1
|
Skok Gibbs C, Mahmood O, Bonneau R, Cho K. PMF-GRN: a variational inference approach to single-cell gene regulatory network inference using probabilistic matrix factorization. Genome Biol 2024; 25:88. [PMID: 38589899 PMCID: PMC11003171 DOI: 10.1186/s13059-024-03226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Inferring gene regulatory networks (GRNs) from single-cell data is challenging due to heuristic limitations. Existing methods also lack estimates of uncertainty. Here we present Probabilistic Matrix Factorization for Gene Regulatory Network Inference (PMF-GRN). Using single-cell expression data, PMF-GRN infers latent factors capturing transcription factor activity and regulatory relationships. Using variational inference allows hyperparameter search for principled model selection and direct comparison to other generative models. We extensively test and benchmark our method using real single-cell datasets and synthetic data. We show that PMF-GRN infers GRNs more accurately than current state-of-the-art single-cell GRN inference methods, offering well-calibrated uncertainty estimates.
Collapse
Affiliation(s)
| | - Omar Mahmood
- Center for Data Science, New York University, New York, NY, 10011, USA
| | - Richard Bonneau
- Center for Data Science, New York University, New York, NY, 10011, USA
- Prescient Design, Genentech, New York, NY, 10010, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Kyunghyun Cho
- Center for Data Science, New York University, New York, NY, 10011, USA.
- Prescient Design, Genentech, New York, NY, 10010, USA.
| |
Collapse
|
2
|
Rafiq Mohammed A, Assad D, Rostami G, Hamid M. Frequency and prognostic influence of ASXL1 mutations and its potential association with BCR-ABL1 transcript type and smoke in chronic myeloid leukemia patients. Gene 2023; 886:147776. [PMID: 37689224 DOI: 10.1016/j.gene.2023.147776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND Heterogeneous response to tyrosine kinase inhibitors (TKIs) and progress to advance phases, still is a significant clinical problem. These are attributed to additional mutations in mutated non-ABL1 genes. we aimed to determine prognostic effects of ASXL1 mutations as a biomarker for diverse treatment response and disease progression to aid clinical management. METHODS We performed ASXL1 gene mutational screening in 80 Ph+CML patients at different phases and 10 healthy control by direct sequencing method. Multiplex and qRT-PCR, standard chromosome banding analysis were used to determine BCR-ABL1 transcript type, molecular and cytogenetic responses respectively. RESULTS overall, four type mutations were identified in 11.25% of the patients. There was significant difference regarding mutation frequency between chronic and advance phases (P = 0.0002), sokal risk score (P = 0.0001), smoking (P = 0.02) and mean of during time of imatinib treatment (P = 0.009) between patients with and without ASXL1 mutations. ASXL1 mutations frequency had a bias toward younger than older and women than men, but no significant (P > 0.05). ASXL1 mutations were found more recurrently in patients carrying ABL1 KD mutations (P = 0.003). The risk of increasing resistance and disease progression in patients with ASXL1 mutations was 32 and 63 fold higher than those without mutations respectively (P = 0.01; P = 0.0002). The risk of ASXL1 mutations presence in patients with b2a2 transcript type was much higher than b3a2 type (P = 0.02, OR = 10). CONCLUSION Our findings suggest that ASXL1 mutations may be favorable predictive biomarkers to determine the best TKI for each patient, and to prevent CML progression.
Collapse
Affiliation(s)
- Aras Rafiq Mohammed
- Department of Biology, College of Science, Sulaimani University, Sulaymanyah, Iraq
| | - Dlnya Assad
- Department of Biology, College of Science, Sulaimani University, Sulaymanyah, Iraq
| | - Golale Rostami
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Hamid
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Yoshimaru R, Minami Y. Genetic Landscape of Chronic Myeloid Leukemia and a Novel Targeted Drug for Overcoming Resistance. Int J Mol Sci 2023; 24:13806. [PMID: 37762109 PMCID: PMC10530602 DOI: 10.3390/ijms241813806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) exemplify the success of molecular targeted therapy for chronic myeloid leukemia (CML). However, some patients do not respond to TKI therapy. Mutations in the kinase domain of BCR::ABL1 are the most extensively studied mechanism of TKI resistance in CML, but BCR::ABL1-independent mechanisms are involved in some cases. There are two known types of mechanisms that contribute to resistance: mutations in known cancer-related genes; and Philadelphia-associated rearrangements, a novel mechanism of genomic heterogeneity that occurs at the time of the Philadelphia chromosome formation. Most chronic-phase and accelerated-phase CML patients who were treated with the third-generation TKI for drug resistance harbored one or more cancer gene mutations. Cancer gene mutations and additional chromosomal abnormalities were found to be independently associated with progression-free survival. The novel agent asciminib specifically inhibits the ABL myristoyl pocket (STAMP) and shows better efficacy and less toxicity than other TKIs due to its high target specificity. In the future, pooled analyses of various studies should address whether additional genetic analyses could guide risk-adapted therapy and lead to a final cure for CML.
Collapse
Affiliation(s)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa-shi 277-8577, Japan;
| |
Collapse
|
4
|
Fernandes A, Shanmuganathan N, Branford S. Genomic Mechanisms Influencing Outcome in Chronic Myeloid Leukemia. Cancers (Basel) 2022; 14:620. [PMID: 35158889 PMCID: PMC8833554 DOI: 10.3390/cancers14030620] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic myeloid leukemia (CML) represents the disease prototype of genetically based diagnosis and management. Tyrosine kinase inhibitors (TKIs), that target the causal BCR::ABL1 fusion protein, exemplify the success of molecularly based therapy. Most patients now have long-term survival; however, TKI resistance is a persistent clinical problem. TKIs are effective in the BCR::ABL1-driven chronic phase of CML but are relatively ineffective for clinically defined advanced phases. Genomic investigation of drug resistance using next-generation sequencing for CML has lagged behind other hematological malignancies. However, emerging data show that genomic abnormalities are likely associated with suboptimal response and drug resistance. This has already been supported by the presence of BCR::ABL1 kinase domain mutations in drug resistance, which led to the development of more potent TKIs. Next-generation sequencing studies are revealing additional mutations associated with resistance. In this review, we discuss the initiating chromosomal translocation that may not always be a straightforward reciprocal event between chromosomes 9 and 22 but can sometimes be accompanied by sequence deletion, inversion, and rearrangement. These events may biologically reflect a more genomically unstable disease prone to acquire mutations. We also discuss the future role of cancer-related gene mutation analysis for risk stratification in CML.
Collapse
Affiliation(s)
- Adelina Fernandes
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide 5000, Australia; (A.F.); (N.S.)
- School of Medicine, University of Adelaide, Adelaide 5000, Australia
- Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide 5000, Australia
| | - Naranie Shanmuganathan
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide 5000, Australia; (A.F.); (N.S.)
- School of Medicine, University of Adelaide, Adelaide 5000, Australia
- Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide 5000, Australia
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide 5000, Australia
- School of Pharmacy and Medical Science, University of South Australia, Adelaide 5000, Australia
| | - Susan Branford
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide 5000, Australia; (A.F.); (N.S.)
- School of Medicine, University of Adelaide, Adelaide 5000, Australia
- Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide 5000, Australia
- School of Pharmacy and Medical Science, University of South Australia, Adelaide 5000, Australia
| |
Collapse
|
5
|
Wang L, Chen S, Shen Y, Si P. BCORL1 S878G, GNB1 G116S, SH2B3 A536T, and KMT2D S3708R tetramutation co-contribute to a pediatric acute myeloid leukemia: Case report and literature review. Front Pediatr 2022; 10:993952. [PMID: 36324816 PMCID: PMC9618691 DOI: 10.3389/fped.2022.993952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clinically, morphologically, and genetically heterogeneous group of malignancies characterized by a wide range of genomic alterations responsible for defective regulation of the differentiation and self-renewal programs of hematopoietic stem cells. Here, we report a 4-month-old boy who had acute onset with leukocytosis and abdominal mass. The morphological analysis of bone marrow (BM) smear revealed extremely marrow hyperplasia, large quantities of immature cells, and primary and immature monocytic hyperplasia accounting for 57.5% of nucleated cells. The chromosome karyotype of the case was complex, representing 48, XY, +13, +19[12]/48, idem, del (p12)[8]. After RNAs sequencing, a mutation (c.346G > A, p.G116S) of the GNB1 gene was detected and localized to the mutational hotspot in Exon 7. Meanwhile, the other three mutations were identified by next-generation sequencing (NGS) and whole-exome sequencing (WES) of DNA from the BM aspirate and oral swab, including BCORL1 mutation [c.2632A > G, p.S878G, mutation allele frequency (VAF): 99.95%], SH2B3 mutation (c.1606G > A, p.A536T, VAF: 51.17%), and KMT2D mutation (c.11124C > G, p.S3708R, VAF: 48.95%). BCORL1 mutations have been associated with the pathogenesis of AML, whereas other mutations have rarely been previously reported in pediatric AML. The patient did not undergo the combination chemotherapy and eventually died of respiratory failure. In conclusion, the concurrence of BCORL1, GNB1, SH2B3, and KMT2D mutations may be a mutationally detrimental combination and contribute to disease progression.
Collapse
Affiliation(s)
- Liang Wang
- Department of Clinical Laboratory, Tianjin Children's Hospital/Children's Hospital of Tianjin University, Tianjin, China
| | - Sen Chen
- Department of Hematology, Tianjin Children's Hospital/Children's Hospital of Tianjin University, Tianjin, China
| | - Yongming Shen
- Department of Clinical Laboratory, Tianjin Children's Hospital/Children's Hospital of Tianjin University, Tianjin, China
| | - Ping Si
- Department of Clinical Laboratory, Tianjin Children's Hospital/Children's Hospital of Tianjin University, Tianjin, China
| |
Collapse
|
6
|
Romzova M, Smitalova D, Hynst J, Tom N, Loja T, Herudkova Z, Jurcek T, Stejskal L, Zackova D, Mayer J, Racil Z, Culen M. Hierarchical distribution of somatic variants in newly diagnosed chronic myeloid leukaemia at diagnosis and early follow-up. Br J Haematol 2021; 194:604-612. [PMID: 34212373 DOI: 10.1111/bjh.17659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/30/2022]
Abstract
There is an emerging body of evidence that patients with chronic myeloid leukaemia (CML) may carry not only breakpoint cluster region-Abelson murine leukaemia viral oncogene homologue 1 (BCR-ABL1) kinase domain mutations (BCR-ABL1 KD mutations), but also mutations in other genes. Their occurrence is highest during progression or at failure, but their impact at diagnosis is unclear. In the present study, we prospectively screened for mutations in 18 myeloid neoplasm-associated genes and BCR-ABL1 KD in the following populations: bulk leucocytes, CD34+ CD38+ progenitors and CD34+ CD38- stem cells, at diagnosis and early follow-up. In our cohort of chronic phase CML patients, nine of 49 patients harboured somatic mutations in the following genes: six ASXL1 mutations, one SETBP1, one TP53, one JAK2, but no BCR-ABL1 KD mutations. In seven of the nine patients, mutations were detected in multiple hierarchical populations including bulk leucocytes at diagnosis. The mutation dynamics reflected the BCR-ABL1 transcript decline induced by treatment in eight of the nine cases, suggesting that mutations were acquired in the Philadelphia chromosome (Ph)-positive clone. In one patient, the JAK2 V617F mutation correlated with a concomitant Ph-negative myeloproliferative neoplasm and persisted despite a 5-log reduction of the BCR-ABL1 transcript. Only two of the nine patients with mutations failed first-line therapy. No correlation was found between the mutation status and survival or response outcomes.
Collapse
Affiliation(s)
- Marianna Romzova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Dagmar Smitalova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jakub Hynst
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Nikola Tom
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomas Loja
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zdenka Herudkova
- Department of Internal Medicine, Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomas Jurcek
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Lukas Stejskal
- Department of Hemato-Oncology, University Hospital, Ostrava, Czech Republic
| | - Daniela Zackova
- Department of Internal Medicine, Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Jiri Mayer
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Zdenek Racil
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.,Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Martin Culen
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
7
|
Adnan-Awad S, Kankainen M, Mustjoki S. Mutational landscape of chronic myeloid leukemia: more than a single oncogene leukemia. Leuk Lymphoma 2021; 62:2064-2078. [PMID: 33944660 DOI: 10.1080/10428194.2021.1894652] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The BCR-ABL1 fusion gene, which causes aberrant kinase activity and uncontrolled cell proliferation, is the hallmark of chronic myeloid leukemia (CML). The development of tyrosine kinase inhibitors (TKI) that target the BCR-ABL oncoprotein has led to dramatic improvement in CML management. However, some challenges remain to be addressed in the TKI era, including patient stratification and the selection of frontline TKIs and CML progression. Additionally, with the emerging goal of treatment-free remission (TFR) in CML management, biomarkers that predict the outcomes of stopping TKI remain to be identified. Notably, recent reports have revealed the power of genome screening in understanding the role of genome aberrations other than BCR-ABL1 in CML pathogenesis. These studies have discovered the presence of disease-phase specific mutations and linked certain mutations to inferior responses to TKI treatment and CML progression. A personalized approach that incorporates genetic data in tailoring treatment strategies has been successfully implemented in acute leukemia, and it represents a promising approach for the management of high-risk CML patients. In this article, we will review current knowledge about the mutational profile in different phases of CML as well as patterns of mutational dynamics in patients having different outcomes. We highlight the effects of somatic mutations involving certain genes (e.g. epigenetic modifiers) on the outcomes of TKI treatment. We also discuss the potential value of incorporating genetic data in treatment decisions and the routine care of CML patients as a future direction for optimizing CML management.
Collapse
Affiliation(s)
- Shady Adnan-Awad
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| |
Collapse
|