1
|
Akiyama H, Barke L, Bevers TB, Rose SJ, Hu JJ, McAleese KA, Campos SS, Kondou S, Atsumi J, Soriano TF. Performance of a Logistic Regression Model Using Paired miRNAs to Stratify Abnormal Mammograms for Benign Breast Lesions. Cancer Med 2025; 14:e70767. [PMID: 40231553 PMCID: PMC11997706 DOI: 10.1002/cam4.70767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 01/08/2025] [Accepted: 02/06/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Mammography is effective in reducing breast cancer mortality, but it has false positive results that cause subsequent interventions such as biopsy or interval repeat mammography. Thus, there is a clinical unmet need for accurate molecular classifiers that can reduce unnecessary additional imaging and/or invasive diagnostic procedures for low-risk women. METHOD We performed miRNA profiling on a prospectively collected serum specimen obtained from each of the 432 subjects who received an abnormal mammogram or imaging result and then selected 265 subjects for further analysis. The miRNA classifier, named EarlyGuard, was generated based on a novel logistic regression model using "paired miRNAs" where the two miRNAs of interest exhibit the same properties. RESULTS The classifier developed using the training set of 174 subjects enrolled at seven investigative sites resulted in a negative predictive value (NPV) and a sensitivity of 96.4% and 91.2%, respectively. The classifier was validated using the test set consisting of 91 subjects enrolled at three investigative sites, two of which were not included in the training set. The resulting NPV and sensitivity were estimated similarly to be 96.9% and 95.8%, respectively. CONCLUSIONS Our miRNA classifier has produced promising results that could be used in conjunction with mammography or other imaging procedures to reduce unnecessary invasive diagnostic procedures for women who are unlikely to have a suspicious or worse result on a subsequent diagnostic biopsy. Additional studies will be conducted in larger cohorts to determine if the sensitivity of the classifier will be improved.
Collapse
Affiliation(s)
| | - Lora Barke
- Invision Sally Jobe/Radiology Imaging AssociatesEnglewoodColoradoUSA
| | - Therese B. Bevers
- Division of OVP, Department of Clinical Cancer Prevention, Cancer Prevention and Population SciencesThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Suzanne J. Rose
- Department of Research and Discovery, Stamford Health, Breast CenterStamford HealthStamfordConnecticutUSA
| | - Jennifer J. Hu
- Department of Public Health ScienceUniversity of Miami School of MedicineMiamiFloridaUSA
| | | | | | | | | | | |
Collapse
|
2
|
Wang S, Wan L, Zhang X, Fang H, Zhang M, Li F, Yan D. ETS-1 in tumor immunology: implications for novel anti-cancer strategies. Front Immunol 2025; 16:1526368. [PMID: 40181983 PMCID: PMC11965117 DOI: 10.3389/fimmu.2025.1526368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
ETS-1, a key member of the Erythroblast Transformation-Specific (ETS) transcription factor family, plays an important role in cell biology and medical research due to its wide expression profile and strong transcriptional regulation ability. It regulates fundamental biological processes, including cell proliferation, differentiation, and apoptosis, and is involved in tumorigenesis and metastasis, promoting malignant behaviors such as angiogenesis, matrix degradation, and cell migration. Given the association between ETS-1 overexpression and the aggressive characteristics of multiple malignancies, it represents a promising therapeutic target in cancer treatment. This study aims to systematically analyze the role of ETS-1 within the tumor immune microenvironment, elucidating its mechanisms in cancer initiation, progression, and metastasis. It also investigates the differential expression of ETS-1 across tumor tissues and adjacent normal tissues, exploring its potential as a molecular marker for tumor diagnosis and prognosis.
Collapse
Affiliation(s)
- SiYu Wang
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - Lei Wan
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - XiaoJun Zhang
- Academic Affairs Office, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - HaoXiang Fang
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - MengYu Zhang
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - Feng Li
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - DaWei Yan
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| |
Collapse
|
3
|
Acheampong F, Ostlund T, Hedge E, Laddusaw J, Alotaibi F, Elshaier YAMM, Halaweish F. Triazole-Estradiol Analogs Induce Apoptosis and Inhibit EGFR and Its Downstream Pathways in Triple Negative Breast Cancer. Molecules 2025; 30:605. [PMID: 39942711 PMCID: PMC11820259 DOI: 10.3390/molecules30030605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Triple negative breast cancer, TNBC, is a difficult disease to treat due to relapse and resistance to known therapies. Epidermal growth factor receptor (EGFR), a tyrosine kinase responsible for downstream signaling leading to cell growth and survival, is typically overexpressed in TNBC. Our previous work has detailed the synthesis of triazole-estradiol derivatives as inhibitors of EGFR and downstream receptors, and this work continues that discussion by evaluating them in EGFR-dependent TNBC cell models MDA-MB-231 and MDA-MB-468. Compound Fz25 was cytotoxic against both MDA-MB-231 and MDA-MB-468 cell lines, yielding IC50 values of 8.12 ± 0.85 and 25.43 ± 3.68 µM, respectively. However, compounds Fz57 and Fz200 were potent against only MDA-MB-231 cells, generating IC50 values of 21.18 ± 0.23 and 10.86 ± 0.69 µM, respectively. Pathway analyses revealed that Fz25, Fz57 and Fz200 arrested the G0/G1 phase of the cell cycle and concomitantly suppressed cell cycle regulators, cyclin D1, cyclin E and Dyrk1B in MDA-MB-231 cells. Additionally, all compounds inhibited EGFR and its downstream signaling pathways-extracellular receptor kinase (ERK) and the mammalian target of rapamycin (mTOR)-in a dose-dependent manner. Furthermore, Fz25, Fz57 and Fz200 induced apoptosis in MDA-MB-231 cells by modulating morphological changes, including chromatin condensation, and attenuating the levels of cytochrome c, APAF1, caspases-3 and -9 as well as cleaved PARP. Of these compounds, only Fz25 showed overall satisfactory ADMET properties in silico. Similarly, Fz25 showed suitable binding parameters explored using molecular dynamic simulations in silico. These findings suggest that Fz25 warrants further preclinical and clinical investigations as a new generation of triazole congeners with significant potency in EFGR-dependent TNBC.
Collapse
Affiliation(s)
- Felix Acheampong
- Department of Preclinical Pharmacology and Toxicology, Verve Therapeutics Inc., Boston, MA 02215, USA
- Department of Chemistry and Biochemistry, College of Natural Sciences, South Dakota State University, Brookings, SD 57007, USA; (T.O.)
| | - Trevor Ostlund
- Department of Chemistry and Biochemistry, College of Natural Sciences, South Dakota State University, Brookings, SD 57007, USA; (T.O.)
| | - Emily Hedge
- Department of Chemistry and Biochemistry, College of Natural Sciences, South Dakota State University, Brookings, SD 57007, USA; (T.O.)
| | - Jacqueline Laddusaw
- Department of Chemistry and Biochemistry, College of Natural Sciences, South Dakota State University, Brookings, SD 57007, USA; (T.O.)
| | - Faez Alotaibi
- Department of Chemistry and Biochemistry, College of Natural Sciences, South Dakota State University, Brookings, SD 57007, USA; (T.O.)
- Department of Chemistry, College of Science, Qassim University, Buraydah 51452, Saudi Arabia
| | - Yaseen A. M. M. Elshaier
- Department of Chemistry and Biochemistry, College of Natural Sciences, South Dakota State University, Brookings, SD 57007, USA; (T.O.)
- Department of Organic and Medicinal Chemistry, University of Sadat City, Monufia 32897, Egypt
| | - Fathi Halaweish
- Department of Chemistry and Biochemistry, College of Natural Sciences, South Dakota State University, Brookings, SD 57007, USA; (T.O.)
| |
Collapse
|
4
|
Durrani IA, John P, Bhatti A, Khan JS. Network medicine based approach for identifying the type 2 diabetes, osteoarthritis and triple negative breast cancer interactome: Finding the hub of hub genes. Heliyon 2024; 10:e36650. [PMID: 39281650 PMCID: PMC11401126 DOI: 10.1016/j.heliyon.2024.e36650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
The increasing prevalence of multi-morbidities, particularly the incidence of breast cancer in diabetic/osteoarthritic patients emphasize on the need for exploring the underlying molecular mechanisms resulting in carcinogenesis. To address this, present study employed a systems biology approach to identify switch genes pivotal to the crosstalk between diseased states resulting in multi-morbid conditions. Hub genes previously reported for type 2 diabetes mellitus (T2DM), osteoarthritis (OA), and triple negative breast cancer (TNBC), were extracted from published literature and fed into an integrated bioinformatics analyses pipeline. Thirty-one hub genes common to all three diseases were identified. Functional enrichment analyses showed these were mainly enriched for immune and metabolism associated terms including advanced glycation end products (AGE) pathways, cancer pathways, particularly breast neoplasm, immune system signalling and adipose tissue. The T2DM-OA-TNBC interactome was subjected to protein-protein interaction network analyses to identify meta hub/clustered genes. These were prioritized and wired into a three disease signalling map presenting the enriched molecular crosstalk on T2DM-OA-TNBC axes to gain insight into the molecular mechanisms underlying disease-disease interactions. Deciphering the molecular bases for the intertwined metabolic and immune states may potentiate the discovery of biomarkers critical for identifying and targeting the immuno-metabolic origin of disease.
Collapse
Affiliation(s)
- Ilhaam Ayaz Durrani
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Peter John
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Attya Bhatti
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | | |
Collapse
|
5
|
Gruszka R, Zakrzewski J, Nowosławska E, Grajkowska W, Zakrzewska M. Identification and validation of miRNA-target genes network in pediatric brain tumors. Sci Rep 2024; 14:17922. [PMID: 39095557 PMCID: PMC11297236 DOI: 10.1038/s41598-024-68945-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
Alterations in miRNA levels have been observed in various types of cancer, impacting numerous cellular processes and increasing their potential usefulness in combination therapies also in brain tumors. Recent advances in understanding the genetics and epigenetics of brain tumours point to new aberrations and associations, making it essential to continually update knowledge and classification. Here we conducted molecular analysis of 123 samples of childhood brain tumors (pilocytic astrocytoma, medulloblastoma, ependymoma), focusing on identification of genes that could potentially be regulated by crucial representatives of OncomiR-1: miR-17-5p and miR-20a-5p. On the basis of microarray gene expression analysis and qRTPCR profiling, we selected six (WEE1, CCND1, VEGFA, PTPRO, TP53INP1, BCL2L11) the most promising target genes for further experiments. The WEE1, CCND1, PTPRO, TP53INP1 genes showed increased expression levels in all tested entities with the lowest increase in the pilocytic astrocytoma compared to the ependymoma and medulloblastoma. The obtained results indicate a correlation between gene expression and the WHO grade and subtype. Furthermore, our analysis showed that the integration between genomic and epigenetic pathways should now point the way to further molecular research.
Collapse
Affiliation(s)
- Renata Gruszka
- Faculty of Biology and Environmental Protection, Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Jakub Zakrzewski
- Faculty of Medicine, Medical University of Lodz, ul. Aleja T. Kosciuszki 4, 90-419, Lodz, Poland
| | - Emilia Nowosławska
- Department of Neurosurgery, Polish Mother Memorial Hospital Research Institute in Lodz, Rzgowska 281/289, 93-338, Lodz, Poland
| | - Wiesława Grajkowska
- Department of Pathology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Magdalena Zakrzewska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Pomorska 251, 92-216, Lodz, Poland
| |
Collapse
|
6
|
Alotaibi BS, El-Masry TA, Selim H, El-Bouseary MM, El-Sheekh MM, Makhlof MEM, El-Nagar MMF. New insights into the anticancer effects of Polycladia crinita aqueous extract and its selenium nanoformulation against the solid Ehrlich carcinoma model in mice via VEGF, notch 1, NF-кB, cyclin D1, and caspase 3 signaling pathway. Front Pharmacol 2024; 15:1345516. [PMID: 38469406 PMCID: PMC10926956 DOI: 10.3389/fphar.2024.1345516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Background: Phaeophyceae species are enticing interest among researchers working in the nanotechnology discipline, because of their diverse biological activities such as anti-inflammatory, antioxidant, anti-microbial, and anti-tumor. In the present study, the anti-cancer properties of Polycladia crinita extract and green synthesized Polycladia crinita selenium nanoparticles (PCSeNPs) against breast cancer cell line (MDA-MB-231) and solid Ehrlich carcinoma (SEC) were investigated. Methods: Gas chromatography-mass spectroscopy examinations of Polycladia crinita were determined and various analytical procedures, such as SEM, TEM, EDX, and XRD, were employed to characterize the biosynthesized PCSeNPs. In vitro, the anticancer activity of free Polycladia crinita and PCSeNPs was evaluated using the viability assay against MDA-MB-231, and also cell cycle analysis by flow cytometry was determined. Furthermore, to study the possible mechanisms behind the in vivo anti-tumor action, mice bearing SEC were randomly allocated into six equal groups (n = 6). Group 1: Tumor control group, group 2: free SeNPs, group 3: 25 mg/kg Polycladia crinita, group 4: 50 mg/kg Polycladia crinita, group 5: 25 mg/kg PCSeNPs, group 6: 50 mg/kg PCSeNPs. Results: Gas chromatography-mass spectroscopy examinations of Polycladia crinita extract exposed the presence of many bioactive compounds, such as 4-Octadecenoic acid-methyl ester, Tetradecanoic acid, and n-Hexadecenoic acid. These compounds together with other compounds found, might work in concert to encourage the development of anti-tumor activities. Polycladia crinita extract and PCSeNPs were shown to inhibit cancer cell viability and early cell cycle arrest. Concentrations of 50 mg/kg of PCSeNPs showed suppression of COX-2, NF-кB, VEGF, ki-67, Notch 1, and Bcl-2 protein levels. Otherwise, showed amplification of the caspase 3, BAX, and P53 protein levels. Moreover, gene expression of caspase 3, caspase 9, Notch 1, cyclin D1, NF-кB, IL-6, and VEGF was significantly more effective with PCSeNPs than similar doses of free extract. Conclusion: The PCSeNPs mediated their promising anti-cancerous action by enhancing apoptosis and mitigating inflammation, which manifested in promoting the total survival rate and the tumor volume decrease.
Collapse
Affiliation(s)
- Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hend Selim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Maisra M. El-Bouseary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Mofida E. M. Makhlof
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
7
|
Sweed D, Gammal SSE, Kilany S, Abdelsattar S, Elhamed SMA. The expression of VEGF and cyclin D1/EGFR in common primary liver carcinomas in Egypt: an immunohistochemical study. Ecancermedicalscience 2023; 17:1641. [PMID: 38414954 PMCID: PMC10898887 DOI: 10.3332/ecancer.2023.1641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Indexed: 02/29/2024] Open
Abstract
Background The most common types of primary malignant liver tumours are hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Treatment options for patients who are inoperable/advanced, or recurring are challenging. Cyclin D1, epidermal growth factor (EGFR) and vascular endothelial growth factor (VEGR) are common carcinogenic proteins that have potential therapeutic targets in various cancers. They have been implicated in the development of HCC and CCA. In this study, we aimed to evaluate the oncogenic function expression of cyclin D1, EGFR and VEGF in HCC and CCA of Egyptian patients. This could help to validate their therapeutic potential. Material and methods Tumour cases were selected from 82 cases of primary liver carcinomas, with 58 cases being from HCC and 24 cases from CCA compared to 51 non-tumour adjacent liver cases and 18 from normal liver tissue. The immunohistochemical study of cyclin D1, EGFR and VEGR was conducted. Results Cyclin D1, EGFR and VEGF are overexpressed in HCC and CCA as compared to the control group (p < 0.001). Cyclin D1 was related to well-differentiated grade and early pathologic stage in HCC (p = 0.016 and p = 0.042, respectively). The well-differentiated grade showed significantly higher VEGF levels (p = 0.04). In the CCA group, however, EGFR was strongly related to high tumour size (p = 0.047). EGFR and VEGF were overexpressed in HCC raised in the non-cirrhotic liver compared to those developed in post-hepatitic liver cirrhosis (p = 0.003 and p = 0.014). Conclusion Cyclin D1, EGFR and VEGF shared significant overexpression in HCC and CCA. EGFR and VEGF may play an oncogenic function in the development of HCC in non-cirrhotic liver. Furthermore, cyclin D1 and VEGF may play a good prognostic function in HCC, but EGFR may play a bad prognostic role in CCA.
Collapse
Affiliation(s)
- Dina Sweed
- Pathology Department, National Liver Institute, Shebin Elkom, Menofia University, Shebin Elkom 32511, Menoufia, Egypt
- https://orcid.org/0000-0001-6483-5056
| | - Shaymaa Sabry El Gammal
- Pathology Department, National Liver Institute, Shebin Elkom, Menofia University, Shebin Elkom 32511, Menoufia, Egypt
| | - Shimaa Kilany
- Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Shebin Elkom 32511, Menoufia, Egypt
| | - Shimaa Abdelsattar
- Clinical Biochemistry and Molecular Diagnostics Department, National Liver Institute, Menoufia University, Shebin Elkom 32511, Menoufia, Egypt
| | - Sara Mohamed Abd Elhamed
- Pathology Department, National Liver Institute, Shebin Elkom, Menofia University, Shebin Elkom 32511, Menoufia, Egypt
- https://orcid.org/0000-0003-0526-2627
| |
Collapse
|
8
|
Bu R, Siraj AK, Al-Rasheed M, Iqbal K, Azam S, Qadri Z, Haqawi W, Tulbah A, Al-Dayel F, Almalik O, Al-Kuraya KS. Identification and characterization of ATM founder mutation in BRCA-negative breast cancer patients of Arab ethnicity. Sci Rep 2023; 13:20924. [PMID: 38017116 PMCID: PMC10684510 DOI: 10.1038/s41598-023-48231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023] Open
Abstract
Breast cancer (BC) is the most prevalent malignancy among women worldwide with germline pathogenic variants/likely pathogenic variants (PVs/LPVs) in BRCA1/2 accounting for a large portion of hereditary cases. Recently, heterozygous PVs/LPVs in the ATM serine/threonine kinase or Ataxia-telangiectasia mutated gene (ATM) has been identified as a moderate susceptibility factor for BC in diverse ethnicities. However, the prevalence of ATM PVs/LPVs in BC susceptibility in Arab populations remains largely unexplored. This study investigated the prevalence of ATM PVs/LPVs among BC patients from Saudi Arabia, employing capture-sequencing technology for ATM PVs/LPVs screening in a cohort of 715 unselected BC patients without BRCA1/2 PVs/LPVs. In addition, founder mutation analysis was conducted using the PHASE program. In our entire cohort, four unique PVs/LPVs in the ATM gene were identified in six cases (0.8%). Notably, one recurrent LPV, c.6115G > A:p.Glu2039Lys was identified in three cases, for which haplotype analysis confirmed as a novel putative founder mutation traced back to 13 generations on average. This founder mutation accounted for half of all identified mutant cases and 0.4% of total screened cases. This study further reveals a significant correlation between the presence of ATM mutation and family history of BC (p = 0.0127). These findings underscore an approximate 0.8% prevalence of ATM germline PVs/LPVs in Arab BC patients without BRCA1/2 PVs/LPVs and suggest a founder effect of specific recurrent ATM mutation. These insights can help in the design of a genetic testing strategy tailored to the local population in Saudi Arabia, thereby, enabling more accurate clinical management and risk prediction.
Collapse
Affiliation(s)
- Rong Bu
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Abdul K Siraj
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Maha Al-Rasheed
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Kaleem Iqbal
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Saud Azam
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Zeeshan Qadri
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Wael Haqawi
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Asma Tulbah
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Osama Almalik
- Department of Surgery, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, 11211, Riyadh, Saudi Arabia.
- Research Centre at KFNCCC, Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, 11211, Riyadh, Saudi Arabia.
| |
Collapse
|
9
|
Chen S, Li L. Degradation strategy of cyclin D1 in cancer cells and the potential clinical application. Front Oncol 2022; 12:949688. [PMID: 36059670 PMCID: PMC9434365 DOI: 10.3389/fonc.2022.949688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/28/2022] [Indexed: 02/02/2023] Open
Abstract
Cyclin D1 has been reported to be upregulated in several solid and hematologic tumors, promoting cancer progression. Thus, decreasing cyclin D1 by degradation could be a promising target strategy for cancer therapy. This mini review summarizes the roles of cyclin D1 in tumorigenesis and progression and its degradation strategies. Besides, we proposed an exploration of the degradation of cyclin D1 by FBX4, an F box protein belonging to the E3 ligase SKP-CUL-F-box (SCF) complex, which mediates substrate ubiquitination, as well as a postulate about the concrete combination mode of FBX4 and cyclin D1. Furthermore, we proposed a possible photodynamic therapy strategythat is based on the above concrete combination mode for treating superficial cancer.
Collapse
Affiliation(s)
- Shuyi Chen
- The Sixth Student Battalion, School of Basic Medical Sciences, Fourth Military Medical University, Xi’an, China
| | - Ling Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an, China
- *Correspondence: Ling Li,
| |
Collapse
|