1
|
Jiang R, Luo S, Zhang M, Wang W, Zhuo S, Wu Y, Qiu Q, Yuan Y, Jiang X. Ginsenoside Rh4 inhibits inflammation-related hepatocellular carcinoma progression by targeting HDAC4/IL-6/STAT3 signaling. Mol Genet Genomics 2023; 298:1479-1492. [PMID: 37843550 PMCID: PMC10657317 DOI: 10.1007/s00438-023-02070-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023]
Abstract
This study aimed to investigate the effects of Ginsenoside Rh4 (Rh4) on inflammation-related hepatocellular carcinoma (HCC) progression and the underlying mechanism. HCC cells (HUH7 and LM3) were induced by lipopolysaccharide (LPS) to establish an inflammatory environment in the absence or presence of Rh4. CCK-8, wound healing and transwell assays were employed to analyze the viability, migration and invasion of HCC cells. Ki67 expression was detected by immunofluorescence method. Besides, the levels of glucose and lactic acid were tested by kits. The expression of proteins related to migration, glycolysis and histone deacetylase 4 (HDAC4)/IL-6/STAT3 signaling was measured with western blot. The transplantation tumor model of HCC in mice was established to observe the impacts of Rh4 on the tumor growth. Results indicated that Rh4 restricted the viability and Ki67 expression in HCC cells exposed to LPS. The elevated migration and invasion of HCC cells triggered by LPS were reduced by Rh4. Additionally, Rh4 treatment remarkably decreased the contents of glucose and lactic acid and downregulated LDHA and GLUT1 expression. The database predicated that Rh4 could target HDAC4, and our results revealed that Rh4 downregulated HDAC4, IL-6 and p-STAT3 expression. Furthermore, the enforced HDAC4 expression alleviated the effects of Rh4 on the proliferation, migration, invasion and glycolysis of HCC cells stimulated by LPS. Taken together, Rh4 could suppress inflammation-related HCC progression by targeting HDAC4/IL-6/STAT3 signaling. These findings clarify a new anti-cancer mechanism of Rh4 on HCC and provide a promising agent to limit HCC development.
Collapse
Affiliation(s)
- Ruiyuan Jiang
- Department of Graduate Student, Zhejiang University of Chinese Medicine, Hangzhou, 310000, Zhejiang, China
- Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the, University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310000, Zhejiang, China
| | - Shujuan Luo
- Department of Basic Medical Sciences, Faculty of Chinese Medicine Science, Guangxi University of Traditional Chinese Medicine, Nanning, 530022, Guangxi, China
| | - Meng Zhang
- Department of Basic Medical Sciences, Guangxi University of Chinese Medicine, No. 13, Wuhe Road, Qingxiu District, Nanning, 530022, Guangxi, China
| | - Wei Wang
- Department of Basic Medical Sciences, Guangxi University of Chinese Medicine, No. 13, Wuhe Road, Qingxiu District, Nanning, 530022, Guangxi, China
| | - Shaoyuan Zhuo
- Department of Basic Medical Sciences, Guangxi University of Chinese Medicine, No. 13, Wuhe Road, Qingxiu District, Nanning, 530022, Guangxi, China
| | - Yajing Wu
- Department of Basic Medical Sciences, Guangxi University of Chinese Medicine, No. 13, Wuhe Road, Qingxiu District, Nanning, 530022, Guangxi, China
| | - Qingmei Qiu
- Department of Basic Medical Sciences, Guangxi University of Chinese Medicine, No. 13, Wuhe Road, Qingxiu District, Nanning, 530022, Guangxi, China
| | - Yuan Yuan
- Department of Public Health and Management, Guangxi University of Chinese Medicine, No. 13, Wuhe Road, Qingxiu District, Nanning, 530022, Guangxi, China.
| | - Xiao Jiang
- Department of Basic Medical Sciences, Guangxi University of Chinese Medicine, No. 13, Wuhe Road, Qingxiu District, Nanning, 530022, Guangxi, China.
| |
Collapse
|
2
|
Liu Y, Wang Z, Gan Y, Chen X, Zhang B, Chen Z, Liu P, Li B, Ru F, He Y. Curcumin attenuates prostatic hyperplasia caused by inflammation via up-regulation of bone morphogenetic protein and activin membrane-bound inhibitor. PHARMACEUTICAL BIOLOGY 2021; 59:1026-1035. [PMID: 34357837 PMCID: PMC8354175 DOI: 10.1080/13880209.2021.1953539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/01/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Inflammation and epithelial-mesenchymal transition (EMT) play important roles in the occurrence and development of benign prostatic hyperplasia (BPH); curcumin exerts anti-proliferative, anti-inflammatory, and anti-EMT effects. OBJECTIVE To explore the anti-inflammatory and anti-EMT mechanisms of curcumin in BPH. MATERIALS AND METHODS Ten-week-old male C57BL/6 mice were administered lipopolysaccharide (LPS, 100 µg/kg) in the prostate lobules to establish an inflammatory BPH model (LPS group), and curcumin (120 mg/kg) was administered into the abdominal cavity for 2 weeks (three times a week, curcumin-treated group). A group of healthy mice served as the control group. The expression of Toll-like receptor 4 (TLR4), bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI), EMT markers, inflammatory cytokines, and transforming growth factor β1 (TGF-β1) was detected by PCR and western blotting. TGF-β1 (0.1 ng/mL) and LPS (100 ng/mL) were used to induce EMT in benign prostatic hyperplasia epithelial cells (BPH-1). RESULTS In vivo, curcumin reduced the size of the prostate, suppressed the expression of vimentin and TLR4, and increased the expression of E-cadherin and BAMBI in the LPS-induced BPH mouse model. Moreover, curcumin decreased the levels of IL-6 and TNF-α by 44.52 and 46.17%, respectively. In vitro, curcumin attenuated cell proliferation, suppressed the expression of vimentin and TLR4, and increased the expression of E-cadherin and BAMBI in BPH-1 cells. Furthermore, BAMBI knockdown reversed the expression of vimentin and E-cadherin induced by curcumin. DISCUSSION AND CONCLUSION This study demonstrated that curcumin alleviated hyperplasia, EMT, and inflammation in vivo. Furthermore, curcumin suppressed EMT by targeting BAMBI via the TLR4/BAMBI/TGF-β1 signalling pathway in vitro, demonstrating its potential utility in BPH treatment.
Collapse
Affiliation(s)
- Yuhang Liu
- Department of Urology, Hunan Children's Hospital, Changsha, Hunan, China
| | - Zhaohui Wang
- Department of Urology, Hunan Children's Hospital, Changsha, Hunan, China
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhi Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peihuan Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bingsheng Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Ru
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Liu Z, Ding F, Shen X. Total flavonoids of Radix Tetrastigma suppress inflammation-related hepatocellular carcinoma cell metastasis. Mol Genet Genomics 2021; 296:571-579. [PMID: 33576897 PMCID: PMC8144124 DOI: 10.1007/s00438-020-01759-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 11/30/2022]
Abstract
This study aimed to investigate the effects of the total flavonoids of Radix Tetrastigma (RTF) on inflammation-related hepatocellular carcinoma (HCC) development. Extracted RTF was diluted to different concentrations for subsequent experiments. HCC cells were cotreated with lipopolysaccharide (LPS) and RTF to investigate the effects of RTF on LPS-stimulated HCC cells. A CCK-8 kit was used to measure cell proliferation. Apoptosis was detected with a flow cytometer. Cell migration and invasion were quantified by wound healing and Transwell assays, respectively. The expression of TLR4 and COX-2 and activation of the NF-κB pathway were determined by Western blotting. Treatment with LPS significantly enhanced cell proliferation and decreased the apoptosis rate, while cell migration and invasion were notably upregulated. RTF suppressed the proliferation and invasion induced by LPS stimulation and promoted HCC cell apoptosis. The protein levels of Bax and cleaved caspase-3 were decreased and that of Bcl-2 was increased by LPS in HCC cells, which could be rescued by RTF. RTF significantly inhibited the LPS-induced expression of the proinflammatory mediators IL-6 and IL-8 in HCC cells. Mechanistically, with RTF treatment, the upregulated expression of TLR4 and COX-2 induced by LPS was obviously downregulated. Furthermore, the phosphorylation of NF-κB/p65 was significantly decreased in LPS-stimulated cells after supplementation with RTF. Our study suggests that RTF exerts a significant inhibitory effect on the LPS-induced enhancement of the malignant behaviors of HCC cells via inactivation of TLR4/NF-κB signaling. RTF may be a promising chemotherapeutic agent to limit HCC development and inflammation-mediated metastasis.
Collapse
Affiliation(s)
- Zhendong Liu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of TCM), Hangzhou, 310006, China
| | - Fangmi Ding
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of TCM), Hangzhou, 310006, China
| | - Xingyong Shen
- Department of Oncology, Xijing Hospital, Air Force Military Medical University, 15 Changle West Road, Xian, 710032, Shaanxi, China.
| |
Collapse
|
4
|
Yao RR, Li JH, Zhang R, Chen RX, Wang YH. M2-polarized tumor-associated macrophages facilitated migration and epithelial-mesenchymal transition of HCC cells via the TLR4/STAT3 signaling pathway. World J Surg Oncol 2018; 16:9. [PMID: 29338742 PMCID: PMC5771014 DOI: 10.1186/s12957-018-1312-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
Background M2-polarized macrophages are tumor-associated-macrophages (TAMs), which are important contents of tumor-infiltrating immune cells. Toll-like receptor 4 (TLR4) is a molecular biomarker of tumor aggressiveness and poor prognosis. Toll-like receptors (TLRs) have important roles in the immune system and M2-polarized macrophages. However, the effects of TLR4 on M2-polarized macrophages in hepatocellular carcinoma (HCC) are unknown. Here, TLR4 expressed on HCC cells mediates the pro-tumor effects and mechanisms of M2-polarized macrophages. Methods THP-1 cells were induced to differentiate into M2-like macrophages through treatments with IL-4, IL-13, and phorbol myristate acetate (PMA). We used the HCC cell lines SMMC-7721 and MHCC97-H cultured in conditioned medium from M2-like macrophages (M2-CM) to investigate the migration potential of HCC cells and epithelial-mesenchymal transition (EMT)-associated molecular genetics. Signaling pathways that mediated M2-CM-promoted HCC migration were detected using western blotting. Results HCC cells cultured with M2-CM displayed a fibroblast-like morphology, an increased metastatic capability, and expression of EMT markers. TLR4 expression was markedly increased in M2-CM-treated HCC cells. TLR4 overexpression promoted HCC cell migration, and a TLR4-neutralizing antibody markedly inhibited HCC EMT in cells cultured with M2-CM. Furthermore, the TLR4/(signal transducer and activator of transcription 3 (STAT3) signaling pathway contributed to the effects of M2-CM on HCC cells. Conclusions Taken together, M2-polarized macrophages facilitated the migration and EMT of HCC cells via the TLR4/STAT3 signaling pathway, suggesting that TLR4 may be a novel therapeutic target. These results improve our understanding of M2-polarized macrophages. Electronic supplementary material The online version of this article (10.1186/s12957-018-1312-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rong-Rong Yao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jing-Huan Li
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Rui Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Rong-Xin Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan-Hong Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China. .,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|