1
|
Chen X, Sun H, Yang C, Wang W, Lyu W, Zou K, Zhang F, Dai Z, He X, Dong H. Bioinformatic analysis and experimental validation of six cuproptosis-associated genes as a prognostic signature of breast cancer. PeerJ 2024; 12:e17419. [PMID: 38912044 PMCID: PMC11192027 DOI: 10.7717/peerj.17419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/28/2024] [Indexed: 06/25/2024] Open
Abstract
Background Breast carcinoma (BRCA) is a life-threatening malignancy in women and shows a poor prognosis. Cuproptosis is a novel mode of cell death but its relationship with BRCA is unclear. This study attempted to develop a cuproptosis-relevant prognostic gene signature for BRCA. Methods Cuproptosis-relevant subtypes of BRCA were obtained by consensus clustering. Differential expression analysis was implemented using the 'limma' package. Univariate Cox and multivariate Cox analyses were performed to determine a cuproptosis-relevant prognostic gene signature. The signature was constructed and validated in distinct datasets. Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) were also conducted using the prognostic signature to uncover the underlying molecular mechanisms. ESTIMATE and CIBERSORT algorithms were applied to probe the linkage between the gene signature and tumor microenvironment (TME). Immunotherapy responsiveness was assessed using the Tumor Immune Dysfunction and Exclusion (TIDE) web tool. Real-time quantitative PCR (RT-qPCR) was performed to detect the expressions of cuproptosis-relevant prognostic genes in breast cancer cell lines. Results Thirty-eight cuproptosis-associated differentially expressed genes (DEGs) in BRCA were mined by consensus clustering and differential expression analysis. Based on univariate Cox and multivariate Cox analyses, six cuproptosis-relevant prognostic genes, namely SAA1, KRT17, VAV3, IGHG1, TFF1, and CLEC3A, were mined to establish a corresponding signature. The signature was validated using external validation sets. GSVA and GSEA showed that multiple cell cycle-linked and immune-related pathways along with biological processes were associated with the signature. The results ESTIMATE and CIBERSORT analyses revealed significantly different TMEs between the two Cusig score subgroups. Finally, RT-qPCR analysis of cell lines further confirmed the expressional trends of SAA1, KRT17, IGHG1, and CLEC3A. Conclusion Taken together, we constructed a signature for projecting the overall survival of BRCA patients and our findings authenticated the cuproptosis-relevant prognostic genes, which are expected to provide a basis for developing prognostic molecular biomarkers and an in-depth understanding of the relationship between cuproptosis and BRCA.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Hening Sun
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Changcheng Yang
- Department of The First Affiliated Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Wei Wang
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Wenzhi Lyu
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Kejian Zou
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Fan Zhang
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Zhijun Dai
- Department of The First Affiliated Hospital, Zhejiang University, Hangzhou City, Zhejiang Province, China
| | - Xionghui He
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Huaying Dong
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| |
Collapse
|
2
|
Murakami T, Minami K, Harabayashi T, Maruyama S, Takada N, Kashiwagi A, Miyata H, Sato Y, Matsumoto R, Kikuchi H, Abe T, Ito YM, Murai S, Shinohara N, Harada H, Osawa T. Cross-sectional and longitudinal analyses of urinary extracellular vesicle mRNA markers in urothelial bladder cancer patients. Sci Rep 2024; 14:6801. [PMID: 38514751 PMCID: PMC10957914 DOI: 10.1038/s41598-024-55251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
We designed this multi-center prospective study with the following objectives: (1) the cross-sectional validation of extracellular vesicles (EV) mRNA markers to detect urothelial bladder cancer (UBC) before transurethral resection of bladder cancer (TURBT), and (2) the longitudinal validation of EV mRNA markers to monitor non-muscle invasive bladder cancer (NMIBC) recurrence after TURBT. EV mRNA markers evaluated in this study were KRT17, GPRC5A, and SLC2A1 in addition to two additional markers from literatures, MDK and CXCR2, and measured by quantitative RT-PCR with normalization by a reference gene (ALDOB). Diagnostic performances of EV mRNA markers were compared to conventional markers. Regarding the first objective, we confirmed that EV mRNA biomarkers in urine were higher in UBC patients, particularly those with higher stage/grade tumors, than in those without UBC (n = 278 in total) and the diagnostic performance of EV mRNA MDK and KRT17 outperformed conventional biomarkers with AUC 0.760 and 0.730, respectively. Concerning the second objective, we prospectively analyzed the time courses of EV mRNA markers while NMIBC patients (n = 189) (median follow-up 19 months). The expression of EV mRNA KRT17 was significantly high in patients with recurrence, while it gradually decreased over time in those without recurrence (p < 0.01).
Collapse
Affiliation(s)
- Taku Murakami
- Research & Development, Showa Denko Materials (America), Inc., Irvine, CA, USA
| | - Keita Minami
- Departments of Kidney Transplant Surgery and Urology, Sapporo City General Hospital, Sapporo, Japan
| | | | - Satoru Maruyama
- Department of Urology, Hokkaido Cancer Center, Sapporo, Japan
| | - Norikata Takada
- Department of Urology, Hokkaido Cancer Center, Sapporo, Japan
| | - Akira Kashiwagi
- Department of Urology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Haruka Miyata
- Department of Urology, Hokkaido University Hospital, N15 W7 Kita-ku, Sapporo, 060-8638, Japan
| | - Yasuyuki Sato
- Department of Urology, Sapporo Keiyukai Hospital, Sapporo, Japan
| | - Ryuji Matsumoto
- Department of Urology, Hokkaido University Hospital, N15 W7 Kita-ku, Sapporo, 060-8638, Japan
| | - Hiroshi Kikuchi
- Department of Urology, Hokkaido University Hospital, N15 W7 Kita-ku, Sapporo, 060-8638, Japan
| | - Takashige Abe
- Department of Urology, Hokkaido University Hospital, N15 W7 Kita-ku, Sapporo, 060-8638, Japan
| | - Yoichi M Ito
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Sachiyo Murai
- Department of Urology, Hokkaido University Hospital, N15 W7 Kita-ku, Sapporo, 060-8638, Japan
| | - Nobuo Shinohara
- Department of Urology, Hokkaido University Hospital, N15 W7 Kita-ku, Sapporo, 060-8638, Japan
| | - Hiroshi Harada
- Departments of Kidney Transplant Surgery and Urology, Sapporo City General Hospital, Sapporo, Japan
| | - Takahiro Osawa
- Department of Urology, Hokkaido University Hospital, N15 W7 Kita-ku, Sapporo, 060-8638, Japan.
| |
Collapse
|
3
|
Lozar T, Wang W, Gavrielatou N, Christensen L, Lambert PF, Harari PM, Rimm DL, Burtness B, Grasic Kuhar C, Carchman EH. Emerging Prognostic and Predictive Significance of Stress Keratin 17 in HPV-Associated and Non HPV-Associated Human Cancers: A Scoping Review. Viruses 2023; 15:2320. [PMID: 38140561 PMCID: PMC10748233 DOI: 10.3390/v15122320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
A growing body of literature suggests that the expression of cytokeratin 17 (K17) correlates with inferior clinical outcomes across various cancer types. In this scoping review, we aimed to review and map the available clinical evidence of the prognostic and predictive value of K17 in human cancers. PubMed, Web of Science, Embase (via Scopus), Cochrane Central Register of Controlled Trials, and Google Scholar were searched for studies of K17 expression in human cancers. Eligible studies were peer-reviewed, published in English, presented original data, and directly evaluated the association between K17 and clinical outcomes in human cancers. Of the 1705 studies identified in our search, 58 studies met criteria for inclusion. Studies assessed the prognostic significance (n = 54), predictive significance (n = 2), or both the prognostic and predictive significance (n = 2). Altogether, 11 studies (19.0%) investigated the clinical relevance of K17 in cancers with a known etiologic association to HPV; of those, 8 (13.8%) were focused on head and neck squamous cell carcinoma (HNSCC), and 3 (5.1%) were focused on cervical squamous cell carcinoma (SCC). To date, HNSCC, as well as triple-negative breast cancer (TNBC) and pancreatic cancer, were the most frequently studied cancer types. K17 had prognostic significance in 16/17 investigated cancer types and 43/56 studies. Our analysis suggests that K17 is a negative prognostic factor in the majority of studied cancer types, including HPV-associated types such as HNSCC and cervical cancer (13/17), and a positive prognostic factor in 2/17 studied cancer types (urothelial carcinoma of the upper urinary tract and breast cancer). In three out of four predictive studies, K17 was a negative predictive factor for chemotherapy and immune checkpoint blockade therapy response.
Collapse
Affiliation(s)
- Taja Lozar
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (T.L.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
- University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Wei Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (T.L.)
| | - Niki Gavrielatou
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Leslie Christensen
- Ebling Library, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (T.L.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
| | - Paul M. Harari
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - David L. Rimm
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Barbara Burtness
- Department of Medicine and Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Cvetka Grasic Kuhar
- University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Evie H. Carchman
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| |
Collapse
|
4
|
Varchulová Nováková Z, Kuniaková M, Žiaran S, Harsányi Š. Molecular Biomarkers of Bladder Cancer: A Mini-Review. Physiol Res 2023; 72:S247-S256. [PMID: 37888968 PMCID: PMC10669948 DOI: 10.33549/physiolres.935187] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/04/2023] [Indexed: 12/01/2023] Open
Abstract
Cancers are quite common, but mostly very serious diseases and therefore belong to the most important areas of scientific research activity. Bladder cancer is one of the most common malignancies, it is a heterogeneous disease with significant diagnostic, therapeutic, and prognostic problems. It represents a disease with a variable course and a different response to therapy. The "conventional" prognostic markers used so far cannot reliably predict the natural course of the disease or estimate the tumor response to the chosen type of treatment. Molecular markers can provide us with the opportunity to diagnose a bladder tumor early, identify patients who are at risk of recurrence, or predict how tumors will respond to therapeutic approaches. As a result, diagnostics are found to help clinicians find the best therapeutic options for patients with bladder cancer. In this study, we focused on a brief description of potential molecular markers in bladder tumors in the context of precise diagnostics. Last but not least, we also focused on a new approach to the treatment of cancer using nanomaterials.
Collapse
Affiliation(s)
- Z Varchulová Nováková
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic.
| | | | | | | |
Collapse
|
5
|
Sokač M, Kjær A, Dyrskjøt L, Haibe-Kains B, JWL Aerts H, Birkbak NJ. Spatial transformation of multi-omics data unlocks novel insights into cancer biology. eLife 2023; 12:RP87133. [PMID: 37669321 PMCID: PMC10479962 DOI: 10.7554/elife.87133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
The application of next-generation sequencing (NGS) has transformed cancer research. As costs have decreased, NGS has increasingly been applied to generate multiple layers of molecular data from the same samples, covering genomics, transcriptomics, and methylomics. Integrating these types of multi-omics data in a combined analysis is now becoming a common issue with no obvious solution, often handled on an ad hoc basis, with multi-omics data arriving in a tabular format and analyzed using computationally intensive statistical methods. These methods particularly ignore the spatial orientation of the genome and often apply stringent p-value corrections that likely result in the loss of true positive associations. Here, we present GENIUS (GEnome traNsformatIon and spatial representation of mUltiomicS data), a framework for integrating multi-omics data using deep learning models developed for advanced image analysis. The GENIUS framework is able to transform multi-omics data into images with genes displayed as spatially connected pixels and successfully extract relevant information with respect to the desired output. We demonstrate the utility of GENIUS by applying the framework to multi-omics datasets from the Cancer Genome Atlas. Our results are focused on predicting the development of metastatic cancer from primary tumors, and demonstrate how through model inference, we are able to extract the genes which are driving the model prediction and are likely associated with metastatic disease progression. We anticipate our framework to be a starting point and strong proof of concept for multi-omics data transformation and analysis without the need for statistical correction.
Collapse
Affiliation(s)
- Mateo Sokač
- Department of Molecular Medicine, Aarhus University HospitalAarhusDenmark
- Department of Clinical Medicine, Aarhus UniversityAarhusDenmark
- Bioinformatics Research Center, Aarhus UniversityAarhusDenmark
| | - Asbjørn Kjær
- Department of Molecular Medicine, Aarhus University HospitalAarhusDenmark
- Department of Clinical Medicine, Aarhus UniversityAarhusDenmark
- Bioinformatics Research Center, Aarhus UniversityAarhusDenmark
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University HospitalAarhusDenmark
- Department of Clinical Medicine, Aarhus UniversityAarhusDenmark
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Temerty Faculty of Medicine, University of TorontoTorontoCanada
| | - Hugo JWL Aerts
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical SchoolBostonUnited States
- Departments of Radiation Oncology and Radiology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical SchoolBostonUnited States
- Radiology and Nuclear Medicine, CARIM & GROW, Maastricht UniversityMaastrichtNetherlands
| | - Nicolai J Birkbak
- Department of Molecular Medicine, Aarhus University HospitalAarhusDenmark
- Department of Clinical Medicine, Aarhus UniversityAarhusDenmark
- Bioinformatics Research Center, Aarhus UniversityAarhusDenmark
| |
Collapse
|
6
|
N6-Methyladenosine Modification of CIRCKRT17 Initiated by METTL3 Promotes Osimertinib Resistance of Lung Adenocarcinoma by EIF4A3 to Enhance YAP1 Stability. Cancers (Basel) 2022; 14:cancers14225582. [PMID: 36428672 PMCID: PMC9688051 DOI: 10.3390/cancers14225582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play a key role in regulating the drug resistance of numerous human tumors. However, whether circKRT17 involves in the osimertinib resistance of lung adenocarcinoma (LUAD) remains undetermined. METHODS Relative mRNA/circRNA and protein levels were detected by qRT-PCR and western blotting. Localization of circKRT17 and YAP1 was determined by FISH and immunofluorescence staining. Cell growth and apoptosis were evaluated using colony formation, EdU assays, and flow cytometry. The N6-methyladenosine (m6A) modification was analyzed by MeRIP. The interplay between EIF4A3 and circKRT17 or YAP1 was verified by RNA pull-down or/and RIP assays. Subcutaneous tumor growth was monitored in nude mice, and Ki-67 and TUNEL staining were carried out to evaluate cell proliferation and apoptosis, respectively. RESULTS CircKRT17 and METTL3 were elevated in osimertinib-insensitive LUAD tissues and cells. Knockdown of circKRT 17 and METTL3 increased the sensitivity of LUAD cells to osimertinib. Knockdown of METTL3 decreased the expression of circKRT17 by inhibiting m6A modification. CircKRT17 promoted the stability and nuclear transportation of YAP1 by recruiting EIF4A3 in LUAD cells. Overexpression of YAP1 abolished the impacts of circKRT17 knockdown on the osimertinib sensitivity of LUAD cells. CircKRT17 knockdown increased the repressive effects of osimertinib on tumor growth in vivo by inhibiting YAP1 signaling. CONCLUSION METTL3 initiated the m6A modification of circKRT17, thus promoting osimertinib resistance of LUAD by enhancing YAP1 stability through EIF4A4 recruitment.
Collapse
|
7
|
KRT17 Accelerates Cell Proliferative and Invasive Potential of Laryngeal Squamous Cell Carcinoma (LSCC) through Regulating AKT/mTOR and Wnt/ β-Catenin Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6176043. [PMID: 36248412 PMCID: PMC9556256 DOI: 10.1155/2022/6176043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022]
Abstract
Background Laryngeal squamous cell carcinoma (LSCC) is a prevalent malignant tumor of the head and neck with a dismal prognosis. Keratin17 (KRT17) has been proven to serve as an oncogene in various cancers, but it has never been explored in LSCC. We proposed to assess the impact and possible mechanisms of KRT17 in the development of LSCC. Methods Quantitative reverse transcription-PCR (qRT-PCR) was utilized to examine the mRNA levels. The Kaplan-Meier method was used to calculate the relationship between KRT17 expression and survival curves in LSCC patients. Cell counting kit-8 (CCK-8), colony formation, and flow cytometry assays were utilized to estimate LSCC cell proliferation. The migration and invasion abilities of LSCC cells were ascertained by wound-healing and transwell assays. Immunohistochemical and western blot assays were utilized to appraise protein levels. The xenograft tumor model was used to determine the effect of KRT17 on tumor growth. Results In the present study, KRT17 was extremely high in LSCC tissues and cells and correlated with a poor prognosis. Inhibition of KRT17 weakens cell proliferative, migratory, and invasive abilities in LSCC and contributes to cell cycle arrest. Besides, we approved that knockdown of KRT17 extraordinarily restrained the xenograft tumor growth in vivo. We preliminarily investigated the role of KRT17 on the AKT/mTOR and Wnt/β-catenin signaling axes and found that these signaling pathways were largely blocked by KRT17 deletion. Conclusion Collectively, we uncovered that exhaustion of KRT17 suppresses LSCC progression through coordinating AKT/mTOR and Wnt/β-catenin signaling axes, illustrating KRT17 as a promising biomarker for making strides in LSCC treatment.
Collapse
|
8
|
Tang S, Liu W, Yong L, Liu D, Lin X, Huang Y, Wang H, Cai F. Reduced Expression of KRT17 Predicts Poor Prognosis in HER2high Breast Cancer. Biomolecules 2022; 12:biom12091183. [PMID: 36139022 PMCID: PMC9496156 DOI: 10.3390/biom12091183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer (BC) is one of the most common types of malignancies in women and greatly threatens female health. KRT17 is a member of the keratin (KRT) protein family that is abundant in the outer layer of the skin, where it protects epithelial cells from damage. Although KRT17 has been studied in many types of cancer, the expression of KRT17 in specific subtypes of BC remains to be determined. In our study, we explored the expression and prognostic implications of KRT17 in BC patients using mRNA transcriptome data and clinical BC data from The Cancer Genome Atlas (TCGA). Receiver operating characteristic (ROC) curves and the chi-square test were used to assess the diagnostic value of KRT17 expression. Quantitative real-time PCR (qRT−PCR) analysis of BC cells and tissues and immunohistochemistry (IHC) analysis of clinical tissues were used for external validation. Furthermore, the relationship between KRT17 and immune function was studied by using the CIBERSORT algorithm to predict the proportions of tumor-infiltrating immune cells (TIICs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to explore the potential mechanisms by which KRT17 expression influences patient survival. We found that KRT17 expression was significantly lower in BC tissues than in normal tissues, especially in the luminal-A, luminal-B and human epidermal growth factor receptor-2 (HER2)+ subtypes of BC. ROC analysis revealed that KRT17 expression had moderate diagnostic value. Interestingly, decreased expression of KRT17 was significantly correlated with poor prognosis in BC patients, especially in HER2high and ERhigh patients. This trend was also verified by tissue microarray (TMA) analysis. KRT17 was found to be involved in some antitumor immune pathways, especially the IL-17 signaling pathway, and associated with multiple immune cells, such as natural killer (NK) and CD4+ T cells. In conclusion, high expression of KRT17 predicted favorable prognosis in BC patients with higher HER2 expression. This result may indicate that KRT17 plays a different role depending on the level of HER2 expression and could serve as a promising and sensitive biomarker for the diagnosis and prognostication of HER2high BC.
Collapse
Affiliation(s)
- Shasha Tang
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, No.450 Tengyue Road, Shanghai 200090, China
| | - Wenjing Liu
- Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 201100, China
| | - Liyun Yong
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, No.450 Tengyue Road, Shanghai 200090, China
| | - Dongyang Liu
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, No.450 Tengyue Road, Shanghai 200090, China
| | - Xiaoyan Lin
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, No.450 Tengyue Road, Shanghai 200090, China
| | - Yuan Huang
- Cellomics International Limited, Hong Kong, China
| | - Hui Wang
- Laboratory of Tumor Molecular Biology, School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, No.279 Zhouzhu Highway, Shanghai 201318, China
- Correspondence: (H.W.); (F.C.)
| | - Fengfeng Cai
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, No.450 Tengyue Road, Shanghai 200090, China
- Correspondence: (H.W.); (F.C.)
| |
Collapse
|
9
|
Liu JP, Fang YT, Jiang YF, Lin H. HYAL3 as a potential novel marker of BLCA patient prognosis. BMC Genom Data 2022; 23:63. [PMID: 35945500 PMCID: PMC9361633 DOI: 10.1186/s12863-022-01070-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND It has been previously demonstrated that hyaluronan (HA) potentially regulates the initiation and propagation of bladder cancer (BLCA). HYAL3 encodes hyaluronidase and is a potential therapeutic target for BLCA. We aimed to explore the role that HYAL3 plays in BLCA pathogenesis. METHODS HYAL3 expression in BLCA specimens was analyzed using The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) cohort as well as confirmed in cell lines and The Human Protein Atlas. Then, associations between HYAL3 expression and clinicopathological data were analyzed using survival curves and receiver-operating characteristic (ROC) curves. The functions of HYAL3 were further dissected using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and the protein-protein interaction network. Finally, we harnessed the Tumor IMmune Estimation Resource and Gene Expression Profiling Interactive Analysis to obtain correlations between HYAL3 expression, infiltrating immunocytes, and the corresponding immune marker sets. RESULTS HYAL3 expression varied greatly between many types of cancers. In addition, a higher HYAL3 expression level predicted a poor overall survival (OS) in both TCGA-BLCA and GEO gene chips (P < 0.05). HYAL3 also exhibited an acceptable diagnostic ability for the pathological stage of BLCA (area under the receiver-operating characteristic curve = 0.769). Furthermore, HYAL3 acted as an independent prognostic factor in BLCA patients and correlated with the infiltration of various types of immunocytes, including B cells, CD8+ T cells, cytotoxic cells, T follicular helper cells, and T helper (Th) 2 cells. CONCLUSION HYAL3 might serve as a potential biomarker for predicting poor OS in BLCA patients and correlated with immunocyte infiltration in BLCA.
Collapse
Affiliation(s)
- Jun-Peng Liu
- Department of Urology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Yu-Tong Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Yi-Fan Jiang
- Department of Urology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Hao Lin
- Department of Urology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| |
Collapse
|
10
|
Kołat D, Kałuzińska Ż, Bednarek AK, Płuciennik E. Prognostic significance of AP-2α/γ targets as cancer therapeutics. Sci Rep 2022; 12:5497. [PMID: 35361846 PMCID: PMC8971500 DOI: 10.1038/s41598-022-09494-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/24/2022] [Indexed: 02/07/2023] Open
Abstract
Identifying genes with prognostic importance could improve cancer treatment. An increasing number of reports suggest the existence of successful strategies based on seemingly "untargetable" transcription factors. In addition to embryogenesis, AP-2 transcription factors are known to play crucial roles in cancer development. Members of this family can be used as prognostic factors in oncological patients, and AP-2α/γ transcription factors were previously investigated in our pan-cancer comparative study using their target genes. The present study investigates tumors that were previously found similar with an emphasis on the possible role of AP-2 factors in specific cancer types. The RData workspace was loaded back to R environment and 3D trajectories were built via Monocle3. The genes that met the requirement of specificity were listed using top_markers(), separately for mutual and unique targets. Furthermore, the candidate genes had to meet the following requirements: correlation with AP-2 factor (through Correlation AnalyzeR) and validated prognostic importance (using GEPIA2 and subsequently KM-plotter or LOGpc). Eventually, the ROC analysis was applied to confirm their predictive value; co-dependence of expression was visualized via BoxPlotR. Some similar tumors were differentiated by AP-2α/γ targets with prognostic value. Requirements were met by only fifteen genes (EMX2, COL7A1, GRIA1, KRT1, KRT14, SLC12A5, SEZ6L, PTPRN, SCG5, DPP6, NTSR1, ARX, COL4A3, PPEF1 and TMEM59L); of these, the last four were excluded based on ROC curves. All the above genes were confronted with the literature, with an emphasis on the possible role played by AP-2 factors in specific cancers. Following ROC analysis, the genes were verified using immunohistochemistry data and progression-related signatures. Staining differences were observed, as well as co-dependence on the expression of e.g. CTNNB1, ERBB2, KRAS, SMAD4, EGFR or MKI67. In conclusion, prognostic value of targets suggested AP-2α/γ as candidates for novel cancer treatment. It was also revealed that AP-2 targets are related to tumor progression and that some mutual target genes could be inversely regulated.
Collapse
Affiliation(s)
- Damian Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland.
| | - Żaneta Kałuzińska
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland
| |
Collapse
|
11
|
Zhang T, Li W, Gu M, Wang Z, Zhou S, Hao X, Li W, Xu S. Clinical Significance of miR-183-3p and miR-182-5p in NSCLC and Their Correlation. Cancer Manag Res 2021; 13:3539-3550. [PMID: 33953608 PMCID: PMC8089025 DOI: 10.2147/cmar.s305179] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/06/2021] [Indexed: 01/19/2023] Open
Abstract
Purpose Accumulating evidence has indicated that dysregulated microRNAs (miRNAs) are involved in cancer progression. In this study, we evaluated the clinicopathologic significance of miR-183-3p and miR-182-5p, and the role of miR-183-3p in non-small-cell lung cancer (NSCLC) progression. Patients and Methods Seventy-six NSCLC patients from Beijing Chest Hospital were included. The expression of miR-183-3p and miR-182-5p was evaluated by real-time quantitative polymerase chain reaction (RT-qPCR). Then, cell growth curve assays and colony formation assays were performed. Bioinformatics analysis of TCGA database was performed to explore the clinicopathological significance and prognostic value. Results miR-183-3p and miR-182-5p were significantly increased in NSCLC tumor tissues (both P < 0.0001) and were positively correlated (r = 0.8519, P < 0.0001). miR-183-3p (P = 0.0444) and miR-182-5p (P = 0.0132) were correlated with tumor size. In addition, miR-183-3p (P = 0.0135) and miR-182-5p (P = 0.0009) were upregulated in normal lung tissues from smokers. In vitro, miR-183-3p was correlated with cell proliferation. In addition, bioinformatics analysis indicated that miR-183-3p was correlated with poor prognosis (P = 0.0466) and tumor size (P = 0.0017). In addition, miR-183-3p was higher in lung squamous carcinoma (LUSC) tissue (P < 0.0001) than in lung adenocarcinoma (LUAD) tissue, and miR-183-3p was higher in the tumor tissue of smokers (P = 0.0053) than in that of nonsmokers. Conclusion Upregulation of miR-183-3p and miR-182-5p may play an oncogenic role in NSCLC. miR-183-3p could be used as a potential prognostic biomarker and therapeutic target to manage lung cancer.
Collapse
Affiliation(s)
- Tianxiang Zhang
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Wei Li
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Meng Gu
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Ziyu Wang
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Shijie Zhou
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Xuefeng Hao
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Weiying Li
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Shaofa Xu
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| |
Collapse
|