1
|
Rihan M, Sharma SS. Compound 3K attenuates isoproterenol-induced cardiac hypertrophy by inhibiting pyruvate kinase M2 (PKM2) pathway. Life Sci 2024; 351:122837. [PMID: 38879156 DOI: 10.1016/j.lfs.2024.122837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
AIM Chronic sympathetic stimulation has been identified as a primary factor in the pathogenesis of cardiac hypertrophy (CH). However, there is no appropriate treatment available for the management of CH. Recently, it has been revealed that pyruvate kinase M2 (PKM2) plays a significant role in cardiac remodeling, fibrosis, and hypertrophy. However, the therapeutic potential of selective PKM2 inhibitor has not yet been explored in cardiac hypertrophy. Thus, in the current study, we have studied the cardioprotective potential of Compound 3K, a selective PKM2 inhibitor in isoproterenol-induced CH model. METHODS To induce cardiac hypertrophy, male Wistar rats were subcutaneously administered isoproterenol (ISO, 5 mg/kg/day) for 14 days. Compound 3K at dosages of 2 and 4 mg/kg orally was administered to ISO-treated rats for 14 days to explore its effects on various parameters like ECG, ventricular functions, hypertrophic markers, histology, inflammation, and protein expression were performed. RESULTS Fourteen days administration of ISO resulted in the induction of CH, which was evidenced by alterations in ECG, ventricular dysfunctions, increase in hypertrophy markers, and fibrosis. The immunoblotting of hypertrophy heart revealed the significant rise in PKM2 and reduction in PKM1 protein expression. Treatment with Compound 3K led to downregulation of PKM2 and upregulation of PKM1 protein expression. Compound 3K showed cardioprotective effects by improving ECG, cardiac functions, hypertrophy markers, inflammation, and fibrosis. Further, it also reduced cardiac expression of PKM2-associated splicing protein, HIF-1α, and caspase-3. CONCLUSION Our findings suggest that Compound 3K has a potential cardioprotective effect via PKM2 inhibition in isoproterenol-induced CH.
Collapse
Affiliation(s)
- Mohd Rihan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar (Mohali) 160062, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar (Mohali) 160062, Punjab, India.
| |
Collapse
|
2
|
Hu N, Li H, Tao C, Xiao T, Rong W. The Role of Metabolic Reprogramming in the Tumor Immune Microenvironment: Mechanisms and Opportunities for Immunotherapy in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:5584. [PMID: 38891772 PMCID: PMC11171976 DOI: 10.3390/ijms25115584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
As one of the emerging hallmarks of tumorigenesis and tumor progression, metabolic remodeling is common in the tumor microenvironment. Hepatocellular carcinoma (HCC) is the third leading cause of global tumor-related mortality, causing a series of metabolic alterations in response to nutrient availability and consumption to fulfill the demands of biosynthesis and carcinogenesis. Despite the efficacy of immunotherapy in treating HCC, the response rate remains unsatisfactory. Recently, research has focused on metabolic reprogramming and its effects on the immune state of the tumor microenvironment, and immune response rate. In this review, we delineate the metabolic reprogramming observed in HCC and its influence on the tumor immune microenvironment. We discuss strategies aimed at enhancing response rates and overcoming immune resistance through metabolic interventions, focusing on targeting glucose, lipid, or amino acid metabolism, as well as systemic regulation.
Collapse
Affiliation(s)
- Nan Hu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (N.H.); (H.L.); (C.T.)
| | - Haiyang Li
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (N.H.); (H.L.); (C.T.)
| | - Changcheng Tao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (N.H.); (H.L.); (C.T.)
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Weiqi Rong
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (N.H.); (H.L.); (C.T.)
| |
Collapse
|
3
|
Li H, Qian F, Bao S. Identification and functional analysis of lactic acid metabolism-related differentially expressed genes in hepatocellular carcinoma. Front Genet 2024; 15:1390882. [PMID: 38689649 PMCID: PMC11058226 DOI: 10.3389/fgene.2024.1390882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a malignant tumor with high morbidity and mortality rate that seriously threatens human health. We aimed to investigate the expression, prognostic value, and immune cell infiltration of lactic acid metabolism-related genes (LAMRGs) in HCC using bioinformatics. Methods: The HCC database (The Cancer Genome Atlas-Liver Hepatocellular Carcinoma) was downloaded from the Cancer Genome Atlas (TCGA). Differentially expressed genes (DEGs) between normal and tumor groups were identified. The LAMRGs were obtained from literature and GeneCards and MSigDB databases. Lactic acid metabolism-related differentially expressed genes (LAMRDEGs) in HCC were screened from the DEGs and LAMRGs. Functional enrichment analyses of the screened LAMRDEGs were further conducted using Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and Gene Set Enrichment Analysis (GSEA). The genes were used in multivariate Cox regression and least absolute shrinkage and selection operator (LASSO) analyses to construct a prognostic model. Then, a protein-protein interaction network was constructed using STRING and CTD databases. Furthermore, the CIBERSORTx online database was used to assess the relationship between immune cell infiltration and hub genes. Results: Twenty-eight lactic acid metabolism-related differentially expressed genes (LAMRDEGs) were identified. The GO and KEGG analyses showed that the LAMRDEGs were related to the prognosis of HCC. The GSEA indicated that the LAMRDEGs were significantly enriched in tumor related pathways. In the multivariate Cox regression analysis, 14 key genes (E2F1, SERPINE1, GYS2, SPP1, PCK1, CCNB1, CYP2C9, IGFBP3, KDM8, RCAN1, ALPL, FBP1, NQO1, and LCAT) were found to be independent prognostic factors of HCC. Finally, the LASSO and Cox regression analyses showed that six key genes (SERPINE1, SPP1, CCNB1, CYP2C9, NQO1, and LCAT) were associated with HCC prognosis. Moreover, the correlation analyses revealed that the expression of the six key genes were associated with immune infiltrates of HCC. Conclusion: The LAMRDEGs can predict the prognosis and may be associated with immune cells infiltration in patients with HCC. These genes might be the promising biomarkers for the prognosis and treatment of HCC.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Laboratory Medicine, Huzhou Maternity and Child HealthCare Hospital, Huzhou, Zhejiang, China
| | - Fuchu Qian
- Department of Precision Medicine, Affiliated Central Hospital Huzhou University, Huzhou Central Hospital, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Shengjie Bao
- Department of Laboratory Medicine, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| |
Collapse
|
4
|
Qu H, Liu J, Zhang D, Xie R, Wang L, Hong J. Glycolysis in Chronic Liver Diseases: Mechanistic Insights and Therapeutic Opportunities. Cells 2023; 12:1930. [PMID: 37566009 PMCID: PMC10417805 DOI: 10.3390/cells12151930] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Chronic liver diseases (CLDs) cover a spectrum of liver diseases, ranging from nonalcoholic fatty liver disease to liver cancer, representing a growing epidemic worldwide with high unmet medical needs. Glycolysis is a conservative and rigorous process that converts glucose into pyruvate and sustains cells with the energy and intermediate products required for diverse biological activities. However, abnormalities in glycolytic flux during CLD development accelerate the disease progression. Aerobic glycolysis is a hallmark of liver cancer and is responsible for a broad range of oncogenic functions including proliferation, invasion, metastasis, angiogenesis, immune escape, and drug resistance. Recently, the non-neoplastic role of aerobic glycolysis in immune activation and inflammatory disorders, especially CLD, has attracted increasing attention. Several key mediators of aerobic glycolysis, including HIF-1α and pyruvate kinase M2 (PKM2), are upregulated during steatohepatitis and liver fibrosis. The pharmacological inhibition or ablation of PKM2 effectively attenuates hepatic inflammation and CLD progression. In this review, we particularly focused on the glycolytic and non-glycolytic roles of PKM2 in the progression of CLD, highlighting the translational potential of a glycolysis-centric therapeutic approach in combating CLD.
Collapse
Affiliation(s)
| | | | | | | | | | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China; (H.Q.)
| |
Collapse
|
5
|
Xu Y, Hao X, Ren Y, Xu Q, Liu X, Song S, Wang Y. Research progress of abnormal lactate metabolism and lactate modification in immunotherapy of hepatocellular carcinoma. Front Oncol 2023; 12:1063423. [PMID: 36686771 PMCID: PMC9853001 DOI: 10.3389/fonc.2022.1063423] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Tumors meet their energy, biosynthesis, and redox demands through metabolic reprogramming. This metabolic abnormality results in elevated levels of metabolites, particularly lactate, in the tumor microenvironment. Immune cell reprogramming and cellular plasticity mediated by lactate and lactylation increase immunosuppression in the tumor microenvironment and are emerging as key factors in regulating tumor development, metastasis, and the effectiveness of immunotherapies such as immune checkpoint inhibitors. Reprogramming of glucose metabolism and the "Warburg effect" in hepatocellular carcinoma (HCC) lead to the massive production and accumulation of lactate, so lactate modification in tumor tissue is likely to be abnormal as well. This article reviews the immune regulation of abnormal lactate metabolism and lactate modification in hepatocellular carcinoma and the therapeutic strategy of targeting lactate-immunotherapy, which will help to better guide the medication and treatment of patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yiwei Xu
- Marine College, Shandong University, Weihai, China
| | - Xiaodong Hao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yidan Ren
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qinchen Xu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shuliang Song
- Marine College, Shandong University, Weihai, China,*Correspondence: Shuliang Song, ; Yunshan Wang,
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China,*Correspondence: Shuliang Song, ; Yunshan Wang,
| |
Collapse
|
6
|
Gao S, Li X, Jiang Q, Liang Q, Zhang F, Li S, Zhang R, Luan J, Zhu J, Gu X, Xiao T, Huang H, Chen S, Ning W, Yang G, Yang C, Zhou H. PKM2 promotes pulmonary fibrosis by stabilizing TGF-β1 receptor I and enhancing TGF-β1 signaling. SCIENCE ADVANCES 2022; 8:eabo0987. [PMID: 36129984 PMCID: PMC9491720 DOI: 10.1126/sciadv.abo0987] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease, and the molecular mechanisms remain poorly understood. Our findings demonstrated that pyruvate kinase M2 (PKM2) promoted fibrosis progression by directly interacting with Smad7 and reinforcing transforming growth factor-β1 (TGF-β1) signaling. Total PKM2 expression and the portion of the tetrameric form elevated in lungs and fibroblasts were derived from mice with bleomycin (BLM)-induced pulmonary fibrosis. Pkm2 deletion markedly alleviated BLM-induced fibrosis progression, myofibroblast differentiation, and TGF-β1 signaling activation. Further study showed that PKM2 tetramer enhanced TGF-β1 signaling by directly binding with Smad7 on its MH2 domain, and thus interfered with the interaction between Smad7 and TGF-β type I receptor (TβR1), decreased TβR1 ubiquitination, and stabilized TβR1. Pharmacologically enhanced PKM2 tetramer by TEPP-46 promoted BLM-induced pulmonary fibrosis, while tetramer disruption by compound 3k alleviated fibrosis progression. Our results demonstrate how PKM2 regulates TGF-β1 signaling and is a key factor in fibrosis progression.
Collapse
Affiliation(s)
- Shaoyan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Qiuyan Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Qing Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Fangxia Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Shuangling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Ruiqin Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Jiaoyan Luan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Jingyan Zhu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Xiaoting Gu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Ting Xiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Hui Huang
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Shanshan Chen
- Respiratory department, The First Affiliated Hospital of Zhengzhou University, 450003 Zhangzhou, China
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guang Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| |
Collapse
|
7
|
Wang J, Sun M, Ma R, Wang G, Li W, Yang B, Yang Y. Down-regulation of NOTCH1 and PKM2 can inhibit the growth and metastasis of colorectal cancer cells. Am J Transl Res 2022; 14:5455-5465. [PMID: 36105047 PMCID: PMC9452328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Previous studies have revealed the overexpression of Notch receptor 1 (NOTCH1) and pyruvate kinase M2 (PKM2) in colorectal cancer (CRC) tissue and their relationship to disease development. However, whether there is synergy between PKM2 and NOTCH1 needs to be verified. This study aims to analyze the mechanism and relationship between NOTCH1 and PKM2 in CRC. METHODS Immunohistochemistry was used to measure the expression of NOTCH1 and PKM2 in colorectal cancer, and the correlation between them was analyzed by Pearson test. The protein and mRNA expressions in CRC cell lines were determined by western blot (WB) and real-time quantitative reverse transcription PCR (qRT-PCR). Compound 3K and tangeretin (TGN) were used to inhibit the expressions of PKM2 and NOTCH1, respectively. The wound healing assay and CCK-8 assay were applied to measure the migration and proliferation of cancer cells. RESULTS Immunohistochemical analysis showed that NOTCH1 and PKM2 were overexpressed in patients with colorectal cancer, and patients with overexpression showed a higher number of lymph node metastases and high tumor stage (III+IV) (P<0.05). In addition, Pearson test showed that the level of NOTCH1 was positively correlated with the level of PKM2 (P<0.05). WB and qRT-PCR showed that the protein and mRNA levels of NOTCH1 and PKM2 in colorectal cancer cells were significantly up-regulated (P<0.05). The inhibition of PKM2 and NOTCH1 had a synergistic effect on reducing the invasion and proliferation of CRC cells. CONCLUSION NOTCH1 and PKM2 are highly expressed in CRC patients. Inhibiting the expression of NOTCH1 and PKM2 can inhibit the growth and metastasis of CRC cells, providing therapeutic targets for the treatment of CRC.
Collapse
Affiliation(s)
- Jia Wang
- Department of General Surgery, Baoji City People’s HospitalBaoji 721000, Shaanxi, China
| | - Meijuan Sun
- Department of Pharmacy, Baoji Second People’s HospitalBaoji 721000, Shaanxi, China
| | - Rong Ma
- Department of Pathology, Baoji City People’s HospitalBaoji 721000, Shaanxi, China
| | - Gaobo Wang
- Department of General Surgery, Baoji City People’s HospitalBaoji 721000, Shaanxi, China
| | - Wenqing Li
- Department of General Surgery, Baoji City People’s HospitalBaoji 721000, Shaanxi, China
| | - Bowei Yang
- Department of General Surgery, Baoji City People’s HospitalBaoji 721000, Shaanxi, China
| | - Yang Yang
- Department of General Surgery, Baoji City People’s HospitalBaoji 721000, Shaanxi, China
| |
Collapse
|
8
|
Park JH, Lee JS, Oh Y, Lee JS, Park HE, Lee H, Park YS, Kyung SY, Kim HS, Yoon S. PKM2 Is Overexpressed in Glioma Tissues, and Its Inhibition Highly Increases Late Apoptosis in U87MG Cells With Low-density Specificity. In Vivo 2022; 36:694-703. [PMID: 35241524 PMCID: PMC8931915 DOI: 10.21873/invivo.12755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Pyruvate kinase M2 (PKM2) functions as an important rate-limiting enzyme in aerobic glycolysis and is involved in tumor initiation and progression. However, there are few studies on the correlation between PKM2 expression and its role in glioma. MATERIALS AND METHODS PKM2 expression was immunohistochemically examined in human brain tumor samples. Furthermore, we studied the effects of two PKM2 inhibitors (shikonin and compound 3K) on the U87MG glioma cell line. RESULTS PKM2 was overexpressed in most glioma tissues when compared to controls. Interestingly, glioma-adjacent tissues from showed slight PKM2 overexpression. This suggests that PKM2 overexpression maybe an important trigger factor for glioma tumorigenesis. We found that the PKM2 inhibitor shikonin was effective against U87MG cells at a relatively low dose and was largely dependent on low cellular density compared to the effects of the anticancer drug vincristine. Shikonin highly increased late-apoptosis of U87MG cells. We also demonstrated that autophagy was involved in the increase in late-apoptosis levels caused by shikonin. Although vincristine treatment led to a high level of G2-phase arrest in U87MG cells, shikonin did not increase G2 arrest. Co-treatment with two PKM2 inhibitors, shikonin and compound 3K, increased the inhibitory effects. CONCLUSION Combination therapy with PKM2 inhibitors together might be more effective than combination therapy with anticancer drugs. Our findings encourage the application of PKM2-targeting in gliomas, and lay the foundation for the development of PKM2 inhibitors as promising antitumor agents for glioma.
Collapse
Affiliation(s)
- Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jin-Sol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yunmoon Oh
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ji Sun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hae Eun Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Haeun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yeon Su Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - So Young Kyung
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sungpil Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|