1
|
Jiang X, Huang K, Sun X, Li Y, Hua L, Liu F, Huang R, Du J, Zeng H. Hexamethylene amiloride synergizes with venetoclax to induce lysosome-dependent cell death in acute myeloid leukemia. iScience 2024; 27:108691. [PMID: 38205254 PMCID: PMC10776932 DOI: 10.1016/j.isci.2023.108691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/15/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
Tumors maintain an alkaline intracellular environment to enable rapid growth. The proton exporter NHE1 participates in maintenance of this pH gradient. However, whether targeting NHE1 could inhibit the growth of tumor cells remains unknown. Here, we report that the NHE1 inhibitor Hexamethylene amiloride (HA) efficiently suppresses the growth of AML cell lines. Moreover, HA combined with venetoclax synergized to efficiently inhibit the growth of AML cells. Interestingly, lysosomes are the main contributors to the synergism of HA and venetoclax in inhibiting AML cells. Most importantly, the combination of HA and venetoclax also had prominent anti-leukemia effects in both xenograft models and bone marrow samples from AML patients. In summary, our results provide evidence that the NHE1 inhibitor HA or its combination with venetoclax efficiently inhibits the growth of AML in vitro and in vivo.
Collapse
Affiliation(s)
- Xinya Jiang
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kexiu Huang
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Xiaofan Sun
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Yue Li
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Lei Hua
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Fangshu Liu
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Rui Huang
- Department of Hematology, Zhujiang Hospital of Southern Medical University, Guangzhou, P.R. China
| | - Juan Du
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| |
Collapse
|
2
|
Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, Zou Y, Wang JX, Wang Z, Yu T. Lactate metabolism in human health and disease. Signal Transduct Target Ther 2022; 7:305. [PMID: 36050306 PMCID: PMC9434547 DOI: 10.1038/s41392-022-01151-3] [Citation(s) in RCA: 380] [Impact Index Per Article: 126.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/17/2022] [Accepted: 08/09/2022] [Indexed: 12/29/2022] Open
Abstract
The current understanding of lactate extends from its origins as a byproduct of glycolysis to its role in tumor metabolism, as identified by studies on the Warburg effect. The lactate shuttle hypothesis suggests that lactate plays an important role as a bridging signaling molecule that coordinates signaling among different cells, organs and tissues. Lactylation is a posttranslational modification initially reported by Professor Yingming Zhao’s research group in 2019. Subsequent studies confirmed that lactylation is a vital component of lactate function and is involved in tumor proliferation, neural excitation, inflammation and other biological processes. An indispensable substance for various physiological cellular functions, lactate plays a regulatory role in different aspects of energy metabolism and signal transduction. Therefore, a comprehensive review and summary of lactate is presented to clarify the role of lactate in disease and to provide a reference and direction for future research. This review offers a systematic overview of lactate homeostasis and its roles in physiological and pathological processes, as well as a comprehensive overview of the effects of lactylation in various diseases, particularly inflammation and cancer.
Collapse
Affiliation(s)
- Xiaolu Li
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University; Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaotong Lin
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266555, China
| | - Yulin Zou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Jian-Xun Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| | - Tao Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University; Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| |
Collapse
|
3
|
Pathophysiological role of ion channels and transporters in gastrointestinal mucosal diseases. Cell Mol Life Sci 2021; 78:8109-8125. [PMID: 34778915 PMCID: PMC8629801 DOI: 10.1007/s00018-021-04011-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/10/2021] [Accepted: 10/23/2021] [Indexed: 11/13/2022]
Abstract
The incidence of gastrointestinal (GI) mucosal diseases, including various types of gastritis, ulcers, inflammatory bowel disease and GI cancer, is increasing. Therefore, it is necessary to identify new therapeutic targets. Ion channels/transporters are located on cell membranes, and tight junctions (TJs) affect acid–base balance, the mucus layer, permeability, the microbiota and mucosal blood flow, which are essential for maintaining GI mucosal integrity. As ion channel/transporter dysfunction results in various GI mucosal diseases, this review focuses on understanding the contribution of ion channels/transporters to protecting the GI mucosal barrier and the relationship between GI mucosal disease and ion channels/transporters, including Cl−/HCO3− exchangers, Cl− channels, aquaporins, Na+/H+ exchangers, and K+ channels. Here, we provide novel prospects for the treatment of GI mucosal diseases.
Collapse
|