1
|
Zhang R, Zhao J, Zhao L. EPAS1/HIF-2α Acts as an Unanticipated Tumor-Suppressive Role in Papillary Thyroid Carcinoma. Int J Gen Med 2023; 16:2165-2174. [PMID: 37284036 PMCID: PMC10239627 DOI: 10.2147/ijgm.s409874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Background Overexpression of hypoxia-inducible factors led to tumor angiogenesis and tumor progression. However, unlike HIF-1α, the role of EPAS1/HIF-2α in papillary thyroid carcinoma (PTC) was unknown. Here, we aimed to investigate the role of EPAS1/HIF-2α in PTC. Material and Methods EPAS1/HIF-2α expression of fresh frozen tumor samples and adjacent tissues in Tongji Hospital of 46 PTC patients was detected by RT-PCR. Gene expression datasets of PTC patients were gained from The Cancer Genome Atlas (TCGA) database. The Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set enrichment analysis (GSEA) were used to explore the potential biological function of EPAS1/HIF-2α. The effect of EPAS1/HIF-2α on immune microenvironment of PTC was analyzed in R package "estimate". The sensitivity to various targeted drugs was quantified in R package "pRRophetic", while the sensitivity to immunotherapy was estimated based on TCIA website. Results We found higher EPAS1/HIF-2α mRNA expression in PTC was associated with lower N stage, M stage, and better progression-free time (PFS) and disease-free time (DFS). Further, biological function analysis indicated that EPAS1/HIF-2α was mainly involved in PI3K-Akt signaling pathway. EPAS1/HIF-2α expression was positively related with CD8+ T cell infiltration and negatively related to PD-L1 expression and tumor mutation burden. Patients with low EPAS1/HIF-2α expression were more than likely to get a profit from Sorafenib, Dabrafenib, Cetuximab, Bosutinib, and immune checkpoint blockade. Conclusion Our results suggested that EPAS1/HIF-2α played an unanticipated tumor-suppressive role in PTC. EPAS1/HIF-2α contributed to anti-tumor immunity by promoting CD8+ T cell infiltration and inhibiting PD-L1 expression in PTC.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Thyroid and Breast Surgery, Wuhan No.1 Hospital, Wuhan, 430030, People’s Republic of China
| | - Jianguo Zhao
- Department of Thyroid and Breast Surgery, Wuhan No.1 Hospital, Wuhan, 430030, People’s Republic of China
| | - Lu Zhao
- Department of Thyroid and Breast Surgery, Tongji Hospital Affiliated with Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
2
|
Wang H, Chu F, Zhang XF, Zhang P, Li LX, Zhuang YL, Niu XF, He X, Li ZJ, Bai Y, Mao D, Liu ZW, Zhang DL, Li BA. TPX2 enhances the transcription factor activation of PXR and enhances the resistance of hepatocellular carcinoma cells to antitumor drugs. Cell Death Dis 2023; 14:64. [PMID: 36707511 PMCID: PMC9883482 DOI: 10.1038/s41419-022-05537-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 01/29/2023]
Abstract
The pregnane X receptor (PXR) is an important regulator of hepatocellular carcinoma cellular resistance to antitumor drugs. Activation of PXR was modulated by the co-regulators. The target protein for the Xenopus plus end-directed kinesin-like protein (Xklp2) known as TPX2 that was previously considered as a tubulin regulator, also functions as the regulator of some transcription factors and pro-oncogenes in human malignances. However, the actions of TPX2 on PXR and HCC cells are still unclear. In the present study, our results demonstrate that the high expression of endogenous mRNA level of TPX2 not only correlated with the poor prognosis of advanced HCC patients who received sorafenib treatment but also with expression of PXR's downstream genes, cyp3a4 and/or mdr-1. Results from luciferase and real-time polymerase chain reaction (qPCR) showed that TPX2 leads to enhancement of the transcription factor activation of PXR. Protein-protein interactions between PXR and TPX2 were identified using co-immunoprecipitation. Mechanically, overexpression of TPX2 led to enhancement of PXR recruitment to its downstream gene cyp3a4's promoter region (the PXRE region) or enhancer region (the XREM region). Treatment of HCC cells with paclitaxel, a microtubule promoter, led to enhancement of the effects of TPX2, whereas vincristine, a microtubule depolymerizing agent caused a decrease in TPX2-associated effects. TPX2 was found to cause acceleration of the metabolism or clearance of sorafenib, a typical tyrosine kinase inhibitor (TKI) in HCC cells and in turn led to the resistance to sorafenib by HCC cells. By establishing novel actions of TXP2 on PXR in HCC cells, the results indicate that TPX2 could be considered a promising therapeutic target to enhance HCC cells sensitivity to antitumor drugs.
Collapse
Affiliation(s)
- Hongbo Wang
- Senior Department of Hepatology, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China
| | - Fang Chu
- Department of Emergency, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China
| | - Xiao-Feng Zhang
- Senior Department of Hepatology, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China
| | - Peng Zhang
- Department of Urology, Chinese People's Liberation Army (PLA) General Hospital/Chinese PLA Medical Academy, Beijing, 100853, China
| | - Li-Xin Li
- Senior Department of Hepatology, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China
| | - Yun-Long Zhuang
- Senior Department of Hepatology, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China
| | - Xiao-Feng Niu
- Senior Department of Hepatology, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China
| | - Xi He
- Senior Department of Hepatology, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China
| | - Zhi-Jie Li
- Senior Department of Hepatology, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China
| | - Ying Bai
- Senior Department of Hepatology, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China
| | - Da Mao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, 100191, China
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, China
| | - Zhen-Wen Liu
- Senior Department of Hepatology, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China.
| | - Da-Li Zhang
- Senior Department of Hepatology, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China.
| | - Bo-An Li
- Clinical Laboratory, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China.
| |
Collapse
|
3
|
Liu C, Li J, Chen G, He R, Lin R, Huang Z, Li J, Du X, Lv X. A cohesin-associated gene score may predict immune checkpoint blockade in hepatocellular carcinoma. FEBS Open Bio 2022; 12:1857-1874. [PMID: 36052535 PMCID: PMC9527596 DOI: 10.1002/2211-5463.13474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/05/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Stromal antigen 1 (STAG1), a component of cohesion, is overexpressed in various cancers, but it is unclear whether it has a role in the transcriptional regulation of hepatocellular carcinoma (HCC). To test this hypothesis, here, we screened global HCC datasets and performed multiscale embedded gene co-expression network analysis to identify the potential functional modules of differentially expressed STAG1 co-expressed genes. The putative transcriptional targets of STAG1 were identified using chromatin immunoprecipitation followed by high-throughput DNA sequencing. The cohesin-associated gene score (CAGS) was quantified using the The Cancer Genome Atlas HCC cohort and single-sample gene set enrichment analysis. Distinct cohesin-associated gene patterns were identified by calculating the euclidean distance of each patient. We assessed the potential ability of the CAGS in predicting immune checkpoint blockade (ICB) treatment response using IMvigor210 and GSE78220 cohorts. STAG1 was upregulated in 3313 HCC tissue samples compared with 2692 normal liver tissue samples (standard mean difference = 0.54). A total of three cohesin-associated gene patterns were identified, where cluster 2 had a high TP53 mutated rate and a poor survival outcome. Low CAGS predicted a significant survival advantage but presaged poor immunotherapy response. Differentially expressed STAG1 co-expression genes were enriched in the mitotic cell cycle, lymphocyte activation, and blood vessel development. PDS5A and PDGFRA were predicted as the downstream transcriptional targets of STAG1. In summary, STAG1 is significantly upregulated in global HCC tissue samples and may participate in blood vessel development and the mitotic cell cycle. A cohesin-associated gene scoring system may have potential to predict the ICB response.
Collapse
Affiliation(s)
- Cui‐Zhen Liu
- Department of Medical OncologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Jian‐Di Li
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Gang Chen
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Rong‐Quan He
- Department of Medical OncologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Rui Lin
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Zhi‐Guang Huang
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Jian‐Jun Li
- Department of General SurgeryThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Xiu‐Fang Du
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Xiao‐Ping Lv
- Department of GastroenterologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| |
Collapse
|
4
|
Zhang M, Li J, Lin W, Qi L, Yao C, Zheng Z, Chen C, Duan S, Qi Y. EPAS1 Promoter Hypermethylation is a Diagnostic and Prognostic Biomarker for Non-Small Cell Lung Cancer. Genet Test Mol Biomarkers 2022; 26:360-374. [PMID: 35920832 DOI: 10.1089/gtmb.2021.0305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: The importance of promoter methylation in non-small cell lung cancers (NSCLCs) remains to be understood. Thus, we aimed to determine the diagnostic and prognostic value of methylation of the endothelial Per-Arnt-Sim (PAS) domain-containing protein 1 (EPAS1) promoter in NSCLC. Materials and Methods: EPAS1 promoter methylation levels were quantitated by a methylation-specific polymerase chain reaction. Furthermore, we evaluated the expression, promoter methylation, prognostic value, and impact on immune cell infiltration of EPAS1 by analyzing TCGA database or by web-based bioinformatics tools such as GEPIA, UALCAN, and MethSurv. Results: Our results demonstrated that promoter methylation of EPAS1 downregulated its expression in NSCLC tissues. Additionally, an area under the curve value of 0.772 indicated that methylation of the EPAS1 promoter is a potential diagnostic marker for NSCLC. Kaplan-Meier analysis demonstrated that high methylation levels of CpG sites in the EPAS1 promoter were indicative of worse overall survival (OS). Furthermore, EPAS1 expression levels were strongly correlated with infiltration of several types of immune cells, for instance, γδ T cells, T follicular helper cells, CD8+ T cells, and CD4+ T cells. Conclusions: Collectively, our findings demonstrated that methylation of the EPAS1 promoter is a promising prognostic biomarker for NSCLC and EPAS1 potentially plays an important role in immune cell infiltration in NSCLC.
Collapse
Affiliation(s)
- Mingfang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Pathology, Fujian Provincial Maternity Hospital, Fuzhou, China
| | - Weibin Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lin Qi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Caiyun Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhonghua Zheng
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Chujia Chen
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Shiwei Duan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Yuanlin Qi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
5
|
Ran Q, Xu D, Wang Q, Wang D. Hypermethylation of the Promoter Region of miR-23 Enhances the Metastasis and Proliferation of Multiple Myeloma Cells via the Aberrant Expression of uPA. Front Oncol 2022; 12:835299. [PMID: 35707350 PMCID: PMC9189361 DOI: 10.3389/fonc.2022.835299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple myeloma has a long course, with no obvious symptoms in the early stages. However, advanced stages are characterized by injury to the bone system and represent a severe threat to human health. The results of the present work indicate that the hypermethylation of miR-23 promoter mediates the aberrant expression of uPA/PLAU (urokinase plasminogen activator, uPA) in multiple myeloma cells. miR-23, a microRNA that potentially targets uPA’s 3’UTR, was predicted by the online tool miRDB. The endogenous expressions of uPA and miR-23 are related to disease severity in human patients, and the expression of miR-23 is negatively related to uPA expression. The hypermethylation of the promoter region of miR-23 is a promising mechanism to explain the low level of miR-23 or aberrant uPA expression associated with disease severity. Overexpression of miR-23 inhibited the expression of uPA by targeting the 3’UTR of uPA, not only in MM cell lines, but also in patient-derived cell lines. Overexpression of miR-23 also inhibited in vitro and in vivo invasion of MM cells in a nude mouse model. The results therefore extend our knowledge about uPA in MM and may assist in the development of more effective therapeutic strategies for MM treatment.
Collapse
Affiliation(s)
- Qijie Ran
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, China
- *Correspondence: Qijie Ran, ; Dongsheng Wang,
| | - Dehong Xu
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, China
| | - Qi Wang
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, China
| | - Dongsheng Wang
- Department of Neurosurgery, The Fifth People’s Hospital of Dalian, Dalian, China
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian City, China
- *Correspondence: Qijie Ran, ; Dongsheng Wang,
| |
Collapse
|
6
|
El-Mahdy HA, Sallam AAM, Ismail A, Elkhawaga SY, Elrebehy MA, Doghish AS. miRNAs inspirations in hepatocellular carcinoma: Detrimental and favorable aspects of key performers. Pathol Res Pract 2022; 233:153886. [PMID: 35405621 DOI: 10.1016/j.prp.2022.153886] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths worldwide. HCC initiation, progression, and therapy failure are all influenced by various variables, including microRNAs (miRNAs). miRNAs are short non-coding RNA sequences that modulate target mRNA expression by deteriorating or repressing translation. miRNAs play an imperative role in HCC pathogenesis by triggering the induction of cancer stem cells (CSCs) and their proliferation, while also delaying apoptosis, sustaining the cell cycle, and inspiring angiogenesis, invasion, and metastasis. Additionally, miRNAs modulate crucial HCC-related molecular pathways such as the p53 pathway, the Wnt/β-catenin pathway, VEGFR2, and PTEN/PI3K/AKT pathway. Consequently, the goal of this review was to give an up-to-date overview of oncogenic and tumor suppressor (TS) miRNAs, as well as their potential significance in HCC pathogenesis and treatment responses, highlighting their underpinning molecular pathways in HCC initiation and progression. Similarly, the biological importance and clinical application of miRNAs in HCC are summarized.
Collapse
Affiliation(s)
- Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
7
|
Niu X, Wu T, Li G, Gu X, Tian Y, Cui H. Insights into the critical role of the PXR in preventing carcinogenesis and chemotherapeutic drug resistance. Int J Biol Sci 2022; 18:742-759. [PMID: 35002522 PMCID: PMC8741843 DOI: 10.7150/ijbs.68724] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
Pregnane x receptor (PXR) as a nuclear receptor is well-established in drug metabolism, however, it has pleiotropic functions in regulating inflammatory responses, glucose metabolism, and protects normal cells against carcinogenesis. Most studies focus on its transcriptional regulation, however, PXR can regulate gene expression at the translational level. Emerging evidences have shown that PXR has a broad protein-protein interaction network, by which is implicated in the cross signaling pathways. Furthermore, the interactions between PXR and some critical proteins (e.g., p53, Tip60, p300/CBP-associated factor) in DNA damage pathway highlight its potential roles in this field. A thorough understanding of how PXR maintains genome stability and prevents carcinogenesis will help clinical diagnosis and finally benefit patients. Meanwhile, due to the regulation of CYP450 enzymes CYP3A4 and multidrug resistance protein 1 (MDR1), PXR contributes to chemotherapeutic drug resistance. It is worthy of note that the co-factor of PXR such as RXRα, also has contributions to this process, which makes the PXR-mediated drug resistance more complicated. Although single nucleotide polymorphisms (SNPs) vary between individuals, the amino acid substitution on exon of PXR finally affects PXR transcriptional activity. In this review, we have summarized the updated mechanisms that PXR protects the human body against carcinogenesis, and major contributions of PXR with its co-factors have made on multidrug resistance. Furthermore, we have also reviewed the current promising antagonist and their clinic applications in reversing chemoresistance. We believe our review will bring insight into PXR-targeted cancer therapy, enlighten the future study direction, and provide substantial evidence for the clinic in future.
Collapse
Affiliation(s)
- Xiaxia Niu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Ting Wu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Gege Li
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, USA
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| |
Collapse
|
8
|
Rigalli JP, Theile D, Nilles J, Weiss J. Regulation of PXR Function by Coactivator and Corepressor Proteins: Ligand Binding Is Just the Beginning. Cells 2021; 10:cells10113137. [PMID: 34831358 PMCID: PMC8625645 DOI: 10.3390/cells10113137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
The pregnane X receptor (PXR, NR1I2) is a nuclear receptor which exerts its regulatory function by heterodimerization with the retinoid-X-receptor α (RXRα, NR2B1) and binding to the promoter and enhancer regions of diverse target genes. PXR is involved in the regulation of drug metabolism and excretion, metabolic and immunological functions and cancer pathogenesis. PXR activity is strongly regulated by the association with coactivator and corepressor proteins. Coactivator proteins exhibit histone acetyltransferase or histone methyltransferase activity or associate with proteins having one of these activities, thus promoting chromatin decondensation and activation of the gene expression. On the contrary, corepressor proteins promote histone deacetylation and therefore favor chromatin condensation and repression of the gene expression. Several studies pointed to clear cell- and ligand-specific differences in the activation of PXR. In this article, we will review the critical role of coactivator and corepressor proteins as molecular determinants of the specificity of PXR-mediated effects. As already known for other nuclear receptors, understanding the complex mechanism of PXR activation in each cell type and under particular physiological and pathophysiological conditions may lead to the development of selective modulators with therapeutic potential.
Collapse
|
9
|
Moldogazieva NT, Zavadskiy SP, Sologova SS, Mokhosoev IM, Terentiev AA. Predictive biomarkers for systemic therapy of hepatocellular carcinoma. Expert Rev Mol Diagn 2021; 21:1147-1164. [PMID: 34582293 DOI: 10.1080/14737159.2021.1987217] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the third cancer-related cause of death worldwide. In recent years, several systemic therapy drugs including sorafenib, lenvatinib, regorafenib, cabozantinib, ramucicurab, nivilumab, and pembrolizumab have been approved by FDA for advanced HCC. However, their insufficient efficacy, toxicity, and drug resistance require clinically applicable and validated predictive biomarkers.Areas covered: Our review covers the recent advancements in the identification of proteomic/genomic/epigenomic/transcriptomic biomarkers for predicting HCC treatment efficacy with the use of multi-kinase inhibitors (MKIs), CDK4/6 inhibitors, and immune checkpoint inhibitors (ICIs). Alpha-fetoprotein, des-carboxyprothrombin, vascular endothelial growth factor, angiopoietin-2, and dysregulated MTOR, VEGFR2, c-KIT, RAF1, PDGFRβ have the potential of proteomic/genomic biomarkers for sorafenib treatment. Alanine aminotransferase, aspartate aminotransferase, and albumin-bilirubin grade can predict the efficacy of other MKIs. Rb, p16, and Ki-67, and genes involved in cell cycle regulation, CDK1-4, CCND1, CDKN1A, and CDKN2A have been proposed for CD4/6 inhibitors, while dysregulated TERT, CTNNB1, TP53 FGF19, and TP53 are found to be predictors for ICI efficacy.Expert opinion: There are still limited clinically applicable and validated predictive biomarkers to identify HCC patients who benefit from systemic therapy. Further prospective biomarker validation studies for HCC personalized systemic therapy are required.
Collapse
Affiliation(s)
- Nurbubu T Moldogazieva
- Laboratory of Bioinformatics, Institute of Translational Medicine and Biotechnology, I.m. Sechenov First Moscow State Medical University (Sechenov University);, Moscow, Russia
| | - Sergey P Zavadskiy
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.m. Sechenov First Moscow State Medical University (Sechenov University), Russia, Russia
| | - Susanna S Sologova
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.m. Sechenov First Moscow State Medical University (Sechenov University), Russia, Russia
| | - Innokenty M Mokhosoev
- Department of Biochemistry and Molecular Biology, N.i. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.i. Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
10
|
He X, Sun H, Jiang Q, Chai Y, Li X, Wang Z, Zhu B, You S, Li B, Hao J, Xin S. Hsa-miR-4277 Decelerates the Metabolism or Clearance of Sorafenib in HCC Cells and Enhances the Sensitivity of HCC Cells to Sorafenib by Targeting cyp3a4. Front Oncol 2021; 11:735447. [PMID: 34381736 PMCID: PMC8350395 DOI: 10.3389/fonc.2021.735447] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022] Open
Abstract
Increasing evidence has shown that the metabolism and clearance of molecular targeted agents, such as sorafenib, plays an important role in mediating the resistance of HCC cells to these agents. Metabolism of sorafenib is performed by oxidative metabolism, which is initially mediated by CYP3A4. Thus, targeting CYP3A4 is a promising approach to enhance the sensitivity of HCC cells to chemotherapeutic agents. In the present work, we examined the association between CYP3A4 and the prognosis of HCC patients receiving sorafenib. Using the online tool miRDB, we predicted that has-microRNA-4277 (miR-4277), an online miRNA targets the 3’UTR of the transcript of cyp3a4. Furthermore, overexpression of miR-4277 in HCC cells repressed the expression of CYP3A4 and reduced the elimination of sorafenib in HCC cells. Moreover, miR-4277 enhanced the sensitivity of HCC cells to sorafenib in vitro and in vivo. Therefore, our results not only expand our understanding of CYP3A4 regulation in HCC, but also provide evidence for the use of miR-4277 as a potential therapeutic in advanced HCC.
Collapse
Affiliation(s)
- Xi He
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Department of Liver Disease of Chinese PLA General Hospital, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huiwei Sun
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiyu Jiang
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yantao Chai
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaojuan Li
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhijie Wang
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bing Zhu
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Department of Liver Disease of Chinese PLA General Hospital, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shaoli You
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Department of Liver Disease of Chinese PLA General Hospital, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Boan Li
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Department of Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junfeng Hao
- Department of Nephrology, Jin Qiu Hospital of Liaoning Province/Geriatric Hospital of Liaoning Province, Shenyang, China
| | - Shaojie Xin
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Department of Liver Disease of Chinese PLA General Hospital, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Hu X, Zhu H, Shen Y, Zhang X, He X, Xu X. The Role of Non-Coding RNAs in the Sorafenib Resistance of Hepatocellular Carcinoma. Front Oncol 2021; 11:696705. [PMID: 34367979 PMCID: PMC8340683 DOI: 10.3389/fonc.2021.696705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death. Sorafenib is approved by the U.S. Food and Drug Administration to be a first-line chemotherapy agent for patients with advanced HCC. A portion of advanced HCC patients can benefit from the treatment with sorafenib, but many patients ultimately develop sorafenib resistance, leading to a poor prognosis. The molecular mechanisms of sorafenib resistance are sophisticated and indefinite. Notably, non-coding RNAs (ncRNAs), which include long ncRNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs), are critically participated in the occurrence and progression of tumors. Moreover, growing evidence has suggested that ncRNAs are crucial regulators in the development of resistance to sorafenib. Herein, we integrally and systematically summarized the molecular mechanisms and vital role of ncRNAs impact sorafenib resistance of HCC, and ultimately explored the potential clinical administrations of ncRNAs as new prognostic biomarkers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Xinyao Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Shen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyu Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoqin He
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Jie Y, Liu G, E M, Li Y, Xu G, Guo J, Li Y, Rong G, Li Y, Gu A. Novel small molecule inhibitors of the transcription factor ETS-1 and their antitumor activity against hepatocellular carcinoma. Eur J Pharmacol 2021; 906:174214. [PMID: 34116044 DOI: 10.1016/j.ejphar.2021.174214] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022]
Abstract
The transcription factor ETS-1 (E26 transformation specific sequence 1) is the key regulator for malignant tumor cell proliferation and invasion by mediating the transcription of the invasion/migration related factors, e.g. MMPs (matrix metalloproteinases). This work aims to identify the novel small molecule inhibitors of ETS-1 using a small molecule compound library and to study the inhibitors' antitumor activity against hepatocellular carcinoma (HCC). The luciferase reporter is used to examine the inhibition and activation of ETS-1's transcription factor activity in HCC cells, including a highly invasive HCC cell line, MHCC97-H, and five lines of patient-derived cells. The inhibition of the proliferation of HCC cells is examined using the MTT assay, while the invasion of HCC cells is examined using the transwell assay. The anti-tumor activity of the selected compound on HCC cells is also examined in a subcutaneous tumor model or intrahepatic tumor model in nude mice. The results show that for the first time, four compounds, EI1~EI-4, can inhibit the transcription factor activation of ETS-1 and the proliferation or invasion of HCC cells. Among the four compounds, EI-4 has the best activation. The results from this paper contribute to expanding our understanding of ETS-1 and provide alternative, the safer and more effective, HCC molecular therapy strategies.
Collapse
Affiliation(s)
- Yamin Jie
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Guijun Liu
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine Harbin, Heilongjiang, 150040, China.
| | - Mingyan E
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150040, China.
| | - Ying Li
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Guo Xu
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Jingjing Guo
- Department of Out-patient Clinic, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yinyin Li
- Department of Liver Disease, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| | - Guanghua Rong
- Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| | - Yongwu Li
- Department of Radiology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| | - Anxin Gu
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|