1
|
Liu X, Wang B, Liu Y, Yu Y, Wan Y, Wu J, Wang Y. JAK2 inhibitors for the treatment of Philadelphia-negative myeloproliferative neoplasms: current status and future directions. Mol Divers 2024; 28:3445-3456. [PMID: 38006563 DOI: 10.1007/s11030-023-10742-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/05/2023] [Indexed: 11/27/2023]
Abstract
The overactivation of Janus kinases 2 (JAK2) by gain-of-function mutations in the JAK2, Myeloproliferative leukemia virus oncogene, or Calreticulin genes are the most important factor in the development of Philadelphia-negative myeloproliferative neoplasms (MPNs). The discovery of the JAK2V617F mutation is a significant breakthrough in understanding the pathogenesis of MPNs, and inhibition of JAK2 abnormal activation has become one of the most effective strategies against MPNs. Currently, three JAK2 inhibitors for treating MPNs have been approved, and several are being evaluated in clinical trials. However, persistent challenges in terms of drug resistance and off-target effects remain unresolved. In this review, we introduce and classify the available JAK2 inhibitors in terms of their mechanisms and clinical considerations. Additionally, through an analysis of target points, binding modes, and structure-activity inhibitor relationships, we propose strategies such as combination therapy and allosteric inhibitors to overcome specific challenges. This review offers valuable insights into current trends and future directions for optimal management of MPNs using JAK2 inhibitors.
Collapse
Affiliation(s)
- Xiaofeng Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Binyou Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China
| | - Yuan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Yang Yu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China.
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Yiwei Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China.
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
2
|
Wang Z, Jin X, Zeng J, Xiong Z, Chen X. The application of JAK inhibitors in the peri-transplantation period of hematopoietic stem cell transplantation for myelofibrosis. Ann Hematol 2024; 103:3293-3301. [PMID: 38494551 PMCID: PMC11358344 DOI: 10.1007/s00277-024-05703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Myelofibrosis (MF) is a myeloproliferative neoplasm (MPN) with a poor prognosis, and allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only treatment with curative potential. Ruxolitinib, a JAK1/2 inhibitor, has shown promising results in improving patients' symptoms, overall survival, and quality of life, and can be used as a bridging therapy to HSCT that increases the proportion of transplantable patients. However, the effect of this and similar drugs on HSCT outcomes is unknown, and the reports on their efficacy and safety in the peri-transplantation period vary widely in the published literature. This paper reviews clinical data related to the use of JAK inhibitors in the peri-implantation phase of hematopoietic stem cell transplantation for primary myelofibrosis and discusses their efficacy and safety.
Collapse
Affiliation(s)
- Zerong Wang
- West China Hospital, Sichuan University, Chendu, Sichuan, China
| | - Xuelian Jin
- West China Hospital, Sichuan University, Chendu, Sichuan, China
| | - Jiajia Zeng
- West China Hospital, Sichuan University, Chendu, Sichuan, China
| | - Zilin Xiong
- West China Hospital, Sichuan University, Chendu, Sichuan, China
| | - Xinchuan Chen
- West China Hospital, Sichuan University, Chendu, Sichuan, China.
| |
Collapse
|
3
|
Heuschkel MJ, Bach C, Meiss-Heydmann L, Gerges E, Felli E, Giannone F, Pessaux P, Schuster C, Lucifora J, Baumert TF, Verrier ER. JAK1 promotes HDV replication and is a potential target for antiviral therapy. J Hepatol 2024; 80:220-231. [PMID: 37925078 DOI: 10.1016/j.jhep.2023.10.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND & AIMS Chronic co-infection with HBV and HDV leads to the most aggressive form of chronic viral hepatitis. To date, no treatment induces efficient viral clearance, and a better characterization of virus-host interactions is required to develop new therapeutic strategies. METHODS Using loss-of-function strategies, we validated the unexpected proviral activity of Janus kinase 1 (JAK1) - a key player in innate immunity - in the HDV life cycle and determined its mechanism of action on HDV through various functional analyses including co-immunoprecipitation assays. RESULTS We confirmed the key role of JAK1 kinase activity in HDV infection. Moreover, our results suggest that JAK1 inhibition is associated with a modulation of ERK1/2 activation and S-HDAg phosphorylation, which is crucial for viral replication. Finally, we showed that FDA-approved JAK1-specific inhibitors are efficient antivirals in relevant in vitro models including primary human hepatocytes. CONCLUSIONS Taken together, we uncovered JAK1 as a key host factor for HDV replication and a potential target for new antiviral treatment. IMPACT AND IMPLICATIONS Chronic hepatitis D is the most aggressive form of chronic viral hepatitis. As no curative treatment is currently available, new therapeutic strategies based on host-targeting agents are urgently needed. Here, using loss-of-function strategies, we uncover an unexpected interaction between JAK1, a major player in the innate antiviral response, and HDV infection. We demonstrated that JAK1 kinase activity is crucial for both the phosphorylation of the delta antigen and the replication of the virus. By demonstrating the antiviral potential of several FDA-approved JAK1 inhibitors, our results could pave the way for the development of innovative therapeutic strategies to tackle this global health threat.
Collapse
Affiliation(s)
- Margaux J Heuschkel
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Charlotte Bach
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Laura Meiss-Heydmann
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Emma Gerges
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Emanuele Felli
- Institut hospitalo-universitaire (IHU), Service d'hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Fabio Giannone
- Institut hospitalo-universitaire (IHU), Service d'hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Patrick Pessaux
- Institut hospitalo-universitaire (IHU), Service d'hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Catherine Schuster
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Julie Lucifora
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Thomas F Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France; Institut hospitalo-universitaire (IHU), Service d'hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Institut Universitaire de France, Paris, France
| | - Eloi R Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France.
| |
Collapse
|
4
|
Sastow D, Tremblay D. Emerging Treatment Options for Myelofibrosis: Focus on Anemia. Ther Clin Risk Manag 2023; 19:535-547. [PMID: 37404252 PMCID: PMC10315142 DOI: 10.2147/tcrm.s386802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/25/2023] [Indexed: 07/06/2023] Open
Abstract
Myelofibrosis (MF) is a hematologic malignancy characterized by abnormal proliferation of myeloid cells and the release of pro-inflammatory cytokines, leading to progressive bone marrow dysfunction. The introduction of ruxolitinib just over a decade ago marked a significant advancement in MF therapy, with JAK inhibitors now being the first-line treatment for reducing spleen size and managing symptoms. However, early JAK inhibitors (ruxolitinib and fedratinib) are often associated with cytopenias, particularly thrombocytopenia and anemia, which limit their tolerability. To address these complications, pacritinib has been developed and recently approved for patients with thrombocytopenia, while momelotinib is in development for those with anemia. Although JAK inhibitors have significantly improved the quality of life of MF patients, they have not demonstrated the ability to reduce leukemic transformation and their impact on survival is debated. Numerous drugs are currently being developed and investigated in clinical trials, both as standalone therapy and in combination with JAK inhibitors, with promising results enhancing the benefits of JAK inhibitors. In the near future, MF treatment strategies will involve selecting the most suitable JAK inhibitor based on individual patient characteristics and prior therapy. Ongoing and future clinical trials are crucial for advancing the field and expanding therapeutic options for MF patients.
Collapse
Affiliation(s)
- Dahniel Sastow
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas Tremblay
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
5
|
Verstovsek S. How I manage anemia related to myelofibrosis and its treatment regimens. Ann Hematol 2023; 102:689-698. [PMID: 36786879 PMCID: PMC9998582 DOI: 10.1007/s00277-023-05126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
Myelofibrosis (MF) is a myeloproliferative neoplasm characterized by mutations (most frequently in JAK2, CALR, or MPL), burdensome symptoms, splenomegaly, cytopenia, and shortened life expectancy. In addition to other clinical manifestations, patients with MF often develop anemia, which can either be directly related to MF pathogenesis or a result of MF treatment with Janus kinase (JAK) inhibitors, such as ruxolitinib and fedratinib. Although symptoms and clinical manifestations can be similar between the 2 anemia types, only MF-related anemia is prognostic of reduced survival. In this review, I detail treatment and patient management approaches for both types of anemia presentations and provide recommendations for the treatment of MF in the presence of anemia.
Collapse
Affiliation(s)
- Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Bennison SA, Liu X, Toyo-Oka K. Nuak kinase signaling in development and disease of the central nervous system. Cell Signal 2022; 100:110472. [PMID: 36122883 DOI: 10.1016/j.cellsig.2022.110472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 01/14/2023]
Abstract
Protein kinases represent important signaling hubs for a variety of biological functions. Many kinases are traditionally studied for their roles in cancer cell biology, but recent advances in neuroscience research show repurposed kinase function to be important for nervous system development and function. Two members of the AMP-activated protein kinase (AMPK) related family, NUAK1 and NUAK2, have drawn attention in neuroscience due to their mutations in autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), schizophrenia, and intellectual disability (ID). Furthermore, Nuak kinases have also been implicated in tauopathy and other disorders of aging. This review highlights what is known about the Nuak kinases in nervous system development and disease and explores the possibility of Nuak kinases as targets for therapeutic innovation.
Collapse
Affiliation(s)
- Sarah A Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Xiaonan Liu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
7
|
Saha C, Harrison C. Fedratinib, the first selective JAK2 inhibitor approved for treatment of myelofibrosis - an option beyond ruxolitinib. Expert Rev Hematol 2022; 15:583-595. [PMID: 35787092 DOI: 10.1080/17474086.2022.2098105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction: Myelofibrosis, a life shortening clonal disorder, presents with a constellation of features: bone marrow fibrosis, abnormal blood counts, extramedullary hematopoiesis, splenomegaly, thrombohemorrhagic complications and constitutional symptoms. Until recently Ruxolitinib, a JAK1 and 2 inhibitor, has been the only targeted therapy available for transplant-ineligible patients requiring treatment for splenomegaly and disease related symptoms. However, most patients discontinue Ruxolitinib after 3-5 years, mostly due to loss of response. There has been an unmet need for this patient group. In August 2019 Fedratinib (INREBIC® capsules, Impact Biomedicines, Inc., a wholly owned subsidiary of Bristol Meyer Squibb), a JAK2 inhibitor, was approved by US FDA for treatment of myelofibrosis in both JAK inhibitor naïve and pre-treated patients for the management of symptoms and splenomegaly.Areas covered: Here, we discuss the development, evidence base to date for Fedratinib. Including early and late phase, and ongoing trials, safety issues, potential role and current position of Fedratinib in the treatment of myelofibrosis, as well as future direction of targeted therapy in myelofibrosis.Expert opinion: Fedratinib presents a much needed option of treatment, particularly, for patients failing Ruxolitinib, with response rates that are quite similar. Nonetheless, there remain important questions including sequencing and options for combining therapy.
Collapse
Affiliation(s)
- Chandan Saha
- Department of Hematology, Guy's and St Thomas' NHS Foundation Trust, London
| | - Claire Harrison
- Department of Hematology, Guy's and St Thomas' NHS Foundation Trust, London
| |
Collapse
|
8
|
Sastow D, Mascarenhas J, Tremblay D. Thrombocytopenia in Patients With Myelofibrosis: Pathogenesis, Prevalence, Prognostic Impact, and Treatment. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e507-e520. [PMID: 35221248 DOI: 10.1016/j.clml.2022.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Myelofibrosis (MF) is a clonal hematopoietic stem cell neoplasm, characterized by pathologic myeloproliferation associated with inflammatory and pro-angiogenic cytokine release, that results in functional compromise of the bone marrow. Thrombocytopenia is a disease-related feature of MF, which portends a poor prognosis impacting overall survival (OS) and leukemia free survival. Thrombocytopenia in MF has multiple causes including ineffective hematopoiesis, splenic sequestration, and treatment-related effects. Presently, allogeneic hematopoietic stem cell transplantation (HSCT) remains the only curable treatment for MF, which, unfortunately, is only a viable option for a minority of patients. All other currently available therapies are either focused on improving cytopenias or the alleviating systemic symptoms and burdensome splenomegaly. While JAK2 inhibitors have moved to the forefront of MF therapy, available JAK inhibitors are advised against in patients with severe thrombocytopenia (platelets < 50 × 109/L). In this review, we describe the pathogenesis, prevalence, and prognostic significance of thrombocytopenia in MF. We also explore the value and limitations of treatments directed at addressing cytopenias, splenomegaly and symptom burden, and those with potential disease modification. We conclude by proposing a treatment algorithm for patients with MF and severe thrombocytopenia.
Collapse
Affiliation(s)
- Dahniel Sastow
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John Mascarenhas
- Division of Hematology and Medical Oncology, Tisch Cancer Institute Icahn School of Medicine at Mount Sinai, New York, NY
| | - Douglas Tremblay
- Division of Hematology and Medical Oncology, Tisch Cancer Institute Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
9
|
Mustafa M, Winum JY. The importance of sulfur-containing motifs in drug design and discovery. Expert Opin Drug Discov 2022; 17:501-512. [PMID: 35193437 DOI: 10.1080/17460441.2022.2044783] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Sulfur-containing functional groups are privileged motifs that occur in various pharmacologically effective substances and several natural products. Various functionalities are found with a sulfur atom at diverse oxidation states, as illustrated by thioether, sulfoxide, sulfone, sulfonamide, sulfamate, and sulfamide functions. They are valuable scaffolds in the field of medicinal chemistry and are part of a large array of approved drugs and clinical candidates. AREA COVERED Herein, the authors review the current research on the development of organosulfur-based drug discovery. This article also covers details of their roles in the new lead compounds reported in the literature over the past five years 2017-2021. EXPERT OPINION Given its prominent role in medicinal chemistry and its importance in drug discovery, sulfur has attracted continuing interest and has been used in the design of various valuable compounds that demonstrate a variety of biological and pharmacological feature activities. Overall, sulfur's role in medicinal chemistry continues to grow. However, many sulfur functionalities remain underused in small-molecule drug discovery and deserve special attention in the armamentarium for treating diverse diseases. Research efforts are also still required for the development of a synthetic methodology for direct access to these functions and late-stage functionalization.
Collapse
Affiliation(s)
- Muhamad Mustafa
- IBMM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.,Department of Medicinal Chemistry, Faculty of Pharmacy, Deraya Unuversity, Minia, Egypt
| | | |
Collapse
|