 0.001). CK14 showed positive cytoplasmic staining in 9/14 (64.3%) cases of UC with SD and (13/13) (100%) cases of pure SCC and negative in 33/33(100%) cases of UC other than UC with SD. CK14 had sensitivity (64.3%) and specificity (100%) for areas of SD.
CONCLUSION: GATA3 is a specific immunohistochemical marker for urothelial origin. CK14 is a highly specific and sensitive immunohistochemical marker of squamous cell carcinoma.
Collapse
|
8
|
Xie Q, Wang D, Luo X, Li Z, Hu A, Yang H, Tang J, Gao P, Sun T, Kong L. Proteome profiling of formalin-fixed, paraffin-embedded lung adenocarcinoma tissues using a tandem mass tag-based quantitative proteomics approach. Oncol Lett 2021; 22:706. [PMID: 34457061 PMCID: PMC8358594 DOI: 10.3892/ol.2021.12967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
Over the past few decades, increasing efforts have been made to improve the understanding of, and treatment options for, lung adenocarcinoma (LUAD). However, considering the heterogeneity of LUAD, precise proteomics-based characterization at the molecular level is an urgent clinical requirement for effective treatment. Formalin-fixed, paraffin-embedded (FFPE) tissue is a good option as the working tool for proteomics studies. The present study aimed to obtain a global protein profile using LUAD FFPE tissue samples. Using a quantitative proteomics approach, the study revealed that 360 proteins were significantly more highly expressed in LUAD than in adjacent nontumor lung tissues. Also, 19 differentially expressed membrane proteins were found to be primarily responsible for immune processes. Epidermal growth factor (EGF)-like domain and laminin EGF domain showed markedly different expression levels between cancer tissues and tumor-adjacent normal tissues. Furthermore, Gene Ontology functional enrichment analysis showed that significantly upregulated proteins were associated with the endoplasmic reticulum lumen, protein disulfide isomerase activity, vitamin binding, cell cycle G1/S phase transition, to name but a few. Also, numerous kinases and post-translational modification enzymes were significantly upregulated across all eight LUAD samples compared with paracarcinoma tissues. Proteomics analysis revealed that AAA domain containing 3A (ATAD3a), a member of the ATPase family, was highly expressed in LUAD tissues, which was supported by immunohistochemical analysis. Furthermore, the study confirmed that ATAD3a enhanced the cisplatin sensitivity of LUAD cells. Collectively, the findings of the present study provide new potential candidate targets in patients with LUAD, and may aid auxiliary LUAD diagnosis and surveillance in a noninvasive manner.
Collapse
Affiliation(s)
- Qi Xie
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R China
| | - Dan Wang
- Department of Neorology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R China
| | - Xiao Luo
- International Medical Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R China
| | - Zhen Li
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R China
| | - Aixia Hu
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R China
| | - Hui Yang
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R China
| | - Jinxing Tang
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R China
| | - Peiyu Gao
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R China
| | - Tingyi Sun
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R China
| | - Lingfei Kong
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R China
| |
Collapse
|
9
|
Serag Eldien MM, Abdou AG, Elghrabawy GRA, Alhanafy AM, Mahmoud SF. Stratification of urothelial bladder carcinoma depending on immunohistochemical expression of GATA3 and CK5/6. J Immunoassay Immunochem 2021; 42:662-678. [PMID: 34106817 DOI: 10.1080/15321819.2021.1937212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bladder urothelial carcinoma (BUC) has two pathways with distinct molecular features and prognosis, non-muscle invasive (NMI) and muscle invasive (MI) tumors. The aim is to investigate the expression of GATA3 and CK5/6 in BUC with correlation to clinicopathologic parameters, including their impact on survival beside their potential use to stratify cases into prognostic subgroups. This study included 80 cases of BUC stained immunohistochemically by GATA3 and CK5/6. The cases were divided into four groups regarding expression status of both markers (luminal, basal, mixed, and null). GATA3 percentage of expression decreased in urothelial carcinoma with squamous differentiation, MI tumors, high-grade tumors, tumors with involved lymph nodes, presence of perineural invasion, presence of bilharziasis, presence of lympho-vascular invasion, and high mitotic count. CK5/6 positivity was higher in urothelial carcinoma cases with squamous differentiation, MI tumors, and presence of perineural invasion. Pure urothelial carcinoma and NMI were in favor of luminal group (GATA3 +ve/CK5/6 -ve). Univariate analysis showed that the presence of bilharziasis was associated with shorter PFS (p = .04). GATA3 and CK5/6 could be used for the stratification of urothelial bladder carcinoma into subtypes with different characteristics. Luminal bladder cancer represents the most common type (60%) that carries favorable features. Bilharziasis-associated urothelial carcinoma carries poor outcome manifested by short PFS.
Collapse
Affiliation(s)
| | - Asmaa Gaber Abdou
- Pathology Department, Faculty of Medicine, Menoufia University, Shebein Elkom, Egypt
| | | | - Alshimaa Mahmoud Alhanafy
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Menoufia University, Shebein Elkom, Egypt
| | - Shereen Fathy Mahmoud
- Pathology Department, Faculty of Medicine, Menoufia University, Shebein Elkom, Egypt
| |
Collapse
|
10
|
Moriguchi T. Development and Carcinogenesis: Roles of GATA Factors in the Sympathoadrenal and Urogenital Systems. Biomedicines 2021; 9:biomedicines9030299. [PMID: 33803938 PMCID: PMC8001475 DOI: 10.3390/biomedicines9030299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
The GATA family of transcription factors consists of six proteins (GATA1-6) that control a variety of physiological and pathological processes. In particular, GATA2 and GATA3 are coexpressed in a number of tissues, including in the urogenital and sympathoadrenal systems, in which both factors participate in the developmental process and tissue maintenance. Furthermore, accumulating studies have demonstrated that GATA2 and GATA3 are involved in distinct types of inherited diseases as well as carcinogenesis in diverse tissues. This review summarizes our current knowledge of how GATA2 and GATA3 participate in the transcriptional regulatory circuitry during the development of the sympathoadrenal and urogenital systems, and how their dysregulation results in the carcinogenesis of neuroblastoma, renal urothelial, and gynecologic cancers.
Collapse
Affiliation(s)
- Takashi Moriguchi
- Division of Medical Biochemistry, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan
| |
Collapse
|
11
|
Zhang MF, Li QL, Yang YF, Cao Y, Zhang CZ. FMNL1 Exhibits Pro-Metastatic Activity via CXCR2 in Clear Cell Renal Cell Carcinoma. Front Oncol 2020; 10:564614. [PMID: 33324547 PMCID: PMC7726248 DOI: 10.3389/fonc.2020.564614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/02/2020] [Indexed: 12/25/2022] Open
Abstract
Formin-like (FMNL) proteins are responsible for cytoskeletal remodeling and have been implicated in the progression and spread of human cancers. Yet the clinical significance and biological function of FMNL1 in clear cell renal cell carcinoma (ccRCC) remain unclear. In this study, the expression of FMNL1 in ccRCC and its clinical value were determined by tissue microarray-based IHC and statistical analyses. The role of FMNL1 in ccRCC metastasis and the underlying mechanism were investigated via in vitro and in vivo models using gene regulation detection, ChIP, Luciferase reporter assays, and rescue experiments. We show that FMNL1 is upregulated in ccRCC and exhibits pro-metastatic activity via induction of CXCR2. High expression of FMNL1 is significantly correlated with advanced tumor stage, higher pathological tumor grade, tumor metastasis, and unfavorable prognosis in two independent cohorts containing over 800 patients with ccRCC. The upregulation of FMNL1 in ccRCC is mediated by the loss of GATA3. Ectopic expression of FMNL1 promotes, whereas FMNL1 depletion inhibits cell migration in vitro and tumor metastasis in vivo. The FMNL1-enhanced cell mobility is markedly attenuated by the knockdown of CXCR2. Further studies demonstrate that FMNL1 increases the expression of CXCR2 via HDAC1. In clinical samples, FMNL1 expression is positively associated with CXCR2, and is negatively connected to GATA3 expression. Collectively, our data suggest FMNL1 serve as a potential prognostic factor and function as an oncogene. The axis of GATA3/FMNL1/CXCR2 may present a promising therapeutic target for tumor metastasis in ccRCC.
Collapse
Affiliation(s)
- Mei-Fang Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qiu-Li Li
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yu-Feng Yang
- Department of Pathology, Dongguan Third People's Hospital, Dongguan, China
| | - Yun Cao
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chris Zhiyi Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|