1
|
Havens MA, Hinrich AJ, Rigo F, Hastings ML. Elevating microRNA levels by targeting biogenesis with steric-blocking antisense oligonucleotides. RNA (NEW YORK, N.Y.) 2024; 30:1543-1553. [PMID: 39255995 PMCID: PMC11571803 DOI: 10.1261/rna.080021.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024]
Abstract
MicroRNAs (miRNAs) are regulators of gene expression, and their dysregulation is linked to cancer and other diseases, making them important therapeutic targets. Several strategies for targeting and modulating miRNA activity are being explored. For example, steric-blocking antisense oligonucleotides (ASOs) can reduce miRNA activity by either blocking binding sites on specific mRNAs or base-pairing to the miRNA itself to prevent its interaction with the target mRNAs. ASOs have been less explored as a tool to elevate miRNA levels, which could also be beneficial for treating disease. In this study, using the PKD1/miR-1225 gene locus as an example, where miR-1225 is located within a PKD1 intron, we demonstrate an ASO-based strategy that increases miRNA abundance by enhancing biogenesis from the primary miRNA transcript. Disruptions in PKD1 and miR-1225 are associated with autosomal dominant polycystic kidney disease (ADPKD) and various cancers, respectively, making them important therapeutic targets. We investigated PKD1 sequence variants reported in ADPKD that are located within the sequence shared by miR-1225 and PKD1, and identified one that causes a reduction in miR-1225 without affecting PKD1 We show that this reduction in miR-1225 can be recovered by treatment with a steric-blocking ASO. The ASO-induced increase in miR-1225 correlates with a decrease in the abundance of predicted miR-1225 cellular mRNA targets. This study demonstrates that miRNA abundance can be elevated using ASOs targeted to the primary transcript. This steric-blocking ASO-based approach has broad potential application as a therapeutic strategy for diseases that could be treated by modulating miRNA biogenesis.
Collapse
Affiliation(s)
- Mallory A Havens
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA
- Biology Department, Lewis University, Romeoville, Illinois 60446, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Anthony J Hinrich
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, California 92008, USA
| | - Michelle L Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
2
|
Meng ZY, Lu CH, Li J, Liao J, Wen H, Li Y, Huang F, Zeng ZY. Identification and experimental verification of senescence-related gene signatures and molecular subtypes in idiopathic pulmonary arterial hypertension. Sci Rep 2024; 14:22157. [PMID: 39333589 PMCID: PMC11437103 DOI: 10.1038/s41598-024-72979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Evidences illustrate that cell senescence contributes to the development of pulmonary arterial hypertension. However, the molecular mechanisms remain unclear. Since there may be different senescence subtypes between PAH patients, consistent senescence-related genes (SRGs) were utilized for consistent clustering by unsupervised clustering methods. Senescence is inextricably linked to the immune system, and the immune cells in each cluster were estimated by ssGSEA. To further screen out more important SRGs, machine learning algorithms were used for identification and their diagnostic value was assessed by ROC curves. The expression of hub genes were verified in vivo and in vitro. Transcriptome analysis was used to assess the effects of silence of hub gene on different pathways. Three senescence molecular subtypes were identified by consensus clustering. Compared with cluster A and B, most immune cells and checkpoint genes were higher in cluster C. Thus, we identified senescence cluster C as the immune subtype. The ROC curves of IGF1, HOXB7, and YWHAZ were remarkable in both datasets. The expression of these genes was increased in vitro. Western blot and immunohistochemical analyses revealed that YWHAZ expression was also increased. Our transcriptome analysis showed autophagy-related genes were significantly elevated after silence of YWHAZ. Our research provided several prospective SRGs and molecular subtypes. Silence of YWHAZ may contribute to the clearance of senescent endothelial cells by activating autophagy.
Collapse
Affiliation(s)
- Zhong-Yuan Meng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Chuang-Hong Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Jing Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Juan Liao
- Ultrasound Department, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Hong Wen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Yuan Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Feng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| | - Zhi-Yu Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
3
|
Dong N, Gu WW, Yang L, Lian WB, Jiang J, Zhu HJ, Chen CS, Wang BB. MiR-3074-5p suppresses non-small cell lung cancer progression by targeting the YWHAZ/Hsp27 axis. Int Immunopharmacol 2024; 138:112547. [PMID: 38943969 DOI: 10.1016/j.intimp.2024.112547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
Non-small cell lung cancer (NSCLC) accounts for more than 80% of lung cancer cases, and the 5-year survival rate of patients remains unsatisfactory. MicroRNAs (miRNAs) are small endogenous noncoding RNAs that are considered essential posttranscriptional regulators of tumorigenesis, including NSCLC. In this study, we aimed to investigate the biological role of miR-3074-5p in NSCLC cells and the underlying molecular mechanisms. We showed that miR-3074-5p expression was decreased in human NSCLC specimens and cell lines. Moreover, miR-3074-5p overexpression inhibited cell proliferation, migration and invasion and induced apoptosis and cell cycle arrest. In addition, miR-3074-5p overexpression not only suppressed tumor growth but also enhanced the antitumor effect of paclitaxel (PTX) on NSCLC cells in vitro and in vivo. A transcriptome sequencing assay revealed genes that were differentially expressed after miR-3074-5p overexpression, and among the genes whose expression levels were most significantly decreased, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) was a target of miR-3074-5p. The regulatory effect of miR-3074-5p on YWHAZ expression was verified by Western blotting and dual-luciferase reporter assays. The inhibition of A549 cell growth, migration and invasion was reversed by YWHAZ overexpression. Furthermore, we showed that PTX stimulated the expression of the YWHAZ and Hsp27 proteins and promoted the phosphorylation of Hsp27 (at S15 and S78). YWHAZ was confirmed to interact with Hsp27 in A549 cells, and downregulating YWHAZ expression promoted the degradation of the Hsp27 protein. Taken together, these results suggest that the miR-3074-5p/YWHAZ/Hsp27 axis may be a novel therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Nian Dong
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Wen-Wen Gu
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Long Yang
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Wen-Bo Lian
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Juan Jiang
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Hai-Jun Zhu
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Cheng-Shui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
| | - Bei-Bei Wang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
| |
Collapse
|
4
|
Zhang G, Guan Q, Zhao Y, Wang S, Li H. miR-1-3p Inhibits Osteosarcoma Cell Proliferation and Cell Cycle Progression While Promoting Cell Apoptosis by Targeting CDK14 to Inactivate Wnt/Beta-Catenin Signaling. Mol Biotechnol 2024; 66:1704-1717. [PMID: 37420040 DOI: 10.1007/s12033-023-00811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Osteosarcoma (OS) is a common bone malignancy and is diagnosed frequently in children and young adults. According to previous RNA sequencing, miR-1-3p is downregulated in OS clinical samples. Nevertheless, the functions of miR-1-3p in OS cell process and the related mechanism have not been revealed yet. In the current study, miR-1-3p expression in OS tissues and cells were evaluated using quantitative polymerase chain reaction. CCK-8 assays were conducted to measure OS cell viability in response to miR-1-3p overexpression. Colony forming assays and EdU staining were conducted for measurement of cell proliferation, and flow cytometry analysis was performed to determine cell apoptosis and cell cycle progression. Protein levels of apoptotic markers, beta-catenin, and Wnt downstream targets were quantified using western blotting. The binding relation between miR-1-3p and cyclin dependent kinase 14 (CDK14) was validated utilizing luciferase reporter assays. Experimental results revealed that miR-1-3p expression was decreased in OS tissues and cells. Additionally, miR-1-3p inhibited cell proliferation and cell cycle progression while enhancing OS cell apoptosis. Moreover, miR-1-3p directly targeted CDK14 and inversely regulated CDK14 expression in OS cells. Furthermore, miR-1-3p inactivated the Wnt/beta-catenin signaling. CDK14 overexpression partially rescued the inhibitory impact of miR-1-3p on OS cell growth. Overall, miR-1-3p inhibits OS cell proliferation and cell cycle progression while promoting cell apoptosis by targeting CDK14 and inactivating the Wnt/beta-catenin signaling.
Collapse
Affiliation(s)
- Guangheng Zhang
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.39 Yanhu Road East Lake Scenic Area, Wuhan, 430077, Hubei, China
| | - Qingyu Guan
- Medical School, Jianghan University, Wuhan, 430056, Hubei, China
| | - Yingsong Zhao
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.39 Yanhu Road East Lake Scenic Area, Wuhan, 430077, Hubei, China
| | - Siyuan Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Hewei Li
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.39 Yanhu Road East Lake Scenic Area, Wuhan, 430077, Hubei, China.
| |
Collapse
|
5
|
He X, Huang T, Wang Q, Bao L, Wang Z, Song H, Li Y, Zhou J, Zhao Y, Xie Y. A prominent role of LncRNA H19 in H. pylori CagA induced DNA damage response and cell malignancy. Sci Rep 2024; 14:14185. [PMID: 38902391 PMCID: PMC11190245 DOI: 10.1038/s41598-024-65221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
Helicobacter pylori (H. pylori), together with its CagA, has been implicated in causing DNA damage, cell cycle arrest, apoptosis, and the development of gastric cancer. Although lncRNA H19 is abundantly expressed in gastric cancer and functions as a pro-oncogene, it remains unclear whether lncRNA H19 contributes to the oncogenic process of H. pylori CagA. This study investigates the role of H19 in the DNA damage response and malignancy induced by H. pylori. It was observed that cells infected with CagA+ H. pylori strain (GZ7/cagA) showed significantly higher H19 expression, resulting in increased γH2A.X and p-ATM expression and decreased p53 and Rad51 expression. Faster cell migration and invasion was also observed, which was reversed by H19 knockdown in H. pylori. YWHAZ was identified as an H19 target protein, and its expression was increased in H19 knockdown cells. GZ7/cagA infection responded to the increased YWHAZ expression induced by H19 knockdown. In addition, H19 knockdown stimulated cells to enter the G2-phase and attenuated the effect of GZ7/cagA infection on the cellular S-phase barrier. The results suggest that H. pylori CagA can upregulate H19 expression, participate in the DNA damage response and promote cell migration and invasion, and possibly affect cell cycle arrest via regulation of YWHAZ.
Collapse
Affiliation(s)
- Xiaofeng He
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China
- Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, People's Republic of China
| | - Tingting Huang
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Liya Bao
- Hepatitis Laboratory, Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
| | - Zhengrong Wang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
| | - Hui Song
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Yanhong Li
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China.
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China.
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China.
| |
Collapse
|
6
|
Hernandez YA, Gonzalez J, Garcia R, Aristizabal-Pachón A. The Expression of Hsa-Mir-1225-5p Limits the Aggressive Biological Behaviour of Luminal Breast Cancer Cell Lines. Microrna 2024; 13:124-131. [PMID: 38204280 PMCID: PMC11348466 DOI: 10.2174/0122115366268128231201054005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/24/2023] [Accepted: 10/16/2023] [Indexed: 01/12/2024]
Abstract
INTRODUCTION Numerous genetic and biological processes have been linked to the function of microRNAs (miRNAs), which regulate gene expression by targeting messenger RNA (mRNA). It is commonly acknowledged that miRNAs play a role in the development of disease and the embryology of mammals. METHOD To further understand its function in the oncogenic process, the expression of the miRNA profile in cancer has been investigated. Despite being referred to as a noteworthy miRNA in cancer, it is unknown whether hsa-miR-1225-5p plays a part in the in vitro progression of the luminal A and luminal B subtypes of breast cancer. We proposed that a synthetic hsa-miR-1225-5p molecule be expressed in breast cancer cell lines and its activity be evaluated with the aim of studying its function in the development of luminal breast cancer. In terms of the typical cancer progression stages, such as proliferation, survival, migration, and invasion, we investigated the role of hsa-miR-1225-5p in luminal A and B breast cancer cell lines. RESULTS Additionally, using bioinformatics databases, we thoroughly explored the target score-based prediction of miRNA-mRNA interaction. Our study showed that the expression of miR-1225-5p significantly inhibited the in vitro growth of luminal A and B breast cancer cell lines. CONCLUSION The results were supported by a bioinformatic analysis and a detailed gene network that boosts the activation of signaling pathways required for cancer progression.
Collapse
Affiliation(s)
- Y-Andrés Hernandez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Janeth Gonzalez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Reggie Garcia
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Andrés Aristizabal-Pachón
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| |
Collapse
|
7
|
Li Y, Meng F, Sui C, Wang Y, Cheng D. CircRNA hsa_circ_0001627 aggravates cervical cancer progression through upregulation of FNDC3B and activating PI3K/mTOR signaling pathway. J Cell Commun Signal 2023; 17:627-638. [PMID: 36357650 PMCID: PMC10409949 DOI: 10.1007/s12079-022-00696-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/01/2022] [Indexed: 11/12/2022] Open
Abstract
Circular RNAs (CircRNAs) are key regulators in the development and progression of human cancers. However, the biological roles and mechanisms of circRNAs in gastric cancer (GC) remain largely unknown. Analyzing circRNA microarray dataset (GSE102686) and clinical specimens, a novel circRNA termed hsa_circ_0001627, was identified and it was highly expressed in CC cancerous tissues and cells, and was associated with poor clinical outcomes. Functionally, hsa_circ_0001627 silencing impaired the malignant progression of CC cells and the growth of CC xenografts in nude mice. Mechanistically, hsa_circ_0001627 acted as a miR-1225-5p sponge, thus indirectly regulating FNDC3B and leading to the activation of PI3K/mTOR signaling pathway. Collectively, the present study indicates that hsa_circ_0001627 regulates miR-1225-5p/FNDC3B/PI3K/mTOR axis and functions as an oncogene in CC progression, suggesting the potential therapeutic use of hsa_circ_0001627 in CC treatment.
Collapse
Affiliation(s)
- Yan Li
- Department of Biotherapy, Cancer Research Institute, The First Hospital of China Medical University, 110001, Shenyang, Liaoning, China
| | - Fandong Meng
- Department of Biotherapy, Cancer Research Institute, The First Hospital of China Medical University, 110001, Shenyang, Liaoning, China
| | - Chengguang Sui
- Department of Biotherapy, Cancer Research Institute, The First Hospital of China Medical University, 110001, Shenyang, Liaoning, China
| | - Yang Wang
- Department of Biotherapy, Cancer Research Institute, The First Hospital of China Medical University, 110001, Shenyang, Liaoning, China
| | - Dali Cheng
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, 110000, Shenyang, Liaoning, China.
| |
Collapse
|
8
|
Gong Y, Wei ZR. MiR-659-3p inhibits osteosarcoma progression and metastasis by inhibiting cell proliferation and invasion via targeting SRPK1. BMC Cancer 2022; 22:934. [PMID: 36038837 PMCID: PMC9425973 DOI: 10.1186/s12885-022-10029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Osteosarcoma is the most common primary bone cancer that affects mostly children and young adults. Despite the advances in osteosarcoma treatment, the long-term survival rate of metastatic patients has not significantly improved in the past few decades, thus demonstrating the need for novel therapeutic targets or methods to improve metastatic osteosarcoma treatment. In this study we aimed to elucidate the role of miR-659-3p and SRPK1 in osteosarcoma. METHODS We evaluated miR-659-3p and SRPK1 function in osteosarcoma cell proliferation, migration, and cell cycle progression in vitro by using gain- and loss-of-function strategies. The effect of miR-659-3p in tumor progression and metastasis was determined by in vivo mouse model. RESULTS We revealed that expression of miR-659-3p was significantly downregulated in osteosarcoma compared with normal bone cells and was inversely correlated with serine-arginine protein kinase 1 (SRPK1) expression. We proved that miR-659-3p targets 3' UTR of SRPK1 and negatively regulates SRPK1 expression in osteosarcoma cells via luciferase assay. In vitro studies revealed that gain of miR-659-3p function inhibited osteosarcoma cells growth, migration, and invasion by down-regulating SRPK1 expression. Inversely, inhibiting miR-659-3p in osteosarcoma cells promoted cell growth, migration, and invasion. Cell cycle profile analysis revealed that miR-659-3p inhibited osteosarcoma cells' G1/G0 phase exit by down-regulating SRPK1 expression. By using an in vivo mouse model, we demonstrated that miR-659-3p inhibits osteosarcoma tumor progression and lung metastasis by inhibiting SRPK1 expression and potentially downstream cell proliferation, and epithelial-to-mesenchymal transition genes. CONCLUSIONS This study demonstrated that miR-659-3p is a potential therapeutic method and SRPK1 is a potential therapeutic target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Yubao Gong
- Department of Orthopaedics, the First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, China.
| | - Zheng-Ren Wei
- Department of Pharmacology, Basic Medical School, Jilin University, 126 Xinmin Street, Changchun, 130021, China
| |
Collapse
|
9
|
Circular RNA circFIRRE drives osteosarcoma progression and metastasis through tumorigenic-angiogenic coupling. Mol Cancer 2022; 21:167. [PMID: 35986280 PMCID: PMC9389772 DOI: 10.1186/s12943-022-01624-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background Disappointing clinical efficacy of standard treatment has been proven in refractory metastatic osteosarcoma, and the emerging anti-angiogenic regimens are still in the infantile stage. Thus, there is an urgent need to develop novel therapeutic approach for osteosarcoma lung metastasis. Methods circFIRRE was selected from RNA-sequencing of 4 matched osteosarcoma and adjacent samples. The expression of circFIRRE was verified in clinical osteosarcoma samples and cell lines via quantitative real-time polymerase chain reaction (RT-qPCR). The effect of circFIRRE was investigated in cell lines in vitro models, ex vivo models and in vivo xenograft tumor models, including proliferation, invasion, migration, metastasis and angiogenesis. Signaling regulatory mechanism was evaluated by RT-qPCR, Western blot, RNA pull-down and dual-luciferase reporter assays. Results In this article, a novel circular RNA, circFIRRE (hsa_circ_0001944) was screened out and identified from RNA-sequencing, and was upregulated in both osteosarcoma cell lines and tissues. Clinically, aberrantly upregulated circFIRRE portended higher metastatic risk and worse prognosis in osteosarcoma patients. Functionally, in vitro, ex vivo and in vivo experiments demonstrated that circFIRRE could drive primary osteosarcoma progression and lung metastasis by inducing both tumor cells and blood vessels, we call as “tumorigenic-angiogenic coupling”. Mechanistically, upregulated circFIRRE was induced by transcription factor YY1, and partially boosted the mRNA and protein level of LUZP1 by sponging miR-486-3p and miR-1225-5p. Conclusions We identified circFIRRE as a master regulator in the tumorigenesis and angiogenesis of osteosarcoma, which could be purposed as a novel prognostic biomarker and therapeutic target for refractory osteosarcoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01624-7.
Collapse
|
10
|
Recent and Ongoing Research into Metastatic Osteosarcoma Treatments. Int J Mol Sci 2022; 23:ijms23073817. [PMID: 35409176 PMCID: PMC8998815 DOI: 10.3390/ijms23073817] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
The survival rate for metastatic osteosarcoma has not improved for several decades, since the introduction and refinement of chemotherapy as a treatment in addition to surgery. Over two thirds of metastatic osteosarcoma patients, many of whom are children or adolescents, fail to exhibit durable responses and succumb to their disease. Concerted efforts have been made to increase survival rates through identification of candidate therapies via animal studies and early phase trials of novel treatments, but unfortunately, this work has produced negligible improvements to the survival rate for metastatic osteosarcoma patients. This review summarizes data from clinical trials of metastatic osteosarcoma therapies as well as pre-clinical studies that report efficacy of novel drugs against metastatic osteosarcoma in vivo. Considerations regarding the design of animal studies and clinical trials to improve survival outcomes for metastatic osteosarcoma patients are also discussed.
Collapse
|
11
|
Shu X, Liu W, Liu H, Qi H, Wu C, Ran YL. Analysis of microRNA expression in CD133 positive cancer stem‑like cells of human osteosarcoma cell line MG-63. PeerJ 2021; 9:e12115. [PMID: 34557357 PMCID: PMC8420872 DOI: 10.7717/peerj.12115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/15/2021] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma (OS) is a primary malignant tumor of bone occurring in young adults. OS stem cells (OSCs) play an important role in the occurrence, growth, metastasis, drug resistance and recurrence of OS. CD133 is an integral membrane glycoprotein, which has been identified as an OSC marker. However, the mechanisms of metastasis, chemoresistance, and progression in CD133(+) OSCs need to be further explored. In this study, we aim to explore differences in miRNA levels between CD133(+) and CD133(-) cells from the MG-63 cell line. We found 20 differentially expressed miRNAs (DEmiRNAs) (16 upregulated and 4 downregulated) in CD133(+) cells compared with CD133(-) cells. Hsa-miR-4485-3p, hsa-miR-4284 and hsa-miR-3656 were the top three upregulated DEmiRNAs, while hsa-miR-487b-3p, hsa-miR-493-5p and hsa-miR-431-5p were the top three downregulated DEmiRNAs. In addition, RT-PCR analysis confirmed that the expression levels of hsa-miR-4284, hsa-miR-4485-3p and hsa-miR-3656 were significantly increased, while the expression levels of hsa-miR-487b-3p, hsa-miR-493-5p, and hsa-miR-431-5p were significantly decreased in CD133(+) cells compared with CD133(-) cells. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that predicted or validated target genes for all 20 DEmiRNAs or the selected 6 DEmiRNAs participated in the "PI3K-Akt signaling pathway," "Wnt signaling pathway," "Rap1 signaling pathway," "Cell cycle" and "MAPK signaling pathway". Among the selected six DEmiRNAs, miR-4284 was especially interesting. MiR-4284 knockdown significantly reduced the sphere forming capacity of CD133(+) OS cells. The number of invasive CD133(+) OS cells was markedly decreased after miR-4284 knockdown. In addition, miR-4284 knockdown increased the p-β-catenin levels in CD133(+) OS cells. In conclusion, RNA-seq analysis revealed DEmiRNAs between CD133(+) and CD133(-) cells. MiRNAs might play significant roles in the function of OSCs and could serve as targets for OS treatment. MiR-4284 prompted the self-renewal and invasion of OSCs. The function of miR-4284 might be associated with the Wnt signaling pathway.
Collapse
Affiliation(s)
- Xiong Shu
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing JiShuiTan Hospital, Beijing, China
| | - Weifeng Liu
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, China
| | - Huiqi Liu
- Medical College of Qinghai University, Xining, China
| | - Hui Qi
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing JiShuiTan Hospital, Beijing, China
| | - Chengai Wu
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing JiShuiTan Hospital, Beijing, China
| | - Yu-Liang Ran
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Xu Q, Chen Y. An Aging-Related Gene Signature-Based Model for Risk Stratification and Prognosis Prediction in Lung Adenocarcinoma. Front Cell Dev Biol 2021; 9:685379. [PMID: 34277626 PMCID: PMC8283194 DOI: 10.3389/fcell.2021.685379] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Aging is an inevitable time-dependent process associated with a gradual decline in many physiological functions. Importantly, some studies have supported that aging may be involved in the development of lung adenocarcinoma (LUAD). However, no studies have described an aging-related gene (ARG)-based prognosis signature for LUAD. Accordingly, in this study, we analyzed ARG expression data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). After LASSO and Cox regression analyses, a six ARG-based signature (APOC3, EPOR, H2AFX, MXD1, PLCG2, and YWHAZ) was constructed using TCGA dataset that significantly stratified cases into high- and low-risk groups in terms of overall survival (OS). Cox regression analysis indicated that the ARG signature was an independent prognostic factor in LUAD. A nomogram based on the ARG signature and clinicopathological factors was developed in TCGA cohort and validated in the GEO dataset. Moreover, to visualize the prediction results, we established a web-based calculator yurong.shinyapps.io/ARGs_LUAD/. Calibration plots showed good consistency between the prediction of the nomogram and actual observations. Receiver operating characteristic curve and decision curve analyses indicated that the ARG nomogram had better OS prediction and clinical net benefit than the staging system. Taken together, these results established a genetic signature for LUAD based on ARGs, which may promote individualized treatment and provide promising novel molecular markers for immunotherapy.
Collapse
Affiliation(s)
- Qian Xu
- Health Management Center, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yurong Chen
- Department of Medical Oncology, Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, China
| |
Collapse
|