1
|
Zong K, Hao Z, Wang Q, Liang Y, Zheng C, Du K, Ren F, Wang Y, Meng D. Tomentediline A: A isoquinoline alkaloids with undescribed carbon skeleton from Corydalis tomentella. PHYTOCHEMISTRY 2025; 229:114282. [PMID: 39271035 DOI: 10.1016/j.phytochem.2024.114282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Two undescribed isoquinolines (1-2), including one undescribed carbon skeleton isoquinoline together with six known ones (4-9) as well as an undescribed amide (3) and three known ones (10-12) were isolated from C. tomentella. Their planar structures and absolute configurations were elucidated by extensive analyses of UV, NMR, HRESIMS, DP4+ statistical analysis and ECD calculations, respectively. Tomentediline A (1) is an isoquinoline alkaloid dimer that forms an undescribed carbon carbon bond at the C-13 position of (2H)-protoberberine in a natural product discovered for the first time. Meantime, 1 exerted moderate cytotoxicity against the U251 cell lines, indicating that the undescribed dimer skeleton of isoquinoline compound has the potential for anti-glioma.
Collapse
Affiliation(s)
- Kunqi Zong
- Key Laboratory of Ethnomedicine Material Basis & Pharmacological Mechanisms, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhijin Hao
- Key Laboratory of Ethnomedicine Material Basis & Pharmacological Mechanisms, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Quanyou Wang
- Key Laboratory of Ethnomedicine Material Basis & Pharmacological Mechanisms, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yanan Liang
- Key Laboratory of Ethnomedicine Material Basis & Pharmacological Mechanisms, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Changwei Zheng
- Key Laboratory of Ethnomedicine Material Basis & Pharmacological Mechanisms, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Kaicheng Du
- Key Laboratory of Ethnomedicine Material Basis & Pharmacological Mechanisms, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Fengming Ren
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing, 408435, China; Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Yumeng Wang
- Key Laboratory of Ethnomedicine Material Basis & Pharmacological Mechanisms, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Dali Meng
- Key Laboratory of Ethnomedicine Material Basis & Pharmacological Mechanisms, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
2
|
Castañeda-Reyes ED, Gonzalez-Almazán A, Lubbert-Licón A, Yahya NF, Gonzalez de Mejia E. Encapsulation of soybean lunasin and amaranth unsaponifiable matter in liposomes induces cell cycle arrest in an allograft melanoma mouse model. Sci Rep 2024; 14:27858. [PMID: 39537778 PMCID: PMC11561292 DOI: 10.1038/s41598-024-79448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Melanoma is the most aggressive type of skin cancer and can metastasize during primary tumor formation. This research aimed to determine the relationship between the prevention of melanoma development in a mouse model treated with liposomes loaded with soybean lunasin and amaranth unsaponifiable matter (UM + LunLip) and cell cycle arrest. Tumors excised from C57BL/6 mice treated topically or subcutaneously with UM + LunLip were subjected to immunohistochemistry. Markers related to cell cycle inhibition (p16, p21, p27, and p53) and markers involved in cell cycle progression (cyclin-dependent kinase, CDK6, and cyclin D1) were assessed. The results showed that UM + LunLip had antitumor activity in C57BL/6 mice treated either topically or subcutaneously by p16, p21, p27, and p53 overexpression (up to 572-, 134-, 30-, and 57-fold change, FC, respectively) in the tumors of mice treated with 30 mg UM + LunLip/kg body weight compared with the tumor-bearing untreated control. However, CDK6 and cyclin D1 expression was not inhibited (up to 1.37 FC and 2.09 FC, respectively), which is a typical behavior of cyclin D in melanoma. Therefore, melanoma tumor development was prevented by the overexpression of cell cycle inhibitors p16, p21, p27, and p53 due to UM + LunLip treatments. Since the topical application was effective, less invasive, and more practical for the user, this application will be recommended for future steps in in vivo studies.
Collapse
Affiliation(s)
| | - Alejandro Gonzalez-Almazán
- Department of Food Science and Human Nutrition, University of Illinois, Champaign, IL, USA
- Tecnológico de Monterrey, Monterrey, Nuevo León, México
| | - Alán Lubbert-Licón
- Department of Food Science and Human Nutrition, University of Illinois, Champaign, IL, USA
- Tecnológico de Monterrey, Monterrey, Nuevo León, México
| | - Najwa Farhana Yahya
- Department of Food Science and Human Nutrition, University of Illinois, Champaign, IL, USA
| | | |
Collapse
|
3
|
Sheida A, Farshadi M, Mirzaei A, Najjar Khalilabad S, Zarepour F, Taghavi SP, Hosseini Khabr MS, Ravaei F, Rafiei S, Mosadeghi K, Yazdani MS, Fakhraie A, Ghattan A, Zamani Fard MM, Shahyan M, Rafiei M, Rahimian N, Talaei Zavareh SA, Mirzaei H. Potential of Natural Products in the Treatment of Glioma: Focus on Molecular Mechanisms. Cell Biochem Biophys 2024:10.1007/s12013-024-01447-x. [PMID: 39150676 DOI: 10.1007/s12013-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
Collapse
Affiliation(s)
- Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Rafiei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Mosadeghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sepehr Yazdani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Fakhraie
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahyan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Hu C, Cao F, Jiang Y, Liu K, Li T, Gao Y, Li W, Han W. Molecular insights into chronic atrophic gastritis treatment: Coptis chinensis Franch studied via network pharmacology, molecular dynamics simulation and experimental analysis. Comput Biol Med 2024; 178:108804. [PMID: 38941899 DOI: 10.1016/j.compbiomed.2024.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Chronic atrophic gastritis (CAG), characterized by inflammation and erosion of the gastric lining, is a prevalent digestive disorder and considered a precursor to gastric cancer (GC). Coptis chinensis France (CCF) is renowned for its potent heat-clearing, detoxification, and anti-inflammatory properties. Zuojin Pill (ZJP), a classic Chinese medicine primarily composed of CCF, has demonstrated effectiveness in CAG treatment. This study aims to elucidate the potential mechanism of CCF treatment for CAG through a multifaceted approach encompassing network pharmacology, molecular docking, molecular dynamics simulation and experimental verification. The study identified three major active compounds of CCF and elucidated key pathways, such as TNF signaling, PI3K-Akt signaling and p53 signaling. Molecular docking revealed interactions between these active compounds and pivotal targets like PTGS2, TNF, MTOR, and TP53. Additionally, molecular dynamics simulation validated berberine as the primary active compound of CCF, which was further confirmed through experimental verification. This study not only identified berberine as the primary active compound of CCF but also provided valuable insights into the molecular mechanisms underlying CCF's efficacy in treating CAG. Furthermore, it offers a reference for refining therapeutic strategies for CAG management.
Collapse
Affiliation(s)
- Chengxiang Hu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Fuyan Cao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yongxin Jiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Kaifeng Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Tao Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yin Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| | - Wannan Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| |
Collapse
|
5
|
Hsu CY, Pallathadka H, Gupta J, Ma H, Al-Shukri HHK, Kareem AK, Zwamel AH, Mustafa YF. Berberine and berberine nanoformulations in cancer therapy: Focusing on lung cancer. Phytother Res 2024. [PMID: 38994919 DOI: 10.1002/ptr.8255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/02/2024] [Accepted: 05/11/2024] [Indexed: 07/13/2024]
Abstract
Lung cancer is the second most prevalent cancer and ranks first in cancer-related death worldwide. Due to the resistance development to conventional cancer therapy strategies, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy, various natural products and their extracts have been revealed as alternatives. Berberine (BBR), which is present in the stem, root, and bark of various trees, could exert anticancer activities by regulating tumor cell proliferation, apoptosis, autophagy, metastasis, angiogenesis, and immune responses via modulating several signaling pathways within the tumor microenvironment. Due to its poor water solubility, poor pharmacokinetics/bioavailability profile, and extensive p-glycoprotein-dependent efflux, BBR application in (pre) clinical studies is restricted. To overcome these limitations, BBR can be encapsulated in nanoparticle (NP)-based drug delivery systems, as monotherapy or combinational therapy, and improve BBR therapeutic efficacy. Nanoformulations also facilitate the selective delivery of BBR into lung cancer cells. In addition to the anticancer activities of BBR, especially in lung cancer, here we reviewed the BBR nanoformulations, including polymeric NPs, metal-based NPs, carbon nanostructures, and others, in the treatment of lung cancer.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, USA
| | | | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Haowei Ma
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - A K Kareem
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Hillah, Iraq
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
6
|
Nair A, Singh R, Gautam N, Saxena S, Mittal S, Shah S, Talegaonkar S. Multifaceted role of phytoconstituents based nano drug delivery systems in combating TNBC: A paradigm shift from chemical to natural. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03234-0. [PMID: 38953968 DOI: 10.1007/s00210-024-03234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
Triple negative breast cancer is considered to be a malignancy of grave concern with limited routes of treatment due to the absence of specific breast cancer markers and ambiguity of other potential drug targets. Poor prognosis and inadequate survival rates have prompted further research into the understanding of the molecular pathophysiology and targeting of the disease. To overcome the recurrence and resistance mechanisms of the TNBC cells, various approaches have been devised, and are being continuously evaluated to enhance their efficacy and safety. Chemo-Adjuvant therapy is one such treatment modality being employed to improve the efficiency of standard chemotherapy. Combining chemo-adjuvant therapy with other upcoming approaches of cancer therapeutics such as phytoconstituents and nanotechnology has yielded promising results in the direction of improving the prognosis of TNBC. Numerous nanoformulations have been proven to substantially enhance the specificity and cellular uptake of drugs by cancer cells, thus reducing the possibility of unintended systemic side effects within cancer patients. While phytoconstituents offer a wide variety of beneficial active constituents useful in cancer therapeutics, most favorable outcomes have been observed within the scope of polyphenols, isoquinoline alkaloids and isothiocyanates. With an enhanced understanding of the molecular mechanisms of TNBC and the advent of newer targeting technologies and novel phytochemicals of medicinal importance, a new era of cancer theranostic treatments can be explored. This review hopes to instantiate the current body of research regarding the role of certain phytoconstituents and their potential nanoformulations in targeting specific TNBC pathways for treatment and diagnostic purposes.
Collapse
Affiliation(s)
- Anandita Nair
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 17, Delhi, India
| | - Roshni Singh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 17, Delhi, India
| | - Namrata Gautam
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 17, Delhi, India
| | - Shilpi Saxena
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 17, Delhi, India
| | - Saurabh Mittal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, U.P, Noida, 201303, India.
| | - Sadia Shah
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, 226003, India.
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 17, Delhi, India.
| |
Collapse
|
7
|
Mushtaq Z, Imran M, Saeed F, Imran A, Ali SW, Shahbaz M, Alsagaby SA, Guerrero Sánchez Y, Umar M, Hussain M, Al Abdimonem W, Al Jbawi E, Mahwish, El-Ghorab AH, Abdelgawad MA. Berberine: a comprehensive Approach to combat human maladies. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2184300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Zarina Mushtaq
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal-Pakistan, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Ali Imran
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Shinawar Waseem Ali
- Institute of Agricultural Sciences, University of the Punjab, Quid-i-Azam Campus, Lahore, Pakistan
| | - Muhammad Shahbaz
- Department of Food Science and Technology, MNS-University Multan, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | | | - Maryam Umar
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Waleed Al Abdimonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | | | - Mahwish
- Department of Nutritional Sciences, Government College Women University Faisalabad, Pakistan
| | - Ahmed H. El-Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
8
|
Zhao Y, Chen Y, Wei L, Ran J, Wang K, Zhu S, Liu Q. p53 inhibits the Urea cycle and represses polyamine biosynthesis in glioma cell lines. Metab Brain Dis 2023; 38:1143-1153. [PMID: 36745250 DOI: 10.1007/s11011-023-01173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/18/2023] [Indexed: 02/07/2023]
Abstract
Glioma is the most common malignant tumor of the central nervous system. The urea cycle (UC) is an essential pathway to convert excess nitrogen and ammonia into the less toxic urea in humans. However, less is known about the functional significance of the urea cycle in glioma. p53 functions as a tumor suppressor and modulates several cellular functions and disease processes. In the present study, we aimed to explore whether p53 influences glioma progression by regulating the urea cycle. Here, we demonstrated the inhibitory impact of p53 on the expression of urea cycle enzymes and urea genesis in glioma cells. The level of polyamine, a urea cycle metabolite, was also regulated by p53 in glioma cells. Carbamoyl phosphate synthetase-1 (CPS1) is the first key enzyme involved in the urea cycle. Functionally, we demonstrated that CPS1 knockdown suppressed glioma cell proliferation, migration and invasion. Mechanistically, we demonstrated that the expression of ornithine decarboxylase (ODC), which determines the generation of polyamine, was regulated by CPS1. In addition, the impacts of p53 knockdown on ODC expression, glioma cell growth and aggressive phenotypes were significantly reversed by CPS1 inhibition. In conclusion, these results demonstrated that p53 inhibits polyamine metabolism by suppressing the urea cycle, which inhibits glioma progression.
Collapse
Affiliation(s)
- Yuhong Zhao
- Institute of Neuroscience, Chongqing Medical University Basic Medical College, Chongqing, 400016, China
| | - Yingxi Chen
- Department of basic Medicine, Chongqing College of traditional Chinese Medicine, Chongqing, 402760, PR China
| | - Ling Wei
- Institute of Neuroscience, Chongqing Medical University Basic Medical College, Chongqing, 400016, China
| | - Jianhua Ran
- Institute of Neuroscience, Chongqing Medical University Basic Medical College, Chongqing, 400016, China
| | - Kejian Wang
- Institute of Neuroscience, Chongqing Medical University Basic Medical College, Chongqing, 400016, China
| | - Shujuan Zhu
- Institute of Neuroscience, Chongqing Medical University Basic Medical College, Chongqing, 400016, China
| | - Qian Liu
- Institute of Neuroscience, Chongqing Medical University Basic Medical College, Chongqing, 400016, China.
- Department of basic Medicine, Chongqing College of traditional Chinese Medicine, Chongqing, 402760, PR China.
| |
Collapse
|
9
|
Xu F, Liu M, Liao Y, Zhou Y, Zhang P, Zeng Y, Liu Z. Improvement of anticancer effect of berberine by salt formation modifications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154314. [PMID: 35841665 DOI: 10.1016/j.phymed.2022.154314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/17/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Berberine is a quaternary isoquinoline alkaloid that possesses a significant therapeutic effect on a variety of cancers. However, due to poor bioavailability, an increased dose is often required to achieve therapeutic goals. To improve the activities of natural berberine, most modifications were focused on the positive isoquinoline unit by grafting long aliphatic chains or heterocycles. However, the negative part is ignored. At this point, the strategy of salt formation modifications with short- and medium-chain fatty acids was proposed in this article. PURPOSE Using salt modification to enhance the antitumor activity of berberine and explore the mechanism. METHODS Four short- and medium-chain fatty acid salts of berberine were prepared from berberine hydrochloride by salt formation modification with the sodium salt of butyric, caproic, octanoic, and decanoic acid, respectively. The cytotoxicity of four berberine salts on B16-F10, A549, HepG2, and U373 cancer cell lines was explored. Through cell localization, Mitochondrial membrane potential assay, and Western blotting analysis explored the mechanism of berberine salt-induced apoptosis. Its anticancer activity in vivo was demonstrated by the mouse xenograft model. RESULTS The four berberine fatty acid salts exhibited an enhanced inhibitory effect on B16-F10, A549, HepG2, and U373 cancer cell lines, particularly on B16-F10 cells. Meanwhile, the four berberine fatty acid salts can inhibit the migration of B16-F10 cells. The four berberine fatty acid salts induce cancer cell apoptosis through the mitochondrial pathway, which was confirmed by the mitochondrial colocalization, the decreased mitochondrial membrane potential as well as activation of caspase-3, cytochrome C (Cyt-C), and down-regulated expression of B-cell lymphoma 2 (Bcl-2). Most importantly, the four berberine fatty acid salts inhibited tumor growth in the in vivo B16-F10 melanoma model without generating side effects intraperitoneally. CONCLUSIONS This study revealed that salt formation modification may be an effective strategy to optimize the anticancer property of berberine hydrochloride and demonstrated the four berberine fatty acid salts induced apoptosis through the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Fengjiao Xu
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China; Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, 410081, China
| | - Meiyan Liu
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China; Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, 410081, China
| | - Yating Liao
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China; Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, 410081, China
| | - Ya Zhou
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China; Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, 410081, China
| | - Peng Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Youlin Zeng
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China; Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, 410081, China.
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| |
Collapse
|
10
|
Huang J, Lin S, Zhu F, Xu L. Exploring the underlying mechanism of oleanolic acid treating glioma by transcriptome and molecular docking. Biomed Pharmacother 2022; 154:113586. [PMID: 36007277 DOI: 10.1016/j.biopha.2022.113586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022] Open
Abstract
OBJECTIVE Oleanolic acid is a promising drug for treating gliomas, but its underlying mechanism is unclear. This study aimed to determine the potential effect of oleanolic acid on glioma and its mechanism. METHODS Firstly, the effects of oleanolic acid on the proliferation, invasion, and apoptosis of glioma U251 cells were detected by in vitro experiments such as MTT assay, cell cloning, and flow cytometry. The transcriptome data of U251 cells treated with oleanolic acid and untreated were sequenced by mRNA, and then the differentially expressed genes were analyzed by gene ontology (GO), genomic encyclopedia (KEGG) pathway enrichment analysis, and protein interaction topology analysis. The underlying mechanism of oleanolic acid was predicted, and the related protein interaction network was constructed. Finally, Western blotting and molecular docking techniques verified the mRNA sequencing results. RESULTS Oleanolic acid could effectively inhibit the proliferation, colony formation, and invasion of U251 cells and induce apoptosis. A total of 446 differentially expressed genes were detected by mRNA sequencing, of which 96 genes were up-regulated and 350 down-regulated. Oleanolic acid induces the TNF signal pathway and NOD-like receptor signal pathway at the intracellular level. In addition, OAS2, OASL, IFIT3, RSAD2, and IRF1 may be the core targets of oleanolic acid in treating glioma. CONCLUSION Transcriptome combined with molecular docking technique is used to predict the possible mechanism of oleanolic acid in the treatment of glioma, which provides new ideas and insights for developing and researching antitumor drugs.
Collapse
Affiliation(s)
- Jinxiang Huang
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.
| | - Shengnan Lin
- Department of Clinical Pharmacy, Sanming First Hospital, Affiliated Hospital of Fujian Medical University, Sanming City, Fujian Province, China.
| | - Feng Zhu
- Department of Neurosurgery, Sanming First Hospital, Affiliated Hospital of Fujian Medical University, Sanming City, Fujian Province, China.
| | - Luning Xu
- Department of Clinical Pharmacy, Sanming First Hospital, Affiliated Hospital of Fujian Medical University, Sanming City, Fujian Province, China.
| |
Collapse
|
11
|
Effects of TP53 Mutations and miRs on Immune Responses in the Tumor Microenvironment Important in Pancreatic Cancer Progression. Cells 2022; 11:cells11142155. [PMID: 35883598 PMCID: PMC9318640 DOI: 10.3390/cells11142155] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/27/2023] Open
Abstract
Approximately 90% of pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC). PDAC is the fourth leading cause of cancer death world-wide. Therapies for PDAC are largely ineffective due to the dense desmoplastic tumor microenvironment which prevents chemotherapeutic drugs and small molecule inhibitors from exerting effective anti-cancer effects. In this review, we will discuss the roles of TP53 and miRs on the PDAC tumor microenvironment and how loss of the normal functions of TP53 promote tumor progression. The TP53 gene is mutated in approximately 50% of pancreatic cancers. Often, these TP53 mutations are point mutations which confer additional functions for the TP53 proteins. These are called gain of function (GOF) mutations (mut). Another class of TP53 mutations are deletions which result in loss of the TP53 protein; these are referred to TP53-null mutations. We have organized this review into various components/properties of the PDAC microenvironment and how they may be altered in the presence of mutant TP53 and loss of certain miR expression.
Collapse
|
12
|
Sun Y, Huang H, Zhan Z, Gao H, Zhang C, Lai J, Cao J, Li C, Chen Y, Liu Z. Berberine inhibits glioma cell migration and invasion by suppressing TGF-β1/COL11A1 pathway. Biochem Biophys Res Commun 2022; 625:38-45. [DOI: 10.1016/j.bbrc.2022.07.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 12/01/2022]
|
13
|
Shang Y, Zhang Z, Tian J, Li X. Anti-Inflammatory Effects of Natural Products on Cerebral Ischemia. Front Pharmacol 2022; 13:914630. [PMID: 35795571 PMCID: PMC9251309 DOI: 10.3389/fphar.2022.914630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral ischemia with high mortality and morbidity still requires the effectiveness of medical treatments. A growing number of investigations have shown strong links between inflammation and cerebral ischemia. Natural medicine’s treatment methods of cerebral ischemic illness have amassed a wealth of treatment experience and theoretical knowledge. This review summarized recent progress on the disease inflammatory pathways as well as 26 representative natural products that have been routinely utilized to treat cerebral ischemic injury. These natural products have exerted anti-inflammatory effects in cerebral ischemia based on their inflammatory mechanisms, including their inflammatory gene expression patterns and their related different cell types, and the roles of inflammatory mediators in ischemic injury. Overall, the combination of the potential therapeutic interventions of natural products with the inflammatory mechanisms will make them be applicable for cerebral ischemic patients in the future.
Collapse
|
14
|
Bibak B, Shakeri F, Keshavarzi Z, Mollazadeh H, Javid H, Jalili-Nik M, Sathyapalan T, Afshari AR, Sahebkar A. Anticancer mechanisms of Berberine: a good choice for glioblastoma multiforme therapy. Curr Med Chem 2022; 29:4507-4528. [PMID: 35209812 DOI: 10.2174/0929867329666220224112811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022]
Abstract
The most typical malignant brain tumor, glioblastoma multiforme (GBM), seems to have a grim outcome, despite the intensive multi-modality interventions. Literature suggests that biologically active phytomolecules may exert anticancer properties by regulating several signaling pathways. Berberine, an isoquinoline alkaloid, has various pharmacological applications to combat severe diseases like cancer. Mechanistically, Berberine inhibits cell proliferation and invasion, suppresses tumor angiogenesis, and induces cell apoptosis. The effect of the antitumoral effect of Berberine in GBM is increasingly recognized. This review sheds new light on the regulatory signaling mechanisms of Berberine in various cancer, proposing its potential role as a therapeutic agent for GBM. .
Collapse
Affiliation(s)
- Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hossein Javid
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Jalili-Nik
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Abrams SL, Akula SM, Steelman LS, Follo ML, Cocco L, Ratti S, Martelli AM, Libra M, Falzone L, Candido S, Montalto G, Cervello M, Lombardi P, McCubrey JA. Effects of the MDM2 inhibitor Nutlin-3a on sensitivity of pancreatic cancer cells to berberine and modified berberines in the presence and absence of WT-TP53. Adv Biol Regul 2021; 83:100840. [PMID: 34866036 DOI: 10.1016/j.jbior.2021.100840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022]
Abstract
Approaches to improve pancreatic cancer therapy are essential as this disease has a very bleak outcome. Approximately 80% of pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC). A key regulatory gene frequently mutated (∼75%) in PDAC is the TP53 tumor suppressor gene which controls the transcription of multiple genes involved in cell cycle progression, apoptosis, cancer progression and other growth regulatory processes. The mouse double minute 2 homolog (MDM2) gene product is a nuclear-localized E3 ubiquitin ligase and negatively regulates the TP53 protein which results in its proteasomal degradation. Various MDM2 inhibitors have been isolated and examined in clinical trials, especially in patients with hematological malignancies. Nutlin-3a is one of the first MDM2 inhibitors isolated. Berberine (BBR) is a natural product found in many fruits and berries and used in traditional medicine for centuries. It has many biological effects, and some are anti-proliferative in nature. BBR may activate the expression of TP53 and inhibit cell cycle progression as well as other events important in cell growth. To understand more about the potential of compounds like BBR and chemical modified BBRs (NAX compounds) to sensitize PDAC cells to MDM2 inhibitors, we introduced either WT-TP53 or the pLXSN empty vector control into two PDAC cell lines, one lacking expression of TP53 (PANC-28) and one with gain-of-function mutant TP53 on both alleles (MIA-PaCa-2). Our results indicate that nutlin-3a was able to increase the sensitivity to BBR and certain NAX compounds. The effects of nutlin-3a were usually more substantial in those cells containing an introduced WT TP53 gene. These results highlight the importance of knowledge of the type of TP53 mutation that is present in cancer patients before the administration of drugs which function by stabilization of the TP53 protein.
Collapse
Affiliation(s)
- Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - Matilde L Follo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Massimo Libra
- Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Luca Falzone
- Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Saverio Candido
- Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Department of Health Promotion, Maternal and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe di Vittorio 70, Novate Milanese, 20026, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
16
|
The Anticancer Effect of Natural Plant Alkaloid Isoquinolines. Int J Mol Sci 2021; 22:ijms22041653. [PMID: 33562110 PMCID: PMC7915290 DOI: 10.3390/ijms22041653] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
Isoquinoline alkaloids-enriched herbal plants have been used as traditional folk medicine for their anti-inflammatory, antimicrobial, and analgesic effects. They induce cell cycle arrest, apoptosis, and autophagy, leading to cell death. While the molecular mechanisms of these effects are not fully understood, it has been suggested that binding to nucleic acids or proteins, enzyme inhibition, and epigenetic modulation by isoquinoline alkaloids may play a role in the effects. This review discusses recent evidence on the molecular mechanisms by which the isoquinoline alkaloids can be a therapeutic target of cancer treatment.
Collapse
|