1
|
Balduit A, Agostinis C, Bulla R. Beyond the Norm: The emerging interplay of complement system and extracellular matrix in the tumor microenvironment. Semin Immunol 2025; 77:101929. [PMID: 39793258 DOI: 10.1016/j.smim.2025.101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Ground-breaking awareness has been reached about the intricate and dynamic connection between developing tumors and the host immune system. Being a powerful arm of innate immunity and a functional bridge with adaptive immunity, the complement system (C) has also emerged as a pivotal player in the tumor microenvironment (TME). Its "double-edged sword" role in cancer can find an explanation in the controversial relationship between C capability to mediate tumor cell cytolysis or, conversely, to sustain chronic inflammation and tumor progression by enhancing cell invasion, angiogenesis, and metastasis to distant organs. However, comprehensive knowledge about the actual role of C in cancer progression is impaired by several limitations of the currently available studies. In the current review, we aim to bring a fresh eye to the controversial role of C in cancer by analyzing the interplay between C and extracellular matrix (ECM) components as potential orchestrators of the TME. The interaction of C components with specific ECM components can determine C activation or inhibition and promote specific non-canonical functions, which can, in the tumor context, favor or limit progression based on the cancer setting. An in-depth and tumor-specific characterization of TME composition in terms of C components and ECM proteins could be essential to determine their potential interactions and become a key element for improving drug development, prognosis, and therapy response prediction in solid tumors.
Collapse
Affiliation(s)
- Andrea Balduit
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Chiara Agostinis
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
2
|
Ainiwaer A, Qian Z, Wang J, Zhao Q, Lu Y. Single-cell analysis uncovers liver susceptibility to pancreatic cancer metastasis via myeloid cell characterization. Discov Oncol 2024; 15:696. [PMID: 39578286 PMCID: PMC11584836 DOI: 10.1007/s12672-024-01566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
The liver is the predominant metastatic site for diverse cancers, including pancreatic and colorectal cancers (CRC), etc. The high incidence of hepatic metastasis of pancreatic cancer is an important reason for its refractory and high mortality. Therefore, it is important to understand how metastatic pancreatic cancer affects the hepatic tumor immune microenvironment (TME) in patients. Here, we characterized the TME of liver metastases unique to pancreatic cancer by comparing them with CRC liver metastases. We integrated two single-cell RNA-seq (scRNA-seq) datasets including tumor samples of pancreatic cancer liver metastasis (P-LM), colorectal cancer liver metastasis (C-LM), primary pancreatic cancer (PP), primary colorectal cancer (PC), as well as samples of peripheral blood mono-nuclear cells (PBMC), adjacent normal pancreatic tissues (NPT), to better characterize the heterogeneities of the microenvironment of two kinds of liver metastases. We next performed comparative analysis on cellular compositions between P-LM and C-LM, found that Mph_SPP1, a subset of macrophages associated with angiogenesis and tumor invasion, was more enriched in the P-LM group, indicating this kind of macrophages provide a TME niche more vulnerable for pancreatic cancers. Analysis of the developmental trajectory implied that Mph_SPP1 may progressively be furnished with increased expression of genes regulating endothelium. Cell-cell communications analysis revealed that Mph_SPP1 potentially interacts with endothelial cells in P-LM via FN1/SPP1-ITGAV/ITGB1, implying this macrophage subset may construct an immunosuppressive TME for pancreatic cancer by regulating endothelial cells. We also found that Mph_SPP1 has a prognostic value in pancreatic adenocarcinoma that is not present in colon adenocarcinoma or rectum adenocarcinoma. This study provides a new perspective for understanding the characteristics of the hepatic TME in patients with liver metastatic cancer. And it provides a subset of macrophages specifically associated with the liver metastasis of pancreatic cancer, and its detection and intervention have potential value for preventing the metastasis of pancreatic cancer to the liver.
Collapse
Affiliation(s)
- Aizier Ainiwaer
- Comprehensive Liver Cancer Center, The 5Th Medical Center of the PLA General Hospital, Beijing, China
| | - Zhenwei Qian
- Peking University 302 Clinical Medical School, Beijing, 100039, China
| | - Jianxun Wang
- Shenzhen Cell Valley Biopharmaceuticals Co., LTD, Shenzhen, 518118, China
| | - Qi Zhao
- MoE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
| | - Yinying Lu
- Comprehensive Liver Cancer Center, The 5Th Medical Center of the PLA General Hospital, Beijing, China.
- Peking University 302 Clinical Medical School, Beijing, 100039, China.
| |
Collapse
|
3
|
Yao Y, Wang D, Zheng L, Zhao J, Tan M. Advances in prognostic models for osteosarcoma risk. Heliyon 2024; 10:e28493. [PMID: 38586328 PMCID: PMC10998144 DOI: 10.1016/j.heliyon.2024.e28493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
The risk prognosis model is a statistical model that uses a set of features to predict whether an individual will develop a specific disease or clinical outcome. It can be used in clinical practice to stratify disease severity and assess risk or prognosis. With the advancement of large-scale second-generation sequencing technology, along Prognosis models for osteosarcoma are increasingly being developed as large-scale second-generation sequencing technology advances and clinical and biological data becomes more abundant. This expansion greatly increases the number of prognostic models and candidate genes suitable for clinical use. This article will present the predictive effects and reliability of various prognosis models, serving as a reference for their evaluation and application.
Collapse
Affiliation(s)
- Yi Yao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Dapeng Wang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Manli Tan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
4
|
Li H, Miao Y, Zhong L, Feng S, Xu Y, Tang L, Wu C, Zhang X, Gu L, Diao H, Wang H, Wen Z, Yang M. Identification of TREM2-positive tumor-associated macrophages in esophageal squamous cell carcinoma: implication for poor prognosis and immunotherapy modulation. Front Immunol 2023; 14:1162032. [PMID: 37187751 PMCID: PMC10175681 DOI: 10.3389/fimmu.2023.1162032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Background It is now understood that the effectiveness of checkpoint immunotherapy can be impaired by immunosuppressive tumor-associated macrophages (TAMs). Nonetheless, the impact of different TAM subpopulations on the antitumor immune response remains unclear, mainly due to their heterogeneity. Herein, we identified a novel TAM subpopulation in esophageal squamous cell carcinoma (ESCC) that might contribute to poor clinical outcomes and immunotherapy modulation. Methods and results We analyzed two single-cell RNA sequencing (scRNA-seq) datasets (GSE145370 and GSE160269) of esophageal squamous cell carcinoma to identify a novel TREM2-positive TAM subpopulation characterized by upregulation of TREM2, C1QC, C1QB, C1QA, SPP1, and APOE. Quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) demonstrated that these genes were significantly overexpressed in ESCC. Multiplex immunofluorescence validated the infiltration of TREM2+ TAMs in ESCC tissues, which correlated with poorer overall survival (OS). The scRNA-seq analysis in dataset GSE120575 indicated significant enrichment of TREM2+ TAMs in melanoma patients (n=48) with poor immunotherapy response, which had an identical gene signature with TREM2+ TAMs from ESCC. Analysis of 29 bulk-RNA melanoma samples from dataset GSE78220 revealed that a gene signature of 40 genes associated with TREM2+ TAMs was upregulated in the transcriptome of melanomas that did not respond to anti-PD1 therapy. Validation in the TCGA ESCC cohort (n=80) showed that a high enrichment score of the TREM2+ TAM was associated with poor prognosis. In addition, 10 ESCC patients treated with anti-PD1 therapy suggested that patients who are not sensitive to immunotherapy have higher density of TREM2+TAMs infiltration. Conclusion Overall, TREM2+ TAM infiltration in ESCC is associated with poor prognosis and may serve as a biomarker for predicting outcomes and immunotherapy modulation in this patient population. modulation; single-cell RNA sequencing.
Collapse
Affiliation(s)
- Hongmu Li
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guanghzou, China
| | - Yu Miao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Leqi Zhong
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guanghzou, China
| | - Songjie Feng
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Yue Xu
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Tang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guanghzou, China
| | - Chun Wu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guanghzou, China
| | - Xianzhou Zhang
- Department of Hepatobiliory and Pancreatic Surgery, Henan Provincial Cancer Hospital, Zhengzhou, China
| | - Ling Gu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guanghzou, China
| | - Hengyi Diao
- Department of Hepatobiliory and Pancreatic Surgery, Henan Provincial Cancer Hospital, Zhengzhou, China
| | - Huiyun Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guanghzou, China
| | - Zhesheng Wen
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guanghzou, China
| | - Minglei Yang
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Detection of Complement C1q B Chain Overexpression and Its Latent Molecular Mechanisms in Cervical Cancer Tissues Using Multiple Methods. Int J Genomics 2022; 2022:8775330. [PMID: 36313902 PMCID: PMC9613392 DOI: 10.1155/2022/8775330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022] Open
Abstract
Aim The aim of this study is to demonstrate the expression and clinicopathological significance of complement C1q B chain (C1QB) in cervical cancer. Methods In total, 120 cervical cancer tissues, as well as 20 samples each of high-grade squamous intraepithelial lesions (HSILs), low-grade squamous intraepithelial lesions (LSILs), and benign cervical tissue, were collected to evaluate the expression of C1QB protein via immunohistochemical staining. We conducted an integrated analysis of C1QB mRNA expression in cervical cancer using public microarrays and RNA-seq data sets by calculating standard mean differences (SMDs). Simultaneously, we explored the relations of C1QB with clinicopathological parameters and the expression of P16, Ki-67, and P53. Results The expression of C1QB protein was higher in cervical cancer samples than that in benign cervical tissue, LSIL, and HSIL samples (p < 0.05). A combined SMD of 0.65 (95% CI: [0.52, 0.79], p < 0.001) revealed upregulation of C1QB mRNA in cervical cancer. C1QB expression may also be related to the depth of infiltration, lymphovascular invasion, and perineural invasion in cervical cancer (p < 0.05). We also found that C1QB protein expression was positively correlated with P16 and Ki-67 expression in cervical cancer (p < 0.05). The gene set enrichment analysis showed that C1QB may participate in apoptosis and autophagy. A relationship was predicted between C1QB expression and drug sensitivity to cisplatin, paclitaxel, and docetaxel. Conclusion We confirmed the overexpression of C1QB in cervical cancer at both mRNA and protein levels for the first time. C1QB may serve as an oncogene in the tumorigenesis of cervical cancer, but this possibility requires further study.
Collapse
|
6
|
m6A-Related lncRNAs Predict Overall Survival of Patients and Regulate the Tumor Immune Microenvironment in Osteosarcoma. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:9315283. [PMID: 35978902 PMCID: PMC9377863 DOI: 10.1155/2022/9315283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022]
Abstract
Background m6A-related lncRNAs have demonstrated great potential tumor diagnostic and therapeutic targets. The goal of this work was to find m6A-regulated lncRNAs in osteosarcoma patients. Method The Cancer Genome Atlas (TCGA) database was used to retrieve RNA sequencing and medical information from osteosarcoma sufferers. The Pearson's correlation test was used to identify the m6A-related lncRNAs. A risk model was built using univariate and multivariable Cox regression analysis. Kaplan–Meier survival analysis and receiver functional requirements were used to assess the risk model's performance (ROC). By using the CIBERSORT method, the associations between the relative risks and different immune cell infiltration were investigated. Lastly, the bioactivities of high-risk and low-risk subgroups were investigated using Gene Set Enrichment Analysis (GSEA). Result A total of 531 m6A-related lncRNAs were obtained from TCGA. Seven lncRNAs have demonstrated prognostic values. A total of 88 OS patients were separated into cluster 1, cluster 2, and cluster 3. The overall survival rate of OS patients in cluster 3 was more favorable than that of those in cluster 1 and cluster 2. The average Stromal score was much higher in cluster 1 than in cluster 2 and cluster 3 (P < 0.05). The expression levels of lncRNAs used in the construction of the risk prediction model in the high-risk group were generally lower than those in the low-risk group. Analysis of patient survival indicated that the survival of the low-risk group was higher than that of the high-risk group (P < 0.0001) and the area under the curve (AUC) of the ROC curve was 0.719. Using the CIBERSORT algorithm, the results revealed that Macrophages M0, Macrophages M2, and T cells CD4 memory resting accounted for a large proportion of immune cell infiltration. By GSEA analysis, our results implied that the high-risk group was mainly involved in unfolded protein response, DNA repair signaling, and epithelial-mesenchymal transition signaling pathway and glycolysis pathway; meanwhile, the low-risk group was mainly involved in estrogen response early and KRAS signaling pathway. Conclusion Our investigation showed that m6A-related lncRNAs remained tightly connected to the immunological microenvironment of osteosarcoma tumors, potentially influencing carcinogenesis and development. The immune microenvironment and immune-related biochemical pathways can be changed by regulating the transcription of M6A modulators or lncRNAs. In addition, we looked for risk-related signaling of m6A-related lncRNAs in osteosarcomas and built and validated the risk prediction system. The findings of our current analysis will facilitate the assessment of outcomes and the development of immunotherapies for sufferers of osteosarcomas.
Collapse
|
7
|
Zhu T, Han J, Yang L, Cai Z, Sun W, Hua Y, Xu J. Immune Microenvironment in Osteosarcoma: Components, Therapeutic Strategies and Clinical Applications. Front Immunol 2022; 13:907550. [PMID: 35720360 PMCID: PMC9198725 DOI: 10.3389/fimmu.2022.907550] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma is a primary malignant tumor that tends to threaten children and adolescents, and the 5-year event-free survival rate has not improved significantly in the past three decades, bringing grief and economic burden to patients and society. To date, the genetic background and oncogenesis mechanisms of osteosarcoma remain unclear, impeding further research. The tumor immune microenvironment has become a recent research hot spot, providing novel but valuable insight into tumor heterogeneity and multifaceted mechanisms of tumor progression and metastasis. However, the immune microenvironment in osteosarcoma has been vigorously discussed, and the landscape of immune and non-immune component infiltration has been intensively investigated. Here, we summarize the current knowledge of the classification, features, and functions of the main infiltrating cells, complement system, and exosomes in the osteosarcoma immune microenvironment. In each section, we also highlight the complex crosstalk network among them and the corresponding potential therapeutic strategies and clinical applications to deepen our understanding of osteosarcoma and provide a reference for imminent effective therapies with reduced adverse effects.
Collapse
Affiliation(s)
- Tianyi Zhu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Liu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Wei Sun
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Xu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| |
Collapse
|
8
|
Revel M, Sautès-Fridman C, Fridman WH, Roumenina LT. C1q+ macrophages: passengers or drivers of cancer progression. Trends Cancer 2022; 8:517-526. [DOI: 10.1016/j.trecan.2022.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/24/2022]
|
9
|
Li J, Shi H, Yuan Z, Wu Z, Li H, Liu Y, Lu M, Lu M. The role of SPI1-TYROBP-FCER1G network in oncogenesis and prognosis of osteosarcoma, and its association with immune infiltration. BMC Cancer 2022; 22:108. [PMID: 35078433 PMCID: PMC8790913 DOI: 10.1186/s12885-022-09216-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/20/2022] [Indexed: 12/27/2022] Open
Abstract
Osteosarcoma is an aggressive malignant bone sarcoma worldwide. A causal gene network with specific functions underlying both the development and progression of OS was still unclear. Here we firstly identified the differentially expressed genes (DEGs) between control and OS samples, and then defined the hub genes and top clusters in the protein–protein interaction (PPI) network of these DEGs. By focusing on the hub gene TYROBP in the top 1 cluster, a conserved TYROBP co-expression network was identified. Then the effect of the network on OS overall survival was analyzed. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses and Gene Set Enrichment Analysis (GSEA) were used to explore the functions of the network. XCell platform and ssGSEA algorithm were conducted to estimate the status of immune infiltration. ChEA3 platform, GSEA enrichment analysis, and Drug Pair Seeker (DPS) were used to predict the key transcription factor and its upstream signal. We identified the downregulated SPI1-TYROBP-FCER1G network in OS, which were significantly enriched in immune-related functions. We also defined a two-gene signature (SPI1/FCER1G) that can predict poorer OS overall survival and the attenuated immune infiltration when downregulated. The SPI1-TYROBP-FCER1G network were potentially initiated by transcription factor SPI1 and would lead to the upregulated CD86, MHC-II, CCL4/CXCL10/CX3CL1 and hence increased immune infiltrations. With this study, we could better explore the mechanism of OS oncogenesis and metastasis for developing new therapies.
Collapse
|
10
|
Liao Y, Zou X, Wang K, Wang Y, Wang M, Guo T, Zhong B, Jiang N. Comprehensive analysis of Transcription Factors identified novel prognostic biomarker in human bladder cancer. J Cancer 2021; 12:5605-5621. [PMID: 34405021 PMCID: PMC8364643 DOI: 10.7150/jca.58484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Transcriptional factors (TFs) are responsible for regulating the transcription of pro-oncogenes and tumor suppressor genes in the process of tumor development. However, the role of these transcription factors in Bladder cancer (BCa) remains unclear. And the main purpose of this research is to explore the possibility of these TFs serving as biomarkers for BCa. Methods: We analyzed the differential expression of TFs in BCa from The Cancer Genome Atlas (TCGA) online database, identified 408 up-regulated TFs and 751down-regulated TFs. We obtained some hub genes via WGCNA model and detected the RNAs level in BCa cells and tissues. Then, the relationship between the expression and clinicopathological parameters was further investigated. Kaplan-Meier curves and the log-rank test were carried out to analyze the relationship between NFATC1, AKNA and five-TFs combination and overall survival (OS). And RT-PCR assay was conducted to further consolidate and verify these results. Results: There were significant differences in the expression of five TFs (CBX7, AKNA, HDAC4, EBF2 and NFATC1) between bladder cancer and normal bladder tissue. In BCa tissue and cell lines, the five TFs were frequently down-regulated, and closely related to poor prognosis. Moreover, the RT-PCR results of five TFs in bladder cancer and normal bladder tissue were consistent with the database results, and reduced TFs could significantly induce or restrain the transcription of many critical factors. The expression level of AKNA and NFATC1 could serve as independent biomarker to predict the overall survival (P<0.05). And the above five TFs combined detection of bladder cancer has higher sensitivity and specificity. Furthermore, differential neutrophils expression between high-risk and low-risk were found, which consolidated the role and function of the five TFs combination model in the progression of BCa. Conclusions: Our analysis effectively provides a newly TFs-associated prognostic model for bladder cancer. The combination of five identified-TFs is an independent prognostic biomarker, which could serve as a more effective therapeutic target for BCa patients.
Collapse
Affiliation(s)
- Yihao Liao
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xuanxuan Zou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keke Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Youzhi Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Miaomiao Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Tao Guo
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Boqiang Zhong
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Ning Jiang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
11
|
Lawal B, Tseng SH, Olugbodi JO, Iamsaard S, Ilesanmi OB, Mahmoud MH, Ahmed SH, Batiha GES, Wu ATH. Pan-Cancer Analysis of Immune Complement Signature C3/C5/C3AR1/C5AR1 in Association with Tumor Immune Evasion and Therapy Resistance. Cancers (Basel) 2021; 13:4124. [PMID: 34439277 PMCID: PMC8394789 DOI: 10.3390/cancers13164124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 01/08/2023] Open
Abstract
Despite the advances in our understanding of the genetic and immunological basis of cancer, cancer remains a major public health burden with an ever-increasing incidence rate globally. Nevertheless, increasing evidence suggests that the components of the complement system could regulate the tumor microenvironment (TME) to promote cancer progression, recurrence, and metastasis. In the present study, we used an integrative multi-omics analysis of clinical data to explore the relationships between the expression levels of and genetic and epigenetic alterations in C3, C5, C3AR1, and C5AR1 and tumor immune evasion, therapy response, and patient prognosis in various cancer types. We found that the complements C3, C5, C3AR1, and C5AR1 have deregulated expression in human malignancies and are associated with activation of immune-related oncogenic processes and poor prognosis of cancer patients. Furthermore, we found that the increased expression levels of C3, C5, C3AR1, and C5AR1 were primarily predicted by copy number variation and gene methylation and were associated with dysfunctional T-cell phenotypes. Single nucleotide variation in the gene signature co-occurred with multiple oncogenic mutations and is associated with the progression of onco-immune-related diseases. Further correlation analysis revealed that C3, C5, C3AR1, and C5AR1 were associated with tumor immune evasion via dysfunctional T-cell phenotypes with a lesser contribution of T-cell exclusion. Lastly, we also demonstrated that the expression levels of C3, C5, C3AR1, and C5AR1 were associated with context-dependent chemotherapy, lymphocyte-mediated tumor killing, and immunotherapy outcomes in different cancer types. In conclusion, the complement components C3, C5, C3AR1, and C5AR1 serve as attractive targets for strategizing cancer immunotherapy and response follow-up.
Collapse
Affiliation(s)
- Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan;
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Sung-Hui Tseng
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei 11031, Taiwan;
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | | | - Sitthichai Iamsaard
- Department of Anatomy, Faculty of Medicine and Research Institute for Human High Performance and Health Promotion (HHP&HP), Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Omotayo B. Ilesanmi
- Department of Biochemistry, Faculty of Science, Federal University Otuoke, Ogbia 23401, Bayelsa State, Nigeria;
| | - Mohamed H. Mahmoud
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Sahar H. Ahmed
- Medical Laboratory Technology Department, Faculty of Applied Medical Science, Misr University For Science &Technology, Cairo 3245310, Egypt;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt;
| | - Alexander T. H. Wu
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Taipei Heart Institute (THI), Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
12
|
Tajbakhsh A, Gheibi Hayat SM, Movahedpour A, Savardashtaki A, Loveless R, Barreto GE, Teng Y, Sahebkar A. The complex roles of efferocytosis in cancer development, metastasis, and treatment. Biomed Pharmacother 2021; 140:111776. [PMID: 34062411 DOI: 10.1016/j.biopha.2021.111776] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
When tumor cells are killed by targeted therapy, radiotherapy, or chemotherapy, they trigger their primary tumor by releasing pro-inflammatory cytokines. Microenvironmental interactions can also promote tumor heterogeneity and development. In this line, several immune cells within the tumor microenvironment, including macrophages, dendritic cells, regulatory T-cells, and CD8+ and CD4+ T cells, are involved in the clearance of apoptotic tumor cells through a process called efferocytosis. Although the efficiency of apoptotic tumor cell efferocytosis is positive under physiological conditions, there are controversies regarding its usefulness in treatment-induced apoptotic tumor cells (ATCs). Efferocytosis can show the limitation of cytotoxic treatments, such as chemotherapy and radiotherapy. Since cytotoxic treatments lead to extensive cell mortality, efferocytosis, and macrophage polarization toward an M2 phenotype, the immune response may get involved in tumor recurrence and metastasis. Tumor cells can use the anti-inflammatory effect of apoptotic tumor cell efferocytosis to induce an immunosuppressive condition that is tumor-tolerant. Since M2 polarization and efferocytosis are tumor-promoting processes, the receptors on macrophages act as potential targets for cancer therapy. Moreover, researchers have shown that efferocytosis-related molecules/pathways are potential targets for cancer therapy. These include phosphatidylserine and calreticulin, Tyro3, Axl, and Mer tyrosine kinase (MerTK), receptors of tyrosine kinase, indoleamine-2,3-dioxygenase 1, annexin V, CD47, TGF-β, IL-10, and macrophage phenotype switch are combined with conventional therapy, which can be more effective in cancer treatment. Thus, we set out to investigate the advantages and disadvantages of efferocytosis in treatment-induced apoptotic tumor cells.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Medical Laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA 30912, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Wang Y, Zhong Q, Li Z, Lin Z, Chen H, Wang P. Integrated Profiling Identifies CCNA2 as a Potential Biomarker of Immunotherapy in Breast Cancer. Onco Targets Ther 2021; 14:2433-2448. [PMID: 33859479 PMCID: PMC8043851 DOI: 10.2147/ott.s296373] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction Breast cancer is the main reason for cancer-related deaths in women and the most common malignant cancer among women. In recent years, immunosuppressive factors have become a new type of treatment for cancer. However, there are no effective biomarkers for breast cancer immunotherapy. Therefore, exploring immune-related biomarkers is presently an important topic in breast cancer. Methods Gene expression profile data of breast cancer from The Cancer Genome Atlas (TCGA) was downloaded. Scale-free gene co-expression networks were built with weighted gene co-expression network analysis. The correlation of genes was performed with Pearson’s correlation values. The potential associations between clinical features and gene sets were studied, and the hub genes were screened out. Gene Ontology and gene set enrichment analysis were used to reveal the function of hub gene in breast cancer. The gene expression profiles of GSE15852, downloaded from the Gene Expression Omnibus database, were used for hub gene verification. In addition, candidate biomarkers expression in breast cancer was studied. Survival analysis was performed using Log rank test and Kaplan–Meier. Immunohistochemistry was used to analyze the expression of CCNA2. Results A total of 6 modules related to immune cell infiltration were identified via the average linkage hierarchical clustering. According to the threshold criteria (module membership >0.9 and gene significance >0.35), a significant module consisting of 13 genes associated with immune cells infiltration were identified as candidate hub genes after performed with the human protein interaction network. And 3 genes with high correlation to clinical traits were identified as hub genes, which were negatively associated with the overall survival. Among them, the expression of CCNA2 was increased in metastatic breast cancer compare with non-metastatic breast cancer, who underwent immunotherapy. Immunohistochemistry results showed that CCNA2 expression in carcinoma tissues was elevated compared with normal control. Discussion CCNA2 identified as a potential immune therapy marker in breast cancer, which were first reported here and deserved further research.
Collapse
Affiliation(s)
- Yichao Wang
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, People's Republic of China
| | - Qianyi Zhong
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, People's Republic of China
| | - Zhaoyun Li
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, People's Republic of China
| | - Zhu Lin
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, People's Republic of China
| | - Hanjun Chen
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, People's Republic of China
| | - Pan Wang
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, People's Republic of China
| |
Collapse
|