1
|
Wang Y, Yu Y, Yu J, Wang C, Wang Y, Fu R, Zhang C. The Role of the Dysregulation of circRNAs Expression in Glioblastoma Multiforme. J Mol Neurosci 2025; 75:9. [PMID: 39841303 DOI: 10.1007/s12031-024-02285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 01/23/2025]
Abstract
Primary brain tumors that were the most severe and aggressive were called glioblastoma multiforme (GBM). Cancers are caused in part by aberrant expression of circular RNA. Often referred to as competitive endogenous RNA (ceRNA), circRNA molecules act as "miRNA sponges" in cells by decreasing the inhibitory impact of miRNA on their target genes and hence raising the expression levels of those genes. circRNA molecules are rich in miRNA binding sites. The discovery of more structurally diverse and GBM-related circRNAs has great promise for the use of GMB prognostic biomarkers and therapeutic targets, as well as for comprehending the molecular regulatory mechanisms of GBM. In this work, we present an overview of the circRNA expression patterns associated with GBM and offer a potential integrated electrochemical strategy for detecting circRNA with extreme sensitivity in the diagnosis of glioblastoma.
Collapse
Affiliation(s)
- Yafei Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ying Yu
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jiahua Yu
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Cheng Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunkun Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Runxi Fu
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Institute for Pediatric Research, Shanghai, China
| | - Chenran Zhang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
2
|
Margvelani G, Maquera K, Welden J, Rodgers D, Stamm S. Translation of circular RNAs. Nucleic Acids Res 2025; 53:gkae1167. [PMID: 39660652 PMCID: PMC11724312 DOI: 10.1093/nar/gkae1167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Circular RNAs (circRNAs) are covalently closed RNAs that are present in all eukaryotes tested. Recent RNA sequencing (RNA-seq) analyses indicate that although generally less abundant than messenger RNAs (mRNAs), over 1.8 million circRNA isoforms exist in humans, much more than the number of currently known mRNA isoforms. Most circRNAs are generated through backsplicing that depends on pre-mRNA structures, which are influenced by intronic elements, for example, primate-specific Alu elements, leading to species-specific circRNAs. CircRNAs are mostly cytosolic, stable and some were shown to influence cells by sequestering miRNAs and RNA-binding proteins. We review the increasing evidence that circRNAs are translated into proteins using several cap-independent translational mechanisms, that include internal ribosomal entry sites, N6-methyladenosine RNA modification, adenosine to inosine RNA editing and interaction with the eIF4A3 component of the exon junction complex. CircRNAs are translated under conditions that favor cap-independent translation, notably in cancer and generate proteins that are shorter than mRNA-encoded proteins, which can acquire new functions relevant in diseases.
Collapse
Affiliation(s)
- Giorgi Margvelani
- University of Kentucky, Molecular and Cellular Biochemistry, 741 South Limestone, Lexington, KY 40503, USA
| | | | - Justin Ralph Welden
- University of Kentucky, Molecular and Cellular Biochemistry, 741 South Limestone, Lexington, KY 40503, USA
| | - David W Rodgers
- University of Kentucky, Molecular and Cellular Biochemistry, 741 South Limestone, Lexington, KY 40503, USA
| | - Stefan Stamm
- University of Kentucky, Molecular and Cellular Biochemistry, 741 South Limestone, Lexington, KY 40503, USA
| |
Collapse
|
3
|
Wang Q, Ling S, Lv J, Wu L. circ-ZEB1 Enhances NSCLC Metastasis and Proliferation by Modulating the miR-491-5p/EIF5A Axis. Anal Cell Pathol (Amst) 2025; 2025:5595692. [PMID: 39802932 PMCID: PMC11724732 DOI: 10.1155/ancp/5595692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 10/04/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Circular RNAs (circRNAs), covalently closed single-stranded RNAs, have been implicated in cancer progression. A previous investigation revealed that circ-ZEB1 is expressed abnormally in liver cancer. However, the roles of circ-ZEB1 in non-small cell lung cancer (NSCLC) are unknown. Methods: In this study, we used fluorescence in situ hybridization (FISH) and RT-qPCR to study circ-ZEB1 expression in NSCLC cells and tissues. A luciferase reporter assay was performed to validate downstream targets of circ-ZEB1. Transwell migration, 5-ethynyl-20-deoxyuridine (EdU), and cell counting kit-8 (CCK8) assays were performed to assess proliferation and migration. In vivo metastasis and tumorigenesis assays were also performed to investigate circ-ZEB1 functions during NSCLC. Results: Our results showed that circ-ZEB1 expression was increased in NSCLC tissues and cells. circ-ZEB1 downregulation suppressed NSCLC cell proliferation as well as migration in vitro and in vivo. Luciferase data confirmed EIF5A and miR-491-5p as downstream targets of circ-ZEB1. EIF5A overexpression and miR-491-5p suppression reversed NSCLC cell migration post circ-ZEB1 silencing. Conclusion: Our collective findings advised that circ-ZEB1 takes part in the malignant progression through regulating the miR-491-5p/EIF5A axis, highlighting its potential as an effective NSCLC therapeutic target.
Collapse
Affiliation(s)
- Qi Wang
- Department of General Practice, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Shengying Ling
- Department of General Practice, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jia Lv
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Lina Wu
- Department of General Practice, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Malviya A, Bhuyan R. Circular RNAs in cancer: roles, mechanisms, and therapeutic potential across colorectal, gastric, liver, and lung carcinomas. Discov Oncol 2025; 16:5. [PMID: 39755870 DOI: 10.1007/s12672-025-01743-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/02/2025] [Indexed: 01/06/2025] Open
Abstract
The prominence of circular RNAs (circRNAs) has surged in cancer research due to their distinctive properties and impact on cancer development. This review delves into the role of circRNAs in four key cancer types: colorectal cancer (CRC), gastric cancer (GC), liver cancer (HCC), and lung cancer (LUAD). The focus lies on their potential as cancer biomarkers and drug targets. Our study analyses the reported circRNAs in the mentioned malignancies, examining their nature, functions, targets, origins, and contributions as tumor enhancers or suppressors. The approach involved assessing full-text reports on PMC, utilizing keywords such as "CircRNA" and "Cancer types," coupled with bioinformatics, experimental assays, or clinical investigations. Exclusions encompassed non-English publications, conference abstracts, letters, and expert opinions. The findings unveil 577 identified circRNAs across these cancer types: 124 in CRC, 177 in GC, 93 in HCC, and 183 in LUAD. Mechanistic insights into how circRNAs modulate gene expression in cancer are explored, particularly their interactions with microRNAs and RNA-binding proteins. Dysregulation of circRNAs across various cancers and their potential as diagnostic and prognostic indicators are synthesized. The exploration extends to the potential of targeting circRNAs as a novel cancer therapy strategy, either through inhibiting oncogenic circRNAs or reinstating tumor-suppressive ones. This article discusses the challenges and prospects in harnessing circRNAs for cancer diagnostics and therapies. These comprehensive analyses hold promise for advancing cancer research and fostering the development of innovative therapies and diagnostics.
Collapse
Affiliation(s)
- Ayushi Malviya
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Niwai-Tonk, Rajasthan, 304022, India
| | - Rajabrata Bhuyan
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Niwai-Tonk, Rajasthan, 304022, India.
| |
Collapse
|
5
|
Chang S, Ren D, Zhang L, Liu S, Yang W, Cheng H, Zhang X, Hong E, Geng D, Wang Y, Chen C, Zhang J, Shi T, Guo Y, Ni X, Wang H, Jin Y. Therapeutic SHPRH-146aa encoded by circ-SHPRH dynamically upregulates P21 to inhibit CDKs in neuroblastoma. Cancer Lett 2024; 598:217120. [PMID: 39002691 DOI: 10.1016/j.canlet.2024.217120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Recent research has underscored the significance of circular RNAs (circRNAs) in various cancers, including neuroblastoma (NB). Specifically, circ-SHPRH, a unique circRNA, has been revealed to inhibit tumor growth by sequestering miRNAs or producing the SHPRH-146aa protein. To explore circ-SHPRH's involvement in NB and its potential application in gene therapy, this study examined circ-SHPRH expression in 94 NB tissues and cell lines (SK-N-BE(2), SH-SY5Y) using real-time PCR and fluorescence in situ hybridization (FISH). Functional assays encompassing both overexpression and knockdown experiments in NB cell lines, as well as in vivo investigations, were conducted. RNA-seq analysis revealed a correlation between circ-SHPRH and the pathway of P21 (CDKN1A), a pivotal cell cycle regulator. Validation through PCR and other techniques confirmed that circ-SHPRH upregulated P21 expression. Furthermore, the regulatory role of circ-SHPRH in the P21-CDK pathway was corroborated through SHPRH-146aa expression analysis. Notably, adenovirus-mediated circ-SHPRH overexpression effectively curbed NB tumor growth in NSG mice, while combining circ-SHPRH with everolimus exhibited potential for NB treatment. This study elucidates the remarkable significance of circ-SHPRH in NB and its prospective utility in gene therapy, thereby paving the way for innovative therapeutic approaches.
Collapse
Affiliation(s)
- Saishuo Chang
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Dong Ren
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Li Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shan Liu
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wei Yang
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Haiyan Cheng
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xuexi Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Enyu Hong
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Di Geng
- Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's Hospital, National Center for Children's Health, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yadi Wang
- Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's Hospital, National Center for Children's Health, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Chenghao Chen
- Department of Thoracic Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jie Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yongli Guo
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xin Ni
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China; Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Huanmin Wang
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
6
|
Chen M, He H, Cheng H, Zhang G. EIF4A3-induced hsa_circ_0078136 inhibits the tumorigenesis of retinoblastoma via IL-17 signaling pathway. Int Ophthalmol 2024; 44:352. [PMID: 39180619 DOI: 10.1007/s10792-024-03276-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
PURPOSE Retinoblastoma (RB) is one of the most common intraocular cancers, with the highest prevalence among infants and young children under the age five. Numerous findings across the literature illustrate the involvement and significance of circular RNAs (circRNAs) in human malignancies, including RB. The current investigation attempted to decipher the exact roles and underlying mechanisms of a novel circRNA, hsa_circ_0078136, in RB progression. METHODS The hsa_circ_0078136 expression was evaluated in RB tumors and cell lines via qRT-PCR. The significance of hsa_circ_0078136 in RB was examined by performing CCK8 assay, transwell assays, western blotting of apoptotic and IL-17 signaling ligand molecules, and a subcutaneous xenograft tumor model. In addition, the interaction of circRNA and eukaryotic translation initiation factor 4A3 (EIF4A3) was determined with bioinformatics, western blot, and RIP assay. RESULTS The hsa_circ_0078136 expression was reduced in RB tumor samples and cells. Additionally, its overexpression restricted the oncogenic properties of RB cells in vitro. Moreover, hsa_circ_0078136 overexpression lowered the protein levels of cytokine ligand molecules of IL-17 signaling pathway in RB cell lines. In vivo, hsa_circ_0078136 overexpression in subcutaneous tumor xenografts reduced tumor growth. We also observed that EIF4A3 binds to the downstream flanking sequence of hsa_circ_0078136 in the SHRPH pre-mRNA transcript, and EIF4A3 overexpression reduced hsa_circ_0078136 expression, suggesting that EIF4A3 inhibited hsa_circ_0078136 formation. CONCLUSIONS Our results demonstrate that hsa_circ_0078136 is regulated by EIF4A3 and functions as a tumor suppressor via the IL-17 signaling pathway in RB.
Collapse
Affiliation(s)
- Min Chen
- Department of Ophthalmology, Wuhan Asia General Hospital, Wuhan, 430000, Hubei, China
| | - Heng He
- Department of Ophthalmology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430074, Hubei, China
- Department of Ophthalmology, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, 430061, Hubei, China
| | - Huili Cheng
- Department of Ophthalmology, Wuhan Asia General Hospital, Wuhan, 430000, Hubei, China
| | - Guanghong Zhang
- Department of Ophthalmology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430074, Hubei, China.
- Department of Ophthalmology, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, 430061, Hubei, China.
- Department of Ophthalmology, Hubei Province Academy of Traditional Chinese Medicine, No.856, Luoyu Road, Hongshan District, Wuhan, 430074, Hubei, China.
- Department of Ophthalmology, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei, China.
| |
Collapse
|
7
|
Nagelberg AL, Sihota TS, Chuang YC, Shi R, Chow JLM, English J, MacAulay C, Lam S, Lam WL, Lockwood WW. Integrative genomics identifies SHPRH as a tumor suppressor gene in lung adenocarcinoma that regulates DNA damage response. Br J Cancer 2024; 131:534-550. [PMID: 38890444 PMCID: PMC11300780 DOI: 10.1038/s41416-024-02755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Identification of driver mutations and development of targeted therapies has considerably improved outcomes for lung cancer patients. However, significant limitations remain with the lack of identified drivers in a large subset of patients. Here, we aimed to assess the genomic landscape of lung adenocarcinomas (LUADs) from individuals without a history of tobacco use to reveal new genetic drivers of lung cancer. METHODS Integrative genomic analyses combining whole-exome sequencing, copy number, and mutational information for 83 LUAD tumors was performed and validated using external datasets to identify genetic variants with a predicted functional consequence and assess association with clinical outcomes. LUAD cell lines with alteration of identified candidates were used to functionally characterize tumor suppressive potential using a conditional expression system both in vitro and in vivo. RESULTS We identified 21 genes with evidence of positive selection, including 12 novel candidates that have yet to be characterized in LUAD. In particular, SNF2 Histone Linker PHD RING Helicase (SHPRH) was identified due to its frequency of biallelic disruption and location within the familial susceptibility locus on chromosome arm 6q. We found that low SHPRH mRNA expression is associated with poor survival outcomes in LUAD patients. Furthermore, we showed that re-expression of SHPRH in LUAD cell lines with inactivating alterations for SHPRH reduces their in vitro colony formation and tumor burden in vivo. Finally, we explored the biological pathways associated SHPRH inactivation and found an association with the tolerance of LUAD cells to DNA damage. CONCLUSIONS These data suggest that SHPRH is a tumor suppressor gene in LUAD, whereby its expression is associated with more favorable patient outcomes, reduced tumor and mutational burden, and may serve as a predictor of response to DNA damage. Thus, further exploration into the role of SHPRH in LUAD development may make it a valuable biomarker for predicting LUAD risk and prognosis.
Collapse
Affiliation(s)
- Amy L Nagelberg
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tianna S Sihota
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yu-Chi Chuang
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Rocky Shi
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Justine L M Chow
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - John English
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Calum MacAulay
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Stephen Lam
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Wan L Lam
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - William W Lockwood
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Lindner G, Takenaka K, Santucci K, Gao Y, Janitz M. Protein-coding circular RNAs - mechanism, detection, and their role in cancer and neurodegenerative diseases. Biochem Biophys Res Commun 2023; 678:68-77. [PMID: 37619313 DOI: 10.1016/j.bbrc.2023.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Circular RNAs (circRNAs) are a unique class of non-coding RNAs and were originally thought to have no protein-coding potential due to their lack of a 5' cap and 3' poly(A) tail. However, recent studies have challenged this notion and revealed that some circRNAs have protein-coding potential. They have emerged as a key area of interest in cancer and neurodegeneration research as recent studies have identified several circRNAs that can produce functional proteins with important roles in cancer progression. The protein-coding potential of circRNAs is determined by the presence of an open reading frame (ORF) within the circular structure that can encode a protein. In some cases, the ORF can be translated into a functional protein despite the lack of traditional mRNA features. While the protein-coding potential of most circRNAs remains unclear, several studies have identified specific circRNAs that can produce functional proteins. Understanding the protein-coding potential of circRNAs is important for unravelling their biological functions and potential roles in disease. Our review provides comprehensive coverage of recent advances in the field of circRNA protein-coding capacity and its impact on cancer and neurodegenerative diseases pathogenesis and progression.
Collapse
Affiliation(s)
- Grace Lindner
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Konii Takenaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kristina Santucci
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Yulan Gao
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Wu J, Gong P, Jiang Z. Knockdown of hsa_circ_0043691 restrains the progression of gastric cancer by decoying
miR
‐1294 to target pre‐leukemia transcription factor 3. J Clin Lab Anal 2022; 36:e24733. [DOI: 10.1002/jcla.24733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jing Wu
- Department of Gastroenterology Fuyong People's Hospital Shenzhen China
| | - Pan Gong
- Department of Abdominal tumour surgery Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention Huangshi China
| | - Zhiyong Jiang
- Department of Medical Imaging Zhongnan Hospital of Wuhan University Wuhan China
| |
Collapse
|