1
|
López-Castro R, Fuentes-Martín Á, Medina del Valle A, García Peña T, Soro García J, López González L, Cilleruelo Ramos Á. Advances in Immunotherapy for Malignant Pleural Mesothelioma: From Emerging Strategies to Translational Insights. OPEN RESPIRATORY ARCHIVES 2024; 6:100323. [PMID: 38660145 PMCID: PMC11041830 DOI: 10.1016/j.opresp.2024.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/16/2024] [Indexed: 04/26/2024] Open
Abstract
MPM stands as a rare malignancy necessitating improved therapeutic strategies due to its limited treatment choices and unfavorable prognosis. The advent of immune checkpoint inhibitors has heralded a paradigm shift in the therapeutic landscape of MPM, offering promising avenues across diverse clinical scenarios. In the context of advanced stages of the disease, Immune check-point inhibitors targeting programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-as-sociated protein 4 (CTLA-4), have exhibited encouraging potential in clinical trials, particularly manifesting efficacy among patients exhibiting disease progression following chemotherapy regimens. Innovative combination regimens, exemplified by the concurrent administration of nivolumab and ipilimumab, have demonstrated marked improvement in survival and patient's benefits. A deeper comprehension of the intricate genetic underpinnings of MPM, encompassing key mutations such as cyclin-dependent kinase inhibitor 2A (CDKN2A), neurofibromin 2 (NF2), and BRCA1-associated protein 1 (BAP1) mutations, has elucidated novel avenues for targeted therapeutic interventions. This review accentuates the transformative capacity of immunotherapy in revolutionizing the therapeutic outlook for MPM, thereby potentially translating into augmented survival rates and offering glimpses of new approaches on the horizon. Despite the persisting challenges, the synergistic crossroads of interdisciplinary research and collaborative clinical endeavors portend a hopeful landscape for MPM treatment.
Collapse
Affiliation(s)
| | - Álvaro Fuentes-Martín
- Faculty of Medicine, University of Valladolid, Spain
- Thoracic Surgery Department, Hospital Clínico Universitario de Valladolid, Spain
| | | | - Tania García Peña
- Medical Oncology Department, Hospital Clínico Universitario de Valladolid, Spain
| | - José Soro García
- Thoracic Surgery Department, Hospital Clínico Universitario de Valladolid, Spain
| | | | - Ángel Cilleruelo Ramos
- Faculty of Medicine, University of Valladolid, Spain
- Thoracic Surgery Department, Hospital Clínico Universitario de Valladolid, Spain
| |
Collapse
|
2
|
The Oncolytic Caprine Herpesvirus 1 (CpHV-1) Induces Apoptosis and Synergizes with Cisplatin in Mesothelioma Cell Lines: A New Potential Virotherapy Approach. Viruses 2021; 13:v13122458. [PMID: 34960727 PMCID: PMC8703924 DOI: 10.3390/v13122458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022] Open
Abstract
Malignant mesothelioma (MM) is an aggressive asbestos-related cancer, against which no curative modalities exist. Oncolytic virotherapy is a promising therapeutic approach, for which MM is an ideal candidate; indeed, the pleural location provides direct access for the intra-tumoral injection of oncolytic viruses (OVs). Some non-human OVs offer advantages over human OVs, including the non-pathogenicity in humans and the absence of pre-existing immunity. We previously showed that caprine herpesvirus 1 (CpHV-1), a non-pathogenic virus for humans, can kill different human cancer cell lines. Here, we assessed CpHV-1 effects on MM (NCI-H28, MSTO, NCI-H2052) and non-tumor mesothelial (MET-5A) cells. We found that CpHV-1 reduced cell viability and clonogenic potential in all MM cell lines without affecting non-tumor cells, in which, indeed, we did not detect intracellular viral DNA after treatment. In particular, CpHV-1 induced MM cell apoptosis and accumulation in G0/G1 or S cell cycle phases. Moreover, CpHV-1 strongly synergized with cisplatin, the drug currently used in MM chemotherapy, and this agent combination did not affect normal mesothelial cells. Although further studies are required to elucidate the mechanisms underlying the selective CpHV-1 action on MM cells, our data suggest that the CpHV-1-cisplatin combination could be a feasible strategy against MM.
Collapse
|
3
|
Lettieri S, Bortolotto C, Agustoni F, Lococo F, Lancia A, Comoli P, Corsico AG, Stella GM. The Evolving Landscape of the Molecular Epidemiology of Malignant Pleural Mesothelioma. J Clin Med 2021; 10:jcm10051034. [PMID: 33802313 PMCID: PMC7959144 DOI: 10.3390/jcm10051034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive malignancy that most commonly affects the pleural lining of the lungs. It has a strong association with exposure to biopersistent fibers, mainly asbestos (80% of cases) and—in specific geographic regions—erionite, zeolites, ophiolites, and fluoro-edenite. Individuals with a chronic exposure to asbestos generally have a long latency with no or few symptoms. Then, when patients do become symptomatic, they present with advanced disease and a worse overall survival (about 13/15 months). The fibers from industrial production not only pose a substantial risk to workers, but also to their relatives and to the surrounding community. Modern targeted therapies that have shown benefit in other human tumors have thus far failed in MPM. Overall, MPM has been listed as orphan disease by the European Union. However, molecular high-throughput profiling is currently unveiling novel biomarkers and actionable targets. We here discuss the natural evolution, mainly focusing on the novel concept of molecular epidemiology. The application of innovative endpoints, quantification of genetic damages, and definition of genetic susceptibility are reviewed, with the ultimate goal to point out new tools for screening of exposed subject and for designing more efficient diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Sara Lettieri
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (A.G.C.)
| | - Chandra Bortolotto
- Department of Intensive Medicine, Unit of Radiology, IRCCS Policlinico San Matteo Foundation, University of Pavia Medical School, 27100 Pavia, Italy;
| | - Francesco Agustoni
- Department of Medical Sciences and Infective Diseases, Unit of Oncology, IRCCS Policlinico San Matteo Foundation, University of Pavia Medical School, 27100 Pavia, Italy;
| | - Filippo Lococo
- Thoracic Unit, Catholic University of the Sacred Heart, Fondazione Policinico A. Gemelli, 00100 Rome, Italy;
| | - Andrea Lancia
- Department of Intensive Medicine, Unit of Radiation Therapy, IRCCS Policlinico San Matteo Foundation, University of Pavia Medical School, 27100 Pavia, Italy;
| | - Patrizia Comoli
- Cell Factory and Pediatric Hematology-Oncology Unit, IRCCS Fondazione Policlinico San Matteo, 27100 Pavia, Italy;
| | - Angelo G. Corsico
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (A.G.C.)
| | - Giulia M. Stella
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (A.G.C.)
- Correspondence:
| |
Collapse
|
4
|
Tan Z, Liu L, Chiu MS, Cheung KW, Yan CW, Yu Z, Lee BK, Liu W, Man K, Chen Z. Virotherapy-recruited PMN-MDSC infiltration of mesothelioma blocks antitumor CTL by IL-10-mediated dendritic cell suppression. Oncoimmunology 2018; 8:e1518672. [PMID: 30546960 DOI: 10.1080/2162402x.2018.1518672] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/19/2018] [Accepted: 08/28/2018] [Indexed: 12/23/2022] Open
Abstract
Antitumor cytotoxic T lymphocytes (CTLs) are essential for immune surveillance, yet the blockade of eliciting such CTLs during oncolytic virotherapy remains incompletely understood. Here, we show that oncolysis of mesothelioma by modified vaccinia Tiantan (MVTT) induces damage-associated molecular patterns exposure. Although MVTT leads to regression of established mesothelioma dose-dependently, antitumor CTLs are rarely induced. Mechanistically, MVTT virotherapy generates C-X-C chemokines that recruit CXCR2-expressing polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) into tumor microenvironment, where they suppress dendritic cells (DCs) by producing IL-10 and halt CTL responses. During the virotherapy, however, depletion of PMN-MDSCs but not of monocytic (M)-MDSCs results in the induction of potent antitumor CTLs that not only eradicate established mesothelioma but also prevent the second tumor challenge. Our findings suggest that vaccinia virotherapy may combine strategies that prevent the chemotactic recruitment of PMN-MDSCs, block their suppression on DCs or deplete PMN-MDSCs in order to induce potent CTLs for tumor eradication.
Collapse
Affiliation(s)
- Zhiwu Tan
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Li Liu
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Mei Sum Chiu
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Ka-Wai Cheung
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Chi Wing Yan
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Zhe Yu
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Boon Kiat Lee
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Wan Liu
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Kwan Man
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Emerging Infectious Disease, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
5
|
Rossini M, Rizzo P, Bononi I, Clementz A, Ferrari R, Martini F, Tognon MG. New Perspectives on Diagnosis and Therapy of Malignant Pleural Mesothelioma. Front Oncol 2018; 8:91. [PMID: 29666782 PMCID: PMC5891579 DOI: 10.3389/fonc.2018.00091] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/15/2018] [Indexed: 12/24/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare, but severe form of cancer, with an incidence that varies significantly within and among different countries around the world. It develops in about one to two persons per million of the general population, leading to thousands of deaths every year worldwide. To date, the MPM is mostly associated with occupational asbestos exposure. Asbestos represents the predominant etiological factor, with approximately 70% of cases of MPM with well-documented occupational exposure to asbestos, with the exposure time, on average greater than 40 years. Environmental exposure to asbestos is increasingly becoming recognized as a cause of mesothelioma, together with gene mutations. The possible roles of other cofactors, such as viral infection and radiation exposure, are still debated. MPM is a fatal tumor. This cancer arises during its early phase without clinical signs. Consequently, its diagnosis occurs at advanced stages. Standard clinical therapeutic approaches include surgery, chemo- and radiotherapies. Preclinical and clinical researches are making great strides in the field of this deadly disease, identifying new biomarkers and innovative therapeutic approaches. Among the newly identified markers and potential therapeutic targets, circulating microRNAs and the Notch pathway represent promising avenues that could result in the early detection of the tumor and novel therapeutic approaches.
Collapse
Affiliation(s)
- Marika Rossini
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Ilaria Bononi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Anthony Clementz
- Department of Natural Sciences and Geography, Concordia University Chicago, River Forest, IL, United States
| | - Roberto Ferrari
- Department of Medical Sciences, Section of Internal Medicine and Cardiorespiratory, School of Medicine, University of Ferrara, Ferrara, Italy.,E.S. Health Science Foundation, GVM Care & Research, Maria Cecilia Hospital, Cotignola, Italy
| | - Fernanda Martini
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Mauro G Tognon
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
6
|
Pease DF, Kratzke RA. Oncolytic Viral Therapy for Mesothelioma. Front Oncol 2017; 7:179. [PMID: 28884088 PMCID: PMC5573749 DOI: 10.3389/fonc.2017.00179] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/04/2017] [Indexed: 12/22/2022] Open
Abstract
The limited effectiveness of conventional therapy for malignant pleural mesothelioma demands innovative approaches to this difficult disease. Even with aggressive multimodality treatment of surgery, radiation, and/or chemotherapy, the median survival is only 1–2 years depending on stage and histology. Oncolytic viral therapy has emerged in the last several decades as a rapidly advancing field of immunotherapy studied in a wide spectrum of malignancies. Mesothelioma makes an ideal candidate for studying oncolysis given the frequently localized pattern of growth and pleural location providing access to direct intratumoral injection of virus. Therefore, despite being a relatively uncommon disease, the multitude of viral studies for mesothelioma can provide insight for applying such therapy to other malignancies. This article will begin with a review of the general principles of oncolytic therapy focusing on antitumor efficacy, tumor selectivity, and immune system activation. The second half of this review will detail results of preclinical models and human studies for oncolytic virotherapy in mesothelioma.
Collapse
Affiliation(s)
- Daniel F Pease
- Hematology-Oncology-Transplant, University of Minnesota, Minneapolis, MN, United States
| | - Robert A Kratzke
- Hematology-Oncology-Transplant, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|