1
|
Zhang XX, Yu X, Zhu L, Luo JH. Establishment of a 6-signature risk model associated with cellular senescence for predicting the prognosis of breast cancer. Medicine (Baltimore) 2023; 102:e35923. [PMID: 37986376 PMCID: PMC10659633 DOI: 10.1097/md.0000000000035923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023] Open
Abstract
This study focused on screening novel markers associated with cellular senescence for predicting the prognosis of breast cancer. The RNA-seq expression profile of BRCA and clinical data were obtained from TCGA. The pam algorithm was used to cluster patients based on senescence-related genes. The weighted gene co-expression network analysis was used to identify co-expressed genes, and LASSO-Cox analysis was performed to build a risk prognosis model. The performance of the model was also evaluated. We additionally explored the role of senescence in cancer development and possible regulatory mechanism. The patients were clustered into 2 subtypes. A total of 5259 genes significantly related to senescence were identified by weighted gene co-expression network analysis. LASSO-Cox finally established a 6-signature risk model (ADAMTS8, DCAF12L2, PCDHA10, PGK1, SLC16A2, and TMEM233) that exhibited favorable and stable performance in our training, validation, and whole BRCA datasets. Furthermore, the superiority of our model was also observed after comparing it to other published models. The 6-signature was proved to be an independent risk factor for prognosis. In addition, mechanism prediction implied the activation of glycometabolism processes such as glycolysis and TCA cycle under the condition of senescence. Glycometabolism pathways were further found to negatively correlate with the infiltration level of CD8 T-cells and natural killer cells but positively correlate with M2 macrophage infiltration and expressions of tissue degeneration biomarkers, which suggested the deficit immune surveillance and risk of tumor migration. The constructed 6-gene model based on cellular senescence could be an effective indicator for predicting the prognosis of BRCA.
Collapse
Affiliation(s)
- Xiu-Xia Zhang
- Department of Thyroid and Breast Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Yu
- Department of Thyroid and Breast Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Li Zhu
- Pathology Department, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun-Hua Luo
- Department of Thyroid and Breast Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Li X, Wang X, Huang B, Huang R. Sennoside A restrains TRAF6 level to modulate ferroptosis, inflammation and cognitive impairment in aging mice with Alzheimer's Disease. Int Immunopharmacol 2023; 120:110290. [PMID: 37216800 DOI: 10.1016/j.intimp.2023.110290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a common neurodegenerative disease and a momentous cause of dementia in the elderly. Sennoside A (SA) is an anthraquinone compound and possesses decisive protective functions in various human diseases. The purpose of this research was to elucidate the protective effect of SA against AD and investigate its mechanism. METHODS Male APPswe/PS1dE9 (APP/PS1) transgenic mice with a C57BL/6J background were chosen as AD model. Age-matched nontransgenic littermates (C57BL/6 mice) were negative controls. SA's functions in AD in vivo were estimated by cognitive function analysis, Western blot, hematoxylin-eosin staining, TUNEL staining, Nissl staining, detection of Fe2+ levels, glutathione and malondialdehyde contents, and quantitative real-time PCR. Also, SA's functions in AD in LPS-induced BV2 cells were examined using Cell Counting Kit-8 assay, flow cytometry, quantitative real-time PCR, Western blot, enzyme-linked immunosorbent assay, and analysis of reactive oxygen species levels. Meanwhile, SA's mechanisms in AD were assessed by several molecular experiments. RESULTS Functionally, SA mitigated cognitive function, hippocampal neuronal apoptosis, ferroptosis, oxidative stress, and inflammation in AD mice. Furthermore, SA reduced BV2 cell apoptosis, ferroptosis, oxidative stress, and inflammation induced by LPS. Rescue assay revealed that SA abolished the high expressions of TRAF6 and p-P65 (NF-κB pathway-related proteins) induced by AD, and this impact was reversed after TRAF6 overexpression. Conversely, this impact was further enhanced after TRAF6 knockdown. CONCLUSIONS SA relieved ferroptosis, inflammation and cognitive impairment in aging mice with AD through decreasing TRAF6.
Collapse
Affiliation(s)
- Xiaojia Li
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, 610072, China
| | - Xiaoping Wang
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, 610072, China.
| | - Bin Huang
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, 610072, China
| | - Rui Huang
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, 610072, China
| |
Collapse
|
3
|
Li J, Wang M, Yao L, Lu B, Gui M, Zhou X, Fu D. Yixin Granules Reduce Myocardial Inflammation and Fibrosis in Rats with Heart Failure by Inhibiting the Expression of ADAMTS8. Int Heart J 2023; 64:741-749. [PMID: 37518355 DOI: 10.1536/ihj.22-715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Yixin granules are medications modified from a Chinese prescription (Sheng Xian Tang) that has been used to alleviate shortness of breath. ADAM metallopeptidase with thrombospondin type 1 motif 8 (ADAMTS8) is upregulated in the myocardium of patients with dilated cardiomyopathy. Its high expression is associated with tumor necrosis factor (TNF) -α and myocardial fibrosis. This study aimed to explore the effect of Yixin granules on heart failure (HF) in rats and whether this effect is correlated with ADAMTS8 to provide new ideas for the treatment of HF.HF rat models were established by ligation of the left anterior descending coronary artery. Model rats were injected with adeno-associated virus vectors for the overexpression of ADAMTS8 and/or treated with Yixin granules for 4 weeks. Hematoxylin-eosin and Masson staining were used to detect myocardial injury and fibrosis, respectively. Reverse transcription polymerase chain reaction, western blotting, and/or enzyme-linked immunosorbent assay were used to detect the expression of ADAMTS8, TNF-α, interleukin (IL) -1β, IL-6, collagen I, collagen III, and α-smooth muscle actin in myocardium. The myocardial infarction area of rats was measured using 2,3,5-triphenyltetrazolium chloride staining.ADAMTS8 was upregulated in the myocardium of HF rats. Yixin granule treatment improved left ventricular contractility and reduced ADAMTS8 expression, myocardial injury, inflammation, and fibrosis in HF rats. ADAMTS8 overexpression aggravated myocardial injury, inflammation, and fibrosis. Moreover, ADAMTS8 overexpression counteracted the cardioprotective effects of Yixin granules.Yixin granules may reduce myocardial inflammation and fibrosis in HF rats by inhibiting the expression of ADAMTS8.
Collapse
Affiliation(s)
- Jianhua Li
- Department of Heart Disease, Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine
| | - Mingzhu Wang
- Department of Heart Disease, Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine
| | - Lei Yao
- Department of Heart Disease, Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine
| | - Bo Lu
- Department of Heart Disease, Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine
| | - Mingtai Gui
- Department of Heart Disease, Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine
| | - Xunjie Zhou
- Department of Heart Disease, Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine
| | - Deyu Fu
- Department of Heart Disease, Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine
| |
Collapse
|
4
|
Wang F, Su Q, Li C. Identidication of novel biomarkers in non-small cell lung cancer using machine learning. Sci Rep 2022; 12:16693. [PMID: 36202977 PMCID: PMC9537298 DOI: 10.1038/s41598-022-21050-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide, and non-small cell lung cancer (NSCLC) accounts for a large proportion of lung cancer cases, with few diagnostic and therapeutic targets currently available for NSCLC. This study aimed to identify specific biomarkers for NSCLC. We obtained three gene-expression profiles from the Gene Expression Omnibus database (GSE18842, GSE21933, and GSE32863) and screened for differentially expressed genes (DEGs) between NSCLC and normal lung tissue. Enrichment analyses were performed using Gene Ontology, Disease Ontology, and the Kyoto Encyclopedia of Genes and Genomes. Machine learning methods were used to identify the optimal diagnostic biomarkers for NSCLC using least absolute shrinkage and selection operator logistic regression, and support vector machine recursive feature elimination. CIBERSORT was used to assess immune cell infiltration in NSCLC and the correlation between biomarkers and immune cells. Finally, using western blot, small interfering RNA, Cholecystokinin-8, and transwell assays, the biological functions of biomarkers with high predictive value were validated. A total of 371 DEGs (165 up-regulated genes and 206 down-regulated genes) were identified, and enrichment analysis revealed that these DEGs might be linked to the development and progression of NSCLC. ABCA8, ADAMTS8, ASPA, CEP55, FHL1, PYCR1, RAMP3, and TPX2 genes were identified as novel diagnostic biomarkers for NSCLC. Monocytes were the most visible activated immune cells in NSCLC. The knockdown of the TPX2 gene, a biomarker with a high predictive value, inhibited A549 cell proliferation and migration. This study identified eight potential diagnostic biomarkers for NSCLC. Further, the TPX2 gene may be a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Fangwei Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qisheng Su
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chaoqian Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
5
|
Zhang K, Yu C, Tian R, Zhang W, Tang S, Wang G. Downregulation of the paired box gene 3 inhibits the progression of skin cutaneous melanoma by inhibiting c-MET tyrosine kinase : PAX3 downregulation inhibits melanoma progression. Mol Biol Rep 2022; 49:9137-9145. [PMID: 36057879 DOI: 10.1007/s11033-022-07706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND The PAX3 (paired box gene 3) gene is highly expressed in several cancer types. However, its underlying mechanism of action in skin cutaneous melanoma (SKCM) remains unknown. METHODS In this study, we used the GEPIA database and western blotting to analyze the expression of PAX3. We performed the Kaplan-Meier survival analysis to evaluate the prognostic value of PAX3 in SKCM. Next, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed to evaluate the function of PAX3-related co-expressed genes. Additionally, the function and potential mechanism of action of PAX3 in SKCM were studied through functional experiments. Western blotting was used to detect the changes in the levels of epithelial-mesenchymal transition (EMT)-related and MET (c-MET tyrosine kinase) proteins following PAX3 knockdown. Finally, we assessed the correlation between PAX3 expression and the infiltration of CD4+/CD8+ T cells using the TISIDB database. RESULTS We found that PAX3 was overexpressed in the SKCM tissues and that these levels were indicative of a poor prognosis of SKCM. The KEGG pathway enrichment analysis showed that PAX3-related co-expressed genes were mainly associated with the oncogenic pathways. Knocking down PAX3 significantly inhibited the proliferation, invasion, and migration of SK-MEL-28 cells. The PAX3 expression was related significantly to the immune infiltration level of CD4+/CD8+ T cells. CONCLUSIONS Our findings demonstrated that PAX3 knockdown could reverse the EMT of tumor cells, inhibit the growth, and progression of SKCM cells. Therefore, PAX3 may have implications as a potential therapeutic target and promising prognostic biomarker for SKCM.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, CN, China
| | - Chunfang Yu
- Department of Nursing, Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, CN, China
| | - Ruoxi Tian
- School of Basic Medicine, Tianjin Medical University, Tianjin, CN, China
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, CN, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, CN, China
| | - Guiying Wang
- Department of General Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hbei, CN, China
| |
Collapse
|
6
|
Qu H, Khalil RA. Role of ADAM and ADAMTS Disintegrin and Metalloproteinases in Normal Pregnancy and Preeclampsia. Biochem Pharmacol 2022; 206:115266. [PMID: 36191626 DOI: 10.1016/j.bcp.2022.115266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022]
Abstract
Normal pregnancy (NP) involves intricate processes starting with egg fertilization, proceeding to embryo implantation, placentation and gestation, and culminating in parturition. These pregnancy-related processes require marked uteroplacental and vascular remodeling by proteolytic enzymes and metalloproteinases. A disintegrin and metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS) are members of the zinc-dependent family of proteinases with highly conserved protein structure and sequence homology, which include a pro-domain, and a metalloproteinase, disintegrin and cysteine-rich domain. In NP, ADAMs and ADAMTS regulate sperm-egg fusion, embryo implantation, trophoblast invasion, placental angiogenesis and spiral arteries remodeling through their ectodomain proteolysis of cell surface cytokines, cadherins and growth factors as well as their adhesion with integrins and cell-cell junction proteins. Preeclampsia (PE) is a serious complication of pregnancy characterized by new-onset hypertension (HTN) in pregnancy (HTN-Preg) at or after 20 weeks of gestation, with or without proteinuria. Insufficient trophoblast invasion of the uterine wall, inadequate expansive remodeling of the spiral arteries, reduced uteroplacental perfusion pressure, and placental ischemia/hypoxia are major initiating events in the pathogenesis of PE. Placental ischemia/hypoxia increase the release of reactive oxygen species (ROS), which lead to aberrant expression/activity of certain ADAMs and ADAMTS. In PE, abnormal expression/activity of specific ADAMs and ADAMTS that function as proteolytic sheddases could alter proangiogenic and growth factors, and promote the release of antiangiogenic factors and inflammatory cytokines into the placenta and maternal circulation leading to generalized inflammation, endothelial cell injury and HTN-Preg, renal injury and proteinuria, and further decreases in uteroplacental blood flow, exaggeration of placental ischemia, and consequently fetal growth restriction. Identifying the role of ADAMs and ADAMTS in NP and PE has led to a better understanding of the underlying molecular and vascular pathways, and advanced the potential for novel biomarkers for prediction and early detection, and new approaches for the management of PE.
Collapse
Affiliation(s)
- Hongmei Qu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA.
| |
Collapse
|
7
|
The Therapeutic Potential of ADAMTS8 in Lung Adenocarcinoma without Targetable Therapy. J Pers Med 2022; 12:jpm12060902. [PMID: 35743687 PMCID: PMC9225423 DOI: 10.3390/jpm12060902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Lung cancer is well known for its high mortality worldwide. The treatment for advanced lung cancer needs more attention to improve its survival time. A disintegrin and metallopeptidase with thrombospondin motifs 8 (ADAMTS8) has been linked to several cancer types. However, its role in lung cancer is worthy of deep investigation to promote novel drug development. This study took advantage of RNA-seq and bioinformatics to verify the role that ADAMTS8 plays in lung cancer. The functional assays suggested that ADAMTS8 mediates invasion and metastasis when expressed at a low level, contributing to poor overall survival (OS). The expression of ADAMTS8 was under the regulation of GATA Binding Protein 1 (GATA1) and executed its pathologic role through Thrombospondin Type 1 Domain Containing 1 (THSD1) and ADAMTS Like 2 (ADAMTSL2). To define the impact of ADAMTS8 in the lung cancer treatment strategy, this study further grouped lung cancer patients in the TCGA database into mutated epidermal growth factor receptor (EGFR)/wild-type EGFR and programmed death ligand 1 (PD-L1) high/low groups. Importantly, the expression of ADAMTS8 was correlated positively with the recruitment of anticancer NKT cells and negatively with the infiltration of immunosuppressive Treg and exhausted T cells. The results indicated that lung cancer patients with higher ADAMTS8 levels among wild-type EGFR or low PD-L1 groups survive longer than those with lower levels do. This study indicates that ADAMTS8 might be a treatment option for patients with lung adenocarcinoma who lack efficient targeted or immunotherapies.
Collapse
|
8
|
Hrabia A, Miska KB, Schreier LL, Proszkowiec-Weglarz M. Altered gene expression of selected matrix metalloproteinase system proteins in the broiler chicken gastrointestinal tract during post-hatch development and coccidia infection*. Poult Sci 2022; 101:101915. [PMID: 35687960 PMCID: PMC9190011 DOI: 10.1016/j.psj.2022.101915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 11/20/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of proteases, that can process extracellular matrix (ECM) components and non-ECM molecules. MMPs can also function intracellularly in proteolytic and nonproteolytic functions. The participation of MMPs in the remodeling of the chicken gastrointestinal tract is largely unknown. The aim of the present study was to examine 1) the early neonatal developmental changes and effect of delayed access to feed immediately post-hatch (PH) and 2) the effect of Eimeria infection on mRNA expression of selected MMPs, their tissue inhibitors (TIMPs), and a disintegrin and metalloproteinase (ADAM) metallopeptidase with thrombospondin type 1 motif 8 (ADAMTS8) in the gastrointestinal tract of chicken. Protein localization of MMPs and TIMPs was also carried out in the normal ileal wall at −48, 24, and 336 h relative to hatch using immunofluorescence. In experiment 1, newly hatched Ross 708 chicks received feed and water immediately PH or were subjected to 48 h delayed access to feed. Chickens were sampled at −48, 0, 4, 24, 48, 72, 96, 144, 192, 240, 288, and 336 h PH. Ileum was collected for investigation of gene expression or fixed in paraformaldehyde for immunofluorescence. In experiments 2 and 3, Ross 708 male broilers were infected, at 21 d of age with Eimeria maxima or E. acervulina or sham-infected with water. Intestinal tissues were collected at 7 and 10 d postinfection for gene expression analysis. In general, mRNA expression patterns of all examined genes showed downregulation during the first 2 wk PH and were not affected by delay in feed access. These development-dependent changes in expression and tissue-dependent localization in the ileum of selected MMPs and TIMPs indicate that these molecules participate in the remodeling of chicken intestinal tissues during PH development. Increased expression of MMP-7 and MMP-9 transcripts in the intestine of Eimeria infected birds suggests an important role for these enzymes in the process of tissue remodeling and destruction in pathological conditions. The findings of this study are important for understanding the relationship between the expression of the MMP system and intestinal development, as well its role in gastrointestinal infection and subsequent recovery.
Collapse
Affiliation(s)
- Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Poland
| | - Katarzyna B Miska
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Northeast Area (NEA), Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville, MD 20705, USA
| | - Lori L Schreier
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Northeast Area (NEA), Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville, MD 20705, USA
| | - Monika Proszkowiec-Weglarz
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Northeast Area (NEA), Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville, MD 20705, USA.
| |
Collapse
|