1
|
Ganatra H, Tan JK, Simmons A, Bigogno CM, Khurana V, Ghose A, Ghosh A, Mahajan I, Boussios S, Maniam A, Ayodele O. Applying whole-genome and whole-exome sequencing in breast cancer: a review of the landscape. Breast Cancer 2024; 31:999-1009. [PMID: 39190283 PMCID: PMC11489287 DOI: 10.1007/s12282-024-01628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Whole-genome sequencing (WGS) and whole-exome sequencing (WES) are crucial within the context of breast cancer (BC) research. They play a role in the detection of predisposed genes, risk stratification, and identification of rare single nucleotide polymorphisms (SNPs). These technologies aid in the discovery of associations between various syndromes and BC, understanding the tumour microenvironment (TME), and even identifying unknown mutations that could be useful in future for personalised treatments. Genetic analysis can find the associated risk of BC and can be used in early screening, diagnosis, specific treatment plans, and prevention in patients who are at high risk of tumour formation. This article focuses on the application of WES and WGS, and how uncovering novel candidate genes associated with BC can aid in treating and preventing BC.
Collapse
Affiliation(s)
- Hetvi Ganatra
- Barts Cancer Institute, Cancer Research UK City of London, Queen Mary University of London, London, UK
| | - Joecelyn Kirani Tan
- School of Medicine, University of St. Andrews, Fife, Scotland, UK
- Andrews Oncology Society, Scotland, UK
| | - Ana Simmons
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Carola Maria Bigogno
- Department of Medical Oncology, Barts Cancer Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- British Oncology Network for Undergraduate Societies (BONUS), London, UK
| | - Vatsala Khurana
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Aruni Ghose
- Department of Medical Oncology, Barts Cancer Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham, Kent, UK
- Department of Medical Oncology, Mount Vernon Cancer Centre, Mount Vernon and Watford NHS Trust, Watford, UK
| | - Adheesh Ghosh
- UCL Cancer Institute, University College London, London, UK
| | - Ishika Mahajan
- Department of Oncology, Lincoln Oncology Centre, Lincoln County Hospital, United Lincolnshire Hospitals NHS Trust, Lincoln, UK
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham, Kent, UK.
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK.
- Kent and Medway Medical School, University of Kent, Canterbury, Kent, UK.
- Faculty of Medicine, Health, and Social Care, Canterbury Christ Church University, Canterbury, UK.
- AELIA Organization, 9th Km Thessaloniki-hermi, 57001, Thessaloniki, Greece.
| | - Akash Maniam
- Department of Medical Oncology, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
- Faculty of Science and Health, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
- Caribbean Cancer Research Institute, Port of Spain, Trinidad and Tobago
| | - Olubukola Ayodele
- Department of Medical Oncology, University Hospitals of Leicester NHS Trust, Leicester, UK
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
2
|
de Baumont AC, Cadore NA, Pedrotti LG, Curzel GD, Schuch JB, Bessel M, Bordignon C, Rosa ML, Macedo GDS, Rosa DD. Germline rare variants in HER2-positive breast cancer predisposition: a systematic review and meta-analysis. Front Oncol 2024; 14:1395970. [PMID: 38978731 PMCID: PMC11228612 DOI: 10.3389/fonc.2024.1395970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/04/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction Approximately 10% of breast cancer (BC) cases result from hereditary causes. Genetic testing has been widely implemented in BC care to determine hereditary cancer syndromes and personalized medicine. Thus, identification of individuals carrying germline pathogenic variants could be useful to provide appropriate prophylactic or screening measures for each BC subtype, however, there are few formal recommendations for genetic testing in this sense so far. In this study, we assessed rare germline variants in a specific group of genes in order to determine the association with human epidermal growth factor 2 enriched (HER2+) BC phenotype through a systematic review and meta-analysis comparing subtypes overexpressing HER2 with other clinically recognized subtypes of BC. This review was registered with PROSPERO (ID: CRD42023447571). Methods We conducted an online literature search in PubMed (MEDLINE), Scopus, and EMBASE databases. We included original studies that investigated germline variants in HER2+ BC patients and selected the studies that reported only rare and/or pathogenic germline variants. We assessed the risk of bias and quality of the studies using the Joanna Briggs Institute Critical Appraisal checklists and the Modified Newcastle-Ottawa Scale for Genetic Studies, respectively. Considering hormone receptor and HER2 expression status, we compared gene-based risks initially in HR-HER2-, HR+HER2-, HR+HER2+, and HR-HER2+ groups, conducting separate meta-analyses using the random effects model for each comparison, and within them for each gene. Results Of the total 36 studies describing germline variants, 11 studies provided information on the prevalence of variants in the different clinically relevant BC subtypes and allowed comparisons. Germline variants within eight genes showed significant differences when meta-analyzed between the BC groups: BRCA1, BRCA2, TP53, ATM, CHEK2, PALB2, RAD51C, and BARD1. Notably, TP53, ATM, and CHEK2 germline variants were identified as predisposing factors for HER2+ subtypes, whereas BRCA1, BRCA2, PALB2, RAD51C, and BARD1 germline variants were associated with a predisposition to low HER2 expression. Main concerns about bias and quality assessment were the lack of confounding factors control; and comparability or outcome assessment, respectively. Discussion Our findings underscore the connection between germline variants and differential expression of the HER2 protein and BC subtypes. Systematic review registration https://www.crd.york.ac.uk/PROSPERO, identifier CRD42023447571.
Collapse
Affiliation(s)
| | - Nathan Araujo Cadore
- Responsabilidade Social, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | - Marina Bessel
- Responsabilidade Social, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
| | - Cláudia Bordignon
- Responsabilidade Social, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
| | - Mahira Lopes Rosa
- Responsabilidade Social, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
| | | | - Daniela Dornelles Rosa
- Responsabilidade Social, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
3
|
Keskin Karakoyun H, Yüksel ŞK, Amanoglu I, Naserikhojasteh L, Yeşilyurt A, Yakıcıer C, Timuçin E, Akyerli CB. Evaluation of AlphaFold structure-based protein stability prediction on missense variations in cancer. Front Genet 2023; 14:1052383. [PMID: 36896237 PMCID: PMC9988940 DOI: 10.3389/fgene.2023.1052383] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023] Open
Abstract
Identifying pathogenic missense variants in hereditary cancer is critical to the efforts of patient surveillance and risk-reduction strategies. For this purpose, many different gene panels consisting of different number and/or set of genes are available and we are particularly interested in a panel of 26 genes with a varying degree of hereditary cancer risk consisting of ABRAXAS1, ATM, BARD1, BLM, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, EPCAM, MEN1, MLH1, MRE11, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, PTEN, RAD50, RAD51C, RAD51D, STK11, TP53, and XRCC2. In this study, we have compiled a collection of the missense variations reported in any of these 26 genes. More than a thousand missense variants were collected from ClinVar and the targeted screen of a breast cancer cohort of 355 patients which contributed to this set with 160 novel missense variations. We analyzed the impact of the missense variations on protein stability by five different predictors including both sequence- (SAAF2EC and MUpro) and structure-based (Maestro, mCSM, CUPSAT) predictors. For the structure-based tools, we have utilized the AlphaFold (AF2) protein structures which comprise the first structural analysis of this hereditary cancer proteins. Our results agreed with the recent benchmarks that computed the power of stability predictors in discriminating the pathogenic variants. Overall, we reported a low-to-medium-level performance for the stability predictors in discriminating pathogenic variants, except MUpro which had an AUROC of 0.534 (95% CI [0.499-0.570]). The AUROC values ranged between 0.614-0.719 for the total set and 0.596-0.682 for the set with high AF2 confidence regions. Furthermore, our findings revealed that the confidence score for a given variant in the AF2 structure could alone predict pathogenicity more robustly than any of the tested stability predictors with an AUROC of 0.852. Altogether, this study represents the first structural analysis of the 26 hereditary cancer genes underscoring 1) the thermodynamic stability predicted from AF2 structures as a moderate and 2) the confidence score of AF2 as a strong descriptor for variant pathogenicity.
Collapse
Affiliation(s)
- Hilal Keskin Karakoyun
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Şirin K. Yüksel
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Ilayda Amanoglu
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Lara Naserikhojasteh
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Ahmet Yeşilyurt
- Acibadem Labgen Genetic Diagnosis Centre, Acibadem Health Group, Istanbul, Türkiye
| | - Cengiz Yakıcıer
- Acibadem Pathology Laboratories, Acibadem Health Group, Istanbul, Türkiye
| | - Emel Timuçin
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Cemaliye B. Akyerli
- Department of Medical Biology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| |
Collapse
|
4
|
Liu Y, Wu X, Feng Y, Jiang Q, Zhang S, Wang Q, Yang A. Insights into the Oncogenic, Prognostic, and Immunological Role of BRIP1 in Pan-Cancer: A Comprehensive Data-Mining-Based Study. JOURNAL OF ONCOLOGY 2023; 2023:4104639. [PMID: 37153833 PMCID: PMC10162871 DOI: 10.1155/2023/4104639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/14/2023] [Accepted: 04/08/2023] [Indexed: 05/10/2023]
Abstract
Background BRCA1 interacting helicase 1 (BRIP1), an ATP-dependent DNA helicase which belongs to an Iron-Sulfur (Fe-S) helicase cluster family with a DEAH domain, plays a key role in DNA damage and repair, Fanconi anemia, and development of several cancers including breast and ovarian cancer. However, its role in pan-cancer remains largely unknown. Methods BRIP1 expression data of tumor and normal tissues were downloaded from the Cancer Genome Atlas, Genotype-Tissue Expression, and Human Protein Atlas databases. Correlation between BRIP1 and prognosis, genomic alterations, and copy number variation (CNV) as well as methylation in pan-cancer were further analyzed. Protein-protein interaction (PPI) and gene set enrichment and variation analysis (GSEA and GSVA) were performed to identify the potential pathways and functions of BRIP1. Besides, BRIP1 correlations with tumor microenvironment (TME), immune infiltration, immune-related genes, tumor mutation burden (TMB), microsatellite instability (MSI), and immunotherapy as well as antitumor drugs were explored in pan-cancer. Results Differential analyses showed an increased expression of BRIP1 in 28 cancer types and its aberrant expression could be an indicator for prognosis in most cancers. Among the various mutation types of BRIP1 in pan-cancer, amplification was the most common type. BRIP1 expression had a significant correlation with CNV and DNA methylation in 23 tumor types and 16 tumor types, respectively. PPI, GSEA, and GSVA results validated the association between BRIP1 and DNA damage and repair, cell cycle, and metabolism. In addition, the expression of BRIP1 and its correlation with TME, immune-infiltrating cells, immune-related genes, TMB, and MSI as well as a variety of antitumor drugs and immunotherapy were confirmed. Conclusions Our study indicates that BRIP1 plays an imperative role in the tumorigenesis and immunity of various tumors. It may not only serve as a diagnostic and prognostic biomarker but also can be a predictor for drug sensitivity and immunoreaction during antitumor treatment in pan-cancer.
Collapse
Affiliation(s)
- Yongru Liu
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xi Wu
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yunlu Feng
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qingwei Jiang
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shengyu Zhang
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qiang Wang
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Aiming Yang
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
5
|
Marchena-Perea EM, Salazar-Hidalgo ME, Gómez-Sanz A, Arranz-Ledo M, Barroso A, Fernández V, Tejera-Pérez H, Pita G, Núñez-Torres R, Pombo L, Morales-Chamorro R, Cano-Cano JM, Soriano MDC, Garre P, Durán M, Currás-Freixes M, de la Hoya M, Osorio A. A Large Case-Control Study Performed in Spanish Population Suggests That RECQL5 Is the Only RECQ Helicase Involved in Breast Cancer Susceptibility. Cancers (Basel) 2022; 14:cancers14194738. [PMID: 36230663 PMCID: PMC9563930 DOI: 10.3390/cancers14194738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Around 50% of the familial breast cancer (BC) cases are estimated to be caused by variants in low-, moderate-, and high-risk susceptibility genes; however, the other half is of unknown origin. The finding of new susceptibility genes is key to improve diagnosis, take preventive measures, and identify new therapies. In this context, previous studies have discussed whether the genes encoding for the RECQ helicase family could play a role in BC susceptibility, without very conclusive results. To clarify this, in this study, we sequenced the whole coding sequence of the RECQL1, BLM, WRN, RECQL4, and RECQL5 genes in 1993 Spanish BC familial cases and compared it with controls from gnomAD. No association was found for RECQL1, BLM, WRN, and RECQL4; however, we did find an association between RECQL5 and breast cancer as a moderate-risk gene, making it a perfect candidate for further studies. Abstract Around 50% of the familial breast cancer (BC) cases are estimated to be caused by germline variants in known low-, moderate-, and high-risk susceptibility genes, while the other half is of unknown genetic origin. In the present study, we wanted to evaluate the role of the RECQ helicases, some of which have been studied in the past as candidates, with unclear results about their role in the disease. Using next-generation sequencing (NGS) technology, we analyzed the whole coding sequence of BLM, RECQL1, RECQL4, RECQL5, and WRN in almost 2000 index cases from BC Spanish families that had previously tested negative for the known BC susceptibility genes (BRCAX) and compared the results with the controls extracted from gnomAD. Our results suggest that BLM, RECQL1, RECQL4, and WRN do not play a major role in BC susceptibility. However, in the combined analysis, joining the present results with those previously reported in a series of 1334 BC Spanish patients and controls, we found a statistically significant association between Loss of Function (LoF) variants in RECQL5 and BC risk, with an OR of 2.56 (p = 0.009; 95% CI, 1.18–4.98). Our findings support our previous work and places the RECQL5 gene as a new moderate-risk BC gene.
Collapse
Affiliation(s)
- Erik Michel Marchena-Perea
- Human Cancer Genetics Programme, Familial Cancer Clinical Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Milton Eduardo Salazar-Hidalgo
- Human Cancer Genetics Programme, Familial Cancer Clinical Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Alicia Gómez-Sanz
- Molecular Oncology Laboratory (CIBERONC), Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain
| | - Mónica Arranz-Ledo
- Cancer Genetics Group, Unidad de Excelencia Instituto de Biología y Genética Molecular, Universidad de Valladolid-Consejo Superior de Investigaciones Científicas (IBGM, UVa-CSIC), 47003 Valladolid, Spain
| | - Alicia Barroso
- Human Cancer Genetics Programme, Familial Cancer Clinical Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Victoria Fernández
- Human Cancer Genetics Programme, Familial Cancer Clinical Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Hugo Tejera-Pérez
- Human Cancer Genetics Programme, Human Genotyping Unit (CEGEN), Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Guillermo Pita
- Human Cancer Genetics Programme, Human Genotyping Unit (CEGEN), Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Rocío Núñez-Torres
- Human Cancer Genetics Programme, Human Genotyping Unit (CEGEN), Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Luz Pombo
- Medical Oncology Section, Universitary Hospital Complex of Albacete, 02006 Albacete, Spain
| | - Rafael Morales-Chamorro
- Medical Oncology Section, Hospitalary Compex La Mancha Centro, 13600 Alcázar de San Juan, Spain
| | - Juana María Cano-Cano
- Medical Oncology Service, Universitary General Hospital of Ciudad Real, 13005 Ciudad Real, Spain
| | | | - Pilar Garre
- Molecular Oncology Laboratory (CIBERONC), Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain
| | - Mercedes Durán
- Cancer Genetics Group, Unidad de Excelencia Instituto de Biología y Genética Molecular, Universidad de Valladolid-Consejo Superior de Investigaciones Científicas (IBGM, UVa-CSIC), 47003 Valladolid, Spain
| | - María Currás-Freixes
- Human Cancer Genetics Programme, Familial Cancer Clinical Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Miguel de la Hoya
- Molecular Oncology Laboratory (CIBERONC), Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain
| | - Ana Osorio
- Human Cancer Genetics Programme, Familial Cancer Clinical Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
- Spanish Network on Rare Diseases (CIBERER), 28029 Madrid, Spain
- Genetics Service, Fundación Jiménez Díaz, 28043 Madrid, Spain
- Correspondence: ; Tel.: +34-917-328-002
| |
Collapse
|
6
|
Functions of Breast Cancer Predisposition Genes: Implications for Clinical Management. Int J Mol Sci 2022; 23:ijms23137481. [PMID: 35806485 PMCID: PMC9267387 DOI: 10.3390/ijms23137481] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Approximately 5–10% of all breast cancer (BC) cases are caused by germline pathogenic variants (GPVs) in various cancer predisposition genes (CPGs). The most common contributors to hereditary BC are BRCA1 and BRCA2, which are associated with hereditary breast and ovarian cancer (HBOC). ATM, BARD1, CHEK2, PALB2, RAD51C, and RAD51D have also been recognized as CPGs with a high to moderate risk of BC. Primary and secondary cancer prevention strategies have been established for HBOC patients; however, optimal preventive strategies for most hereditary BCs have not yet been established. Most BC-associated CPGs participate in DNA damage repair pathways and cell cycle checkpoint mechanisms, and function jointly in such cascades; therefore, a fundamental understanding of the disease drivers in such cascades can facilitate the accurate estimation of the genetic risk of developing BC and the selection of appropriate preventive and therapeutic strategies to manage hereditary BCs. Herein, we review the functions of key BC-associated CPGs and strategies for the clinical management in individuals harboring the GPVs of such genes.
Collapse
|
7
|
An integrative pan-cancer analysis reveals the oncogenic role of mutS homolog 6 (MSH6) in human tumors. Aging (Albany NY) 2021; 13:25271-25290. [PMID: 34941572 PMCID: PMC8714153 DOI: 10.18632/aging.203745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022]
Abstract
There are three most important mismatch repair genes in the mismatch repair system, MSH6 is one of them and it plays an essential role in DNA mismatch repair. Several emerging cell- or animal-based studies have verified that MSH6 mutations are closely linked to the occurrence, progression or metastasis of cancer, but there is still no practicable pan-cancer analysis. On account of the available datasets of the cancer genome atlas (TCGA) and Gene expression omnibus (GEO), a comprehensive analysis of the potential carcinogenic effects of the MSH6 gene was conducted in 33 human cancers. MSH6 was highly expressed in most cancers, and the high expression of MSH6 was associated with poor overall survival prognosis of patients with multiple cancers, such as adrenocortical carcinoma. MSH6 mutations occurred in most cancers and were closely related to the prognosis of cancer patients. Increased phosphorylation levels of S227 and S830 were noted in several tumors, including breast cancer and colon cancer. MSH6 expression was also observed to be correlated with cancer-associated fibroblasts and CD8+ T-cells infiltration levels in various cancer types, e. g. pancreatic adenocarcinoma or testicular germ cell tumors. Furthermore, pathway enrichment analysis demonstrated that the main biological activities of MSH6 were related to ATPase activity, mismatch repair, and DNA metabolism-related functions. Altogether, our pan-cancer research has suggested that the MSH6 expression level was closely related to the carcinogenesis and prognosis of certain tumors, which helps to know the effect of MSH6 in tumorigenesis from the point of view of clinical tumor samples.
Collapse
|
8
|
Moles-Fernández A, Domènech-Vivó J, Tenés A, Balmaña J, Diez O, Gutiérrez-Enríquez S. Role of Splicing Regulatory Elements and In Silico Tools Usage in the Identification of Deep Intronic Splicing Variants in Hereditary Breast/Ovarian Cancer Genes. Cancers (Basel) 2021; 13:cancers13133341. [PMID: 34283047 PMCID: PMC8268271 DOI: 10.3390/cancers13133341] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary There is a significant percentage of hereditary breast and ovarian cancer (HBOC) cases that remain undiagnosed, because no pathogenic variant is detected through massively parallel sequencing of coding exons and exon-intron boundaries of high-moderate susceptibility risk genes. Deep intronic regions may contain variants affecting RNA splicing, leading ultimately to disease, and hence they may explain several cases where the genetic cause of HBOC is unknown. This study aims to characterize intronic regions to identify a landscape of “exonizable” zones and test the efficiency of two in silico tools to detect deep intronic variants affecting the mRNA splicing process. Abstract The contribution of deep intronic splice-altering variants to hereditary breast and ovarian cancer (HBOC) is unknown. Current computational in silico tools to predict spliceogenic variants leading to pseudoexons have limited efficiency. We assessed the performance of the SpliceAI tool combined with ESRseq scores to identify spliceogenic deep intronic variants by affecting cryptic sites or splicing regulatory elements (SREs) using literature and experimental datasets. Our results with 233 published deep intronic variants showed that SpliceAI, with a 0.05 threshold, predicts spliceogenic deep intronic variants affecting cryptic splice sites, but is less effective in detecting those affecting SREs. Next, we characterized the SRE profiles using ESRseq, showing that pseudoexons are significantly enriched in SRE-enhancers compared to adjacent intronic regions. Although the combination of SpliceAI with ESRseq scores (considering ∆ESRseq and SRE landscape) showed higher sensitivity, the global performance did not improve because of the higher number of false positives. The combination of both tools was tested in a tumor RNA dataset with 207 intronic variants disrupting splicing, showing a sensitivity of 86%. Following the pipeline, five spliceogenic deep intronic variants were experimentally identified from 33 variants in HBOC genes. Overall, our results provide a framework to detect deep intronic variants disrupting splicing.
Collapse
Affiliation(s)
- Alejandro Moles-Fernández
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.M.-F.); (J.D.-V.); (J.B.)
| | - Joanna Domènech-Vivó
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.M.-F.); (J.D.-V.); (J.B.)
| | - Anna Tenés
- Area of Clinical and Molecular Genetics, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain;
| | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.M.-F.); (J.D.-V.); (J.B.)
- Medical Oncology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Orland Diez
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.M.-F.); (J.D.-V.); (J.B.)
- Area of Clinical and Molecular Genetics, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain;
- Correspondence: (O.D.); (S.G.-E.)
| | - Sara Gutiérrez-Enríquez
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.M.-F.); (J.D.-V.); (J.B.)
- Correspondence: (O.D.); (S.G.-E.)
| |
Collapse
|