1
|
Cheng HP, Jiang SH, Cai J, Luo ZQ, Li XH, Feng DD. Histone deacetylases: potential therapeutic targets for idiopathic pulmonary fibrosis. Front Cell Dev Biol 2024; 12:1426508. [PMID: 39193364 PMCID: PMC11347278 DOI: 10.3389/fcell.2024.1426508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/03/2024] [Indexed: 08/29/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease of unknown origin and the most common interstitial lung disease. However, therapeutic options for IPF are limited, and novel therapies are urgently needed. Histone deacetylases (HDACs) are enzymes that participate in balancing histone acetylation activity for chromatin remodeling and gene transcription regulation. Increasing evidence suggests that the HDAC family is linked to the development and progression of chronic fibrotic diseases, including IPF. This review aims to summarize available information on HDACs and related inhibitors and their potential applications in treating IPF. In the future, HDACs may serve as novel targets, which can aid in understanding the etiology of PF, and selective inhibition of single HDACs or disruption of HDAC genes may serve as a strategy for treating PF.
Collapse
Affiliation(s)
- Hai-peng Cheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, China
| | - Shi-he Jiang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, China
| | - Jin Cai
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, China
| | - Zi-qiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, Hunan, China
| | - Xiao-hong Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, China
| | - Dan-dan Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Safari M, Scotto L, Basseville A, Litman T, Xue H, Petrukhin L, Zhou P, Morales DV, Damoci C, Zhu M, Hull K, Olive KP, Fojo T, Romo D, Bates SE. Combined HDAC and eIF4A inhibition: A novel epigenetic therapy for pancreatic adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.600495. [PMID: 39005268 PMCID: PMC11244854 DOI: 10.1101/2024.06.30.600495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Pancreatic ductal adenocarcinoma-(PDAC) needs innovative approaches due to its 12% 5-year survival despite current therapies. We show marked sensitivity of pancreatic cancer cells to the combination of a novel eIF4A inhibitor, des-methyl pateamine A (DMPatA), and a histone deacetylase inhibitor, romidepsin, inducing epigenetic reprogramming as an innovative therapeutic strategy. Exploring the mechanistic activity of this combination showed that with a short duration of romidepsin at low doses, robust acetylation persisted up to 48h with the combination, while histone acetylation rapidly faded with monotherapy. This represents an unexpected mechanism of action against PDAC cells that triggers transcriptional overload, metabolic stress, and augmented DNA damage. Structurally different class I HDAC inhibitors exhibit the same hyperacetylation patterns when co-administered with DMPatA, suggesting a class effect. We show efficacy of this combination regimen against tumor growth in a MIA PaCa-2 xenograft model of PDAC with persistent hyperacetylation confirmed in tumor samples. STATEMENT OF SIGNIFICANCE Pancreatic ductal adenocarcinoma, a significant clinical challenge, could benefit from the latent potential of epigenetic therapies like HDAC inhibitors-(HDIs), typically limited to hematological malignancies. Our study shows that a synergistic low dose combination of HDIs with an eIF4A-inhibitor in pancreatic cancer models results in marked pre-clinical efficacy, offering a promising new treatment strategy.
Collapse
|
3
|
Zhou J, Yan GG, Cluckey D, Meade C, Ruth M, Sorm R, Tam AS, Lim S, Petridis C, Lin L, D’Antona AM, Zhong X. Exploring Parametric and Mechanistic Differences between Expi293F TM and ExpiCHO-S TM Cells for Transient Antibody Production Optimization. Antibodies (Basel) 2023; 12:53. [PMID: 37606437 PMCID: PMC10443273 DOI: 10.3390/antib12030053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023] Open
Abstract
Rapidly producing drug-like antibody therapeutics for lead molecule discovery and candidate optimization is typically accomplished by large-scale transient gene expression technologies (TGE) with cultivated mammalian cells. The TGE methodologies have been extensively developed over the past three decades, yet produce significantly lower yields than the stable cell line approach, facing the technical challenge of achieving universal high expression titers for a broad range of antibodies and therapeutics modalities. In this study, we explored various parameters for antibody production in the TGE cell host Expi293FTM and ExpiCHO-STM with the transfection reagents ExpiFectamineTM and polyethylenimine. We discovered that there are significant differences between Expi293FTM and ExpiCHO-STM cells with regards to DNA complex formation time and ratio, complex formation buffers, DNA complex uptake trafficking routes, responses to dimethyl sulfoxide and cell cycle inhibitors, as well as light-chain isotype expression preferences. This investigation mechanistically dissected the TGE processes and provided a new direction for future transient antibody production optimization.
Collapse
|
4
|
Bruserud Ø, Tsykunova G, Hernandez-Valladares M, Reikvam H, Tvedt THA. Therapeutic Use of Valproic Acid and All-Trans Retinoic Acid in Acute Myeloid Leukemia-Literature Review and Discussion of Possible Use in Relapse after Allogeneic Stem Cell Transplantation. Pharmaceuticals (Basel) 2021; 14:ph14050423. [PMID: 34063204 PMCID: PMC8147490 DOI: 10.3390/ph14050423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Even though allogeneic stem cell transplantation is the most intensive treatment for acute myeloid leukemia (AML), chemo-resistant leukemia relapse is still one of the most common causes of death for these patients, as is transplant-related mortality, i.e., graft versus host disease, infections, and organ damage. These relapse patients are not always candidates for additional intensive therapy or re-transplantation, and many of them have decreased quality of life and shortened expected survival. The efficiency of azacitidine for treatment of posttransplant AML relapse has been documented in several clinical trials. Valproic acid is an antiepileptic fatty acid that exerts antileukemic activity through histone deacetylase inhibition. The combination of valproic acid and all-trans retinoic acid (ATRA) is well tolerated even by unfit or elderly AML patients, and low-toxicity chemotherapy (e.g., azacitidine) can be added to this combination. The triple combination of azacitidine, valproic acid, and ATRA may therefore represent a low-intensity and low-toxicity alternative for these patients. In the present review, we review and discuss the general experience with valproic acid/ATRA in AML therapy and we discuss its possible use in low-intensity/toxicity treatment of post-allotransplant AML relapse. Our discussion is further illustrated by four case reports where combined treatments with sequential azacitidine/hydroxyurea, valproic acid, and ATRA were used.
Collapse
Affiliation(s)
- Øystein Bruserud
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway;
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; (G.T.); (T.H.A.T.)
- Correspondence:
| | - Galina Tsykunova
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; (G.T.); (T.H.A.T.)
| | - Maria Hernandez-Valladares
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, N-5021 Bergen, Norway;
| | - Hakon Reikvam
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway;
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; (G.T.); (T.H.A.T.)
| | | |
Collapse
|
5
|
Sultana F, Manasa KL, Shaik SP, Bonam SR, Kamal A. Zinc Dependent Histone Deacetylase Inhibitors in Cancer Therapeutics: Recent Update. Curr Med Chem 2020; 26:7212-7280. [PMID: 29852860 DOI: 10.2174/0929867325666180530094120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/12/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Histone deacetylases (HDAC) are an important class of enzymes that play a pivotal role in epigenetic regulation of gene expression that modifies the terminal of core histones leading to remodelling of chromatin topology and thereby controlling gene expression. HDAC inhibitors (HDACi) counter this action and can result in hyperacetylation of histones, thereby inducing an array of cellular consequences such as activation of apoptotic pathways, generation of reactive oxygen species (ROS), cell cycle arrest and autophagy. Hence, there is a growing interest in the potential clinical use of HDAC inhibitors as a new class of targeted cancer therapeutics. Methodology and Result: Several research articles spanning between 2016 and 2017 were reviewed in this article and presently offer critical insights into the important strategies such as structure-based rational drug design, multi-parameter lead optimization methodologies, relevant SAR studies and biology of various class of HDAC inhibitors, such as hydroxamic acids, benzamides, cyclic peptides, aliphatic acids, summarising the clinical trials and results of various combination drug therapy till date. CONCLUSION This review will provide a platform to the synthetic chemists and biologists to cater the needs of both molecular targeted therapy and combination drug therapy to design and synthesize safe and selective HDAC inhibitors in cancer therapeutics.
Collapse
Affiliation(s)
- Faria Sultana
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India
| | - Kesari Lakshmi Manasa
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Siddiq Pasha Shaik
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Academy of Scientific and Innovative Research, New Delhi, 110 025, India
| | - Srinivasa Reddy Bonam
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Ahmed Kamal
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.,Academy of Scientific and Innovative Research, New Delhi, 110 025, India.,School of Pharmaceutical Education and Research (SPER), Jamia Hamdard University, New Delhi, 110062, India
| |
Collapse
|
6
|
Sanaei M, Kavoosi F. Histone Deacetylases and Histone Deacetylase Inhibitors: Molecular Mechanisms of Action in Various Cancers. Adv Biomed Res 2019; 8:63. [PMID: 31737580 PMCID: PMC6839273 DOI: 10.4103/abr.abr_142_19] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 01/15/2023] Open
Abstract
Epigenetic modifications such as histone modification play an important role in tumorigenesis. There are several evidence that histone deacetylases (HDACs) play a key role in cancer induction and progression by histone deacetylation. Besides, histone acetylation is being accessed as a therapeutic target because of its role in regulating gene expression. HDAC inhibitors (HDACIs) are a family of synthetic and natural compounds that differ in their target specificities and activities. They affect markedly cancer cells, inducing cell differentiation, cell cycle arrest and cell death, reduction of angiogenesis, and modulation of the immune system. Here, we summarize the mechanisms of HDACs and the HDACIs in several cancers. An online search of different sources such as PubMed, ISI, and Scopus was performed to find available data on mechanisms and pathways of HDACs and HDACIs in different cancers. The result indicated that HDACs induce cancer through multiple mechanisms in various tissues. This effect can be inhibited by HDACIs which affect cancer cell by different pathways such as cell differentiation, cell cycle arrest, and cell death. In conclusion, these findings indicate that the HDACs play a major role in carcinogenesis through various pathways, and HDACIs can inhibit HDAC activity by multiple mechanisms resulting in cell cycle arrest, cell growth inhibition, and apoptosis induction.
Collapse
Affiliation(s)
- Masumeh Sanaei
- From the Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Fraidoon Kavoosi
- From the Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| |
Collapse
|
7
|
Fountzilas E, Palmer G, Vining D, Tsimberidou AM. Prolonged Partial Response to Bevacizumab and Valproic Acid in a Patient With Glioblastoma. JCO Precis Oncol 2018; 2. [PMID: 31544169 DOI: 10.1200/po.18.00282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | | | - David Vining
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
8
|
The Functional Analysis of Histone Acetyltransferase MOF in Tumorigenesis. Int J Mol Sci 2016; 17:ijms17010099. [PMID: 26784169 PMCID: PMC4730341 DOI: 10.3390/ijms17010099] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/28/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022] Open
Abstract
Changes in chromatin structure and heritably regulating the gene expression by epigenetic mechanisms, such as histone post-translational modification, are involved in most cellular biological processes. Thus, abnormal regulation of epigenetics is implicated in the occurrence of various diseases, including cancer. Human MOF (males absent on the first) is a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs). As a catalytic subunit, MOF can form at least two distinct multiprotein complexes (MSL and NSL) in human cells. Both complexes can acetylate histone H4 at lysine 16 (H4K16); however, the NSL complex possesses broader substrate specificity and can also acetylate histone H4 at lysines 5 and 8 (H4K5 and H4K8), suggesting the complexity of the intracellular functions of MOF. Silencing of MOF in cells leads to genomic instability, inactivation of gene transcription, defective DNA damage repair and early embryonic lethality. Unbalanced MOF expression and its corresponding acetylation of H4K16 have been found in certain primary cancer tissues, including breast cancer, medulloblastoma, ovarian cancer, renal cell carcinoma, colorectal carcinoma, gastric cancer, as well as non-small cell lung cancer. In this review, we provide a brief overview of MOF and its corresponding histone acetylation, introduce recent research findings that link MOF functions to tumorigenesis and speculate on the potential role that may be relevant to tumorigenic pathways.
Collapse
|
9
|
Mottamal M, Zheng S, Huang TL, Wang G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 2015; 20:3898-941. [PMID: 25738536 PMCID: PMC4372801 DOI: 10.3390/molecules20033898] [Citation(s) in RCA: 480] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 02/04/2023] Open
Abstract
Histone dacetylases (HDACs) are a group of enzymes that remove acetyl groups from histones and regulate expression of tumor suppressor genes. They are implicated in many human diseases, especially cancer, making them a promising therapeutic target for treatment of the latter by developing a wide variety of inhibitors. HDAC inhibitors interfere with HDAC activity and regulate biological events, such as cell cycle, differentiation and apoptosis in cancer cells. As a result, HDAC inhibitor-based therapies have gained much attention for cancer treatment. To date, the FDA has approved three HDAC inhibitors for cutaneous/peripheral T-cell lymphoma and many more HDAC inhibitors are in different stages of clinical development for the treatment of hematological malignancies as well as solid tumors. In the intensifying efforts to discover new, hopefully more therapeutically efficacious HDAC inhibitors, molecular modeling-based rational drug design has played an important role in identifying potential inhibitors that vary in molecular structures and properties. In this review, we summarize four major structural classes of HDAC inhibitors that are in clinical trials and different computer modeling tools available for their structural modifications as a guide to discover additional HDAC inhibitors with greater therapeutic utility.
Collapse
Affiliation(s)
- Madhusoodanan Mottamal
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Shilong Zheng
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Tien L Huang
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
- College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Guangdi Wang
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| |
Collapse
|