1
|
Hu JJ, Ma ZY, He XR, Wu YG, Chen Q, Song XQ, Wang GY, Li YH, Xu JY. Long-acting response of COX-2-mediated metastasis inhibition by oxaliplatin-based CP-L-OHP. NEW J CHEM 2022. [DOI: 10.1039/d2nj01196d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among four oxaliplatin-based Pt(iv) complexes, CP-L-OHP significantly delayed BGC-823 cell metastasis via long-acting inhibition of COX-2.
Collapse
Affiliation(s)
- Juan-Juan Hu
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Zhong-Ying Ma
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xin-Rui He
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yi-Gang Wu
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Qian Chen
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xue-Qing Song
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Guan-Yuan Wang
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yi-Han Li
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Jing-Yuan Xu
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
2
|
Zhao X, Hu GF, Shi YF, Xu W. Research Progress in microRNA-Based Therapy for Gastric Cancer. Onco Targets Ther 2019; 12:11393-11411. [PMID: 31920330 PMCID: PMC6935305 DOI: 10.2147/ott.s221354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is one of the leading causes of tumor-related mortality. In addition to surgery and endoscopic resection, systemic therapy remains the main treatment option for GC, especially for advanced-stage disease and for cases not suitable for surgical therapy. Hence, improving the efficacy of systemic therapy is still an urgent problem to overcome. In the past decade, the essential roles of microRNAs (miRNAs) in tumor treatment have been increasingly recognized. In particular, miRNAs were recently shown to reverse the resistance to chemotherapy drugs such as 5-fluorouracil, cisplatin, and doxorubicin. Synthesized nanoparticles loaded with mimics or inhibitors of miRNAs can directly target tumor cells to suppress their growth. Moreover, exosomes may serve as promising safe carriers for mimics or inhibitors of miRNAs to treat GC. Some miRNAs have also been shown to play roles in the mechanism of action of other anti-tumor drugs. Therefore, in this review, we highlight the research progress on microRNA-based therapy in GC and discuss the challenges and prospects associated with this strategy. We believe that microRNA-based therapy has the potential to offer a clinical benefit to GC patients, and this review would contribute to and motivate further research to promote this field toward this ultimate goal.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Gao-Feng Hu
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Yan-Fen Shi
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Wei Xu
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
3
|
Zhang C, Zhou J, Hu J, Lei S, Yuan M, Chen L, Wang G, Qiu Z. Celecoxib attenuates hepatocellular proliferative capacity during hepatocarcinogenesis by modulating a PTEN/NF-κB/PRL-3 pathway. RSC Adv 2019; 9:20624-20632. [PMID: 35515542 PMCID: PMC9065693 DOI: 10.1039/c9ra00429g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/01/2019] [Indexed: 11/21/2022] Open
Abstract
Although the efficacy of celecoxib on various cancer cell behaviors, including aberrant proliferation, in cultured hepatocellular carcinoma (HCC) cells has been demonstrated, whether celecoxib regulates cell proliferation by targeting PRL-3-associated signaling transduction during hepatocarcinogenesis in vivo has been incompletely studied. Here, we investigate the anti-proliferative efficacy of celecoxib in a rapid HCC mouse model established by hydrodynamic transfection of activated AKT and c-Met proto-oncogenes. The results show that celecoxib is effective at delaying the malignant transformation of hepatocytes by reducing the protein expression of Ki67, Cyclin D1 and c-Myc in the AKT/c-Met HCC-bearing mice. Mechanistically, celecoxib increases the protein expression of PTEN and suppresses the protein expression of NF-κB and PRL-3 in the liver of the HCC mice. Using PTEN-silenced and LPS-stimulated approaches in vitro, a mechanism by which celecoxib regulates a PTEN/NF-κB/PRL-3 pathway in HCC cells was illuminated. Altogether, our study demonstrates that celecoxib attenuates the hepatocellular proliferative capacity during hepatocarcinogenesis, which is probably attributable to its regulation of the PTEN/NF-κB/PRL-3 pathway. Celecoxib modulates the PTEN/NF-κB/PRL-3 pathway during hepatocarcinogenesis in vivo.![]()
Collapse
Affiliation(s)
- Cong Zhang
- College of Pharmacy
- Hubei University of Chinese Medicine
- Wuhan
- People's Republic of China
| | - Junxuan Zhou
- College of Pharmacy
- Hubei University of Chinese Medicine
- Wuhan
- People's Republic of China
| | - Junjie Hu
- College of Pharmacy
- Hubei University of Chinese Medicine
- Wuhan
- People's Republic of China
| | - Sheng Lei
- College of Pharmacy
- Hubei University of Chinese Medicine
- Wuhan
- People's Republic of China
| | - Ming Yuan
- College of Pharmacy
- Hubei University of Chinese Medicine
- Wuhan
- People's Republic of China
| | - Liang Chen
- College of Pharmacy
- Hubei University of Chinese Medicine
- Wuhan
- People's Republic of China
| | - Guihong Wang
- College of Pharmacy
- Hubei University of Chinese Medicine
- Wuhan
- People's Republic of China
- Key Laboratory of Chinese Medicine Resource and Compound Prescription
| | - Zhenpeng Qiu
- College of Pharmacy
- Hubei University of Chinese Medicine
- Wuhan
- People's Republic of China
- Key Laboratory of Resources and Chemistry of Chinese Medicine
| |
Collapse
|
4
|
Chemotherapy-induced miR-141/MAP4K4 signaling suppresses progression of colorectal cancer. Biosci Rep 2018; 38:BSR20180978. [PMID: 30429233 PMCID: PMC6435556 DOI: 10.1042/bsr20180978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/02/2018] [Accepted: 11/04/2018] [Indexed: 02/07/2023] Open
Abstract
One of the treatment failures for colorectal cancer (CRC) is resistance to chemotherapy drugs. miRNAs have been demonstrated to be a new regulator of pathobiological processes in various tumors. While few studies have explored the specific role of miR-141 in mediating 5-fluorouracil (5-FU) sensitivity of CRC cells, the present study aimed to detect the contribution of miR-141 in 5-FU sensitivity. The CRC cells viability was measured by MTS assay and cell colony forming. The expression of miR-141 and its downstream targets were assessed by reverse transcription quantitative PCR, Western blotting, and immunohistochemistry. The functional assays were conducted using CRC cells and nude mice. At the present study, we found overexpression of miR-141 could inhibit proliferation, migration, tumor-forming and invasive potential of CRC cells in vitro and mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) was verified as a directed target of miR-141 The combination treatment of miR-141 with 5-FU, directly targetting MAP4K4, could better inhibit invasion and metastasis of CRC cells colony than either one alone. Furthermore, overexpression of miR-141, targetting MAP4K4, enhanced the effected of 5-FU and suppressed the malignant biological behaviors, in vivo Our findings showed that 5-FU inhibited malignant behavior of human CRC cells in vitro and in vivo by enhancing the efficiency of miR-141 Our data suggested that targetting the miR-141/MAP4K4 signaling pathway could be a potential molecular target that may enhance chemotherapeutic efficacy in the treatment of CRC.
Collapse
|
5
|
Qu Y, Zhang H, Duan J, Liu R, Deng T, Bai M, Huang D, Li H, Ning T, Zhang L, Wang X, Ge S, Zhou L, Zhong B, Ying G, Ba Y. MiR-17-5p regulates cell proliferation and migration by targeting transforming growth factor-β receptor 2 in gastric cancer. Oncotarget 2017; 7:33286-96. [PMID: 27120811 PMCID: PMC5078094 DOI: 10.18632/oncotarget.8946] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/28/2016] [Indexed: 12/13/2022] Open
Abstract
TGFBR2 serves as an initial regulator of the TGF-β signaling pathway, and loss or reduction of its expression leads to uncontrolled cell growth and invasion. TGFBR2 plays a crucial role in the carcinogenesis and malignant process of gastric cancer, but the mechanism remains unclear. In this study, we found that TGFBR2 protein levels were consistently upregulated in gastric cancer tissues, whereas TGFBR2 mRNA levels varied among these tissues, indicating that a post-transcriptional mechanism is involved in the regulation of TGFBR2. MiRNAs are known to regulate gene expression at the post-transcriptional level. Therefore, we performed bioinformatics analyses to search for miRNAs potentially targeting TGFBR2. MiR-17-5p was found to bind to the 3'UTR of TGFBR2 mRNA, and further validation of this specific binding was performed through a reporter assay. An inverse correlation between miR-17-5p and TGFBR2 protein was observed in gastric cancer tissues. Cell studies revealed that miR-17-5p negatively regulated TGFBR2 expression by directly binding to the 3'UTR of TGFBR2 mRNA, thereby promoting cell growth and migration. We also validated the role of TGFBR2 using siRNA and an overexpression plasmid. The results of our study suggest a novel regulatory network in gastric cancer mediated by miR-17-5p and TGFBR2 and may indicate that TGFBR2 could serve as a new therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Yanjun Qu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Haiyang Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Jingjing Duan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Rui Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Ting Deng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Ming Bai
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Dingzhi Huang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Hongli Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Tao Ning
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Le Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Xia Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Shaohua Ge
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Likun Zhou
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Benfu Zhong
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Guoguang Ying
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yi Ba
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| |
Collapse
|
6
|
MicroRNA-21 inhibits mitochondria-mediated apoptosis in keloid. Oncotarget 2017; 8:92914-92925. [PMID: 29190966 PMCID: PMC5696232 DOI: 10.18632/oncotarget.21656] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNA-21 acts as an oncogene by promoting cell proliferation and migration, whereas inhibiting apoptosis in majority of cancers. MicroRNA-21 is upregulated in human keloid fibroblasts. We hypothesized that microRNA-21 may contribute to pathogenesis of keloid fibroblasts. First, enhanced miR-21 but reduced mitochondrial-mediated apoptosis observed in keloid tissues indicated its importance in keloids development. Second, upregulation of microRNA-21 induced a decrease in the ratio of BAX to BCL-2 and suppressed mitochondrial fission in keloid fibroblasts. Third, by attenuating the decline in cellular mitochondrial membrane potential, overexpression of miR-21 suppressed cytochrome c release to the cytoplasm, followed by a decrease in the activity of intracellular caspase-9 and caspase-3, suggesting that mitochondrial-mediated proapoptotic pathway was impaired. Simultaneously, intracellular reactive oxygen species were decreased, indicating microRNA-21 undermined oxidative stress. This phenotype was reversed by miR-21 inhibition. Therefore, our study demonstrates that inhibition of microRNA-21 induces mitochondrial-mediated apoptosis in keloid fibroblasts, proposing microRNA-21 as a potential therapeutic target in keloid fibroblasts.
Collapse
|
7
|
Wang L, Zuo M, Chen H, Liu S, Wu X, Cui Z, Yang H, Liu H, Ge B. Mycobacterium tuberculosis Lipoprotein MPT83 Induces Apoptosis of Infected Macrophages by Activating the TLR2/p38/COX-2 Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 2017; 198:4772-4780. [PMID: 28507027 DOI: 10.4049/jimmunol.1700030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/18/2017] [Indexed: 11/19/2022]
Abstract
Tuberculosis caused by Mycobacterium tuberculosis continues to pose a serious global health threat. The attenuated Mycobacterium bovis bacillus Calmette-Guérin, as the only licensed vaccine, has limited protective efficacy against TB. The development of more effective antituberculosis vaccines is urgent and demands for further identification and understanding of M. tuberculosis Ags. MPT83 (Rv2873), a secreted mycobacterial lipoprotein, has been applied into subunit vaccine development and shown protective effects against M. tuberculosis infection in animals; however, the understanding of the underlying mechanism is limited. In present study, we systematically studied the effect of MPT83 on macrophage apoptosis by constructing Mycobacterium smegmatis strain overexpressing MPT83 (MS_MPT83) and purifying rMPT83 protein. We found that MPT83 induced apoptosis in both human and mouse macrophages. MPT83 induced cyclooxygenase-2 (COX-2) expression at both the transcriptional and protein levels in macrophages, whereas silencing or inhibiting COX-2 blocked rMPT83-induced apoptosis or the enhanced apoptotic response to MS_MPT83 in comparison with M. smegmatis transfected with pMV261 vector (MS_Vec), indicating that COX-2 is required for MPT83-induced apoptosis. Additionally, tlr2 deficiency led to significant reduction of COX-2 expression, accompanied by less apoptosis in macrophages stimulated with rMPT83 or infected with MS_MPT83. Moreover, the activation of p38 accounted for MPT83-induced COX-2 expression. Finally, lower bacteria burdens in the lungs and spleens and enhanced survival were observed in mice i.v. infected with MS_MPT83 compared with MS_Vec. Taken together, our results established a proapoptotic effect of MPT83 and identified the TLR2/p38/COX-2 axis in MPT83-induced macrophage apoptosis.
Collapse
Affiliation(s)
- Lin Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China; and
| | - Mianyong Zuo
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China; and
| | - Hao Chen
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China; and
| | - Siyu Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China; and
| | - Xiangyang Wu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China; and
| | - Zhenling Cui
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Haipeng Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; .,Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; .,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China; and.,Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
8
|
Gui F, Hong Z, You Z, Wu H, Zhang Y. MiR-21 inhibitor suppressed the progression of retinoblastoma via the modulation of PTEN/PI3K/AKT pathway. Cell Biol Int 2016; 40:1294-1302. [PMID: 27600360 DOI: 10.1002/cbin.10678] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/04/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Fu Gui
- Department of Ophthalmology; The Second Affiliated Hospital of Nanchang University; Nanchang Jiangxi Province 330006 China
| | - Zhengdong Hong
- Department of Urology; The Second Affiliated Hospital of Nanchang University; Nanchang Jiangxi Province 330006 China
| | - Zhipeng You
- Department of Ophthalmology; The Second Affiliated Hospital of Nanchang University; Nanchang Jiangxi Province 330006 China
| | - Hongxi Wu
- Department of Ophthalmology; The Second Affiliated Hospital of Nanchang University; Nanchang Jiangxi Province 330006 China
| | - Yulan Zhang
- Department of Ophthalmology; The Second Affiliated Hospital of Nanchang University; Nanchang Jiangxi Province 330006 China
| |
Collapse
|