1
|
Schulze AB, Schmidt LH, Heitkötter B, Huss S, Mohr M, Marra A, Hillejan L, Görlich D, Barth PJ, Rehkämper J, Evers G. Prognostic impact of CD34 and SMA in cancer-associated fibroblasts in stage I-III NSCLC. Thorac Cancer 2019; 11:120-129. [PMID: 31760702 PMCID: PMC6938745 DOI: 10.1111/1759-7714.13248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022] Open
Abstract
Background Epithelial‐to‐mesenchymal transition (EMT) is a crucial step in lung cancer pathogenesis. Among others, cancer‐associated fibroblasts (CAFs) are reported to regulate this process. Objectives To investigate the prognostic and clinical impact, we analyzed CD34+ and SMA+ CAFs in non‐small cell lung cancer (NSCLC). Methods Retrospectively, immunohistochemistry was performed to study stromal protein expression of both CD34 and SMA in 304 NSCLC patients with pTNM stage I‐III disease. All tissue samples were embedded on tissue microarrays (TMAs). Results Our analysis revealed an association for CD34+ CAFs with G1/2 tumors and adenocarcinoma histology. Moreover CD34+ CAFs were identified as an independent prognostic factor (both for progression free survival [PFS] and overall survival [OS] in stage I‐III NSCLC). Besides, SMA+ expression correlated with higher pTNM‐tumor stages and lymphatic spread (pN stage). In turn, SMA‐negativity was associated with improved PFS, but no prognostic impact was found on OS. Of interest, neither CD34+ CAFs nor SMA+ CAFs were associated with the primary tumor size, localization and depth of infiltration (pT stage). Conclusions CD34 was identified as an independent prognostic marker in pTNM stage I‐III NSCLC. Moreover, loss of CD34+ CAFs might influence the dedifferentiation of the NSCLC tumor from its cell origin. Finally, SMA+ CAFs are more prevalent in NSCLC tumors of higher stages and lymphonodal positive NSCLC. Key points Expression of CD34 on cancer associated fibroblasts (CAFs) is an independent prognostic factor in stage I‐III NSCLC. SMA+ cancer associated fibroblasts are associated with higher tumor stages in NSCLC and might contribute to tumor progression in NSCLC.
Collapse
Affiliation(s)
- Arik Bernard Schulze
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, Muenster, Germany
| | - Lars Henning Schmidt
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, Muenster, Germany
| | - Birthe Heitkötter
- Gerhard Domagk Institute of Pathology, University Hospital Muenster, Muenster, Germany
| | - Sebastian Huss
- Gerhard Domagk Institute of Pathology, University Hospital Muenster, Muenster, Germany
| | - Michael Mohr
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, Muenster, Germany
| | - Alessandro Marra
- Department of Thoracic Surgery, Rems-Murr-Klinikum Winnenden, Winnenden, Germany
| | - Ludger Hillejan
- Department of Thoracic Surgery, Niels-Stensen-Kliniken Ostercappeln, Ostercappeln, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Peter J Barth
- Gerhard Domagk Institute of Pathology, University Hospital Muenster, Muenster, Germany
| | - Jan Rehkämper
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Georg Evers
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
2
|
Liu Y, Li Y, Liu S, Adeegbe DO, Christensen CL, Quinn MM, Dries R, Han S, Buczkowski K, Wang X, Chen T, Gao P, Zhang H, Li F, Hammerman PS, Bradner JE, Quayle SN, Wong KK. NK Cells Mediate Synergistic Antitumor Effects of Combined Inhibition of HDAC6 and BET in a SCLC Preclinical Model. Cancer Res 2018; 78:3709-3717. [PMID: 29760044 DOI: 10.1158/0008-5472.can-18-0161] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/03/2018] [Accepted: 05/04/2018] [Indexed: 01/18/2023]
Abstract
Small-cell lung cancer (SCLC) has the highest malignancy among all lung cancers, exhibiting aggressive growth and early metastasis to distant sites. For 30 years, treatment options for SCLC have been limited to chemotherapy, warranting the need for more effective treatments. Frequent inactivation of TP53 and RB1 as well as histone dysmodifications in SCLC suggest that transcriptional and epigenetic regulations play a major role in SCLC disease evolution. Here we performed a synthetic lethal screen using the BET inhibitor JQ1 and an shRNA library targeting 550 epigenetic genes in treatment-refractory SCLC xenograft models and identified HDAC6 as a synthetic lethal target in combination with JQ1. Combined treatment of human and mouse SCLC cell line-derived xenograft tumors with the HDAC6 inhibitor ricolinostat (ACY-1215) and JQ1 demonstrated significant inhibition of tumor growth; this effect was abolished upon depletion of NK cells, suggesting that these innate immune lymphoid cells play a role in SCLC tumor treatment response. Collectively, these findings suggest a potential new treatment for recurrent SCLC.Significance: These findings identify a novel therapeutic strategy for SCLC using a combination of HDAC6 and BET inhibitors. Cancer Res; 78(13); 3709-17. ©2018 AACR.
Collapse
Affiliation(s)
- Yan Liu
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Yuyang Li
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Shengwu Liu
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Dennis O Adeegbe
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York
| | | | - Max M Quinn
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Ruben Dries
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Shiwei Han
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Kevin Buczkowski
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Xiaoen Wang
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Ting Chen
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York
| | - Peng Gao
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Hua Zhang
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York
| | - Fei Li
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York
| | - Peter S Hammerman
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - James E Bradner
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | | | - Kwok-Kin Wong
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York.
| |
Collapse
|
3
|
Dai Y, Wei Q, Schwager C, Hanne J, Zhou C, Herfarth K, Rieken S, Lipson KE, Debus J, Abdollahi A. Oncogene addiction and radiation oncology: effect of radiotherapy with photons and carbon ions in ALK-EML4 translocated NSCLC. Radiat Oncol 2018; 13:1. [PMID: 29304828 PMCID: PMC5756447 DOI: 10.1186/s13014-017-0947-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/14/2017] [Indexed: 02/08/2023] Open
Abstract
Background Patients with Echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) positive lung cancer are sensitive to ALK-kinase inhibitors. TAE684 is a potent second generation ALK inhibitor that overcomes Crizotinib resistance. Radiotherapy is an integral therapeutic component of locally advanced lung cancer. Therefore, we sought to investigate the effects of combined radiotherapy and ALK-inhibition via TAE684 in ALK-positive vs. wild type lung cancer cells. Methods Human non-small cell lung cancer (NSCLC) cell lines harboring wild-type ALK (A549), EML4-ALK translocation (H3122) and murine Lewis Lung Cancer (LLC) cells were investigated. Cells were irradiated with 1–4 Gy X-Rays (320 keV) and carbon ions (Spread-out Bragg Peak, SOBP (245.4–257.0 MeV/u)) at Heidelberg Ion Therapy center. TAE684 was administered at the dose range 0–100 nM. Clonogenic survival, proliferation and apoptosis via caspase 3/7 expression level were assessed in all three cell lines using time-lapse live microscopy. Results TAE684 inhibited the proliferation of H3122 cells in a dose-dependent manner with a half maximal inhibitory concentration (IC50) of ~ 8.2 nM. However, A549 and LLC cells were relatively resistant to TAE684 and IC50 was not reached at concentrations tested (up to 100 nM) in proliferation assay. The antiproliferative effect of TAE684 was augmented by radiotherapy in H3122 cells. TAE684 significantly sensitized H3122 cells to particle therapy with carbon ions (sensitizer enhancement ratio ~1.61, p < 0.05). Caspase 3/7 activity was evidently enhanced after combination therapy in H3122 cells. Conclusions This is the first report demonstrating synergistic effects of combined TAE684 and radiotherapy in EML4-ALK positive lung cancer cells. In addition to conventional photon radiotherapy, ALK-inhibition also enhanced the effects of particle irradiation using carbon ions. Our data indicate beneficial effects of combined ALK-inhibition and radiotherapy in treatment of this distinct subpopulation of NSCLC that warrant further evaluation.
Collapse
Affiliation(s)
- Ying Dai
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Divisions of Molecular & Translational Radiation Oncology and Thoracic Radiation Oncology, Heidelberg Ion Therapy Center (HIT), Heidelberg Institute of Radiation Oncology (HIRO), University of Heidelberg Medical School and National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 450, 69120, Heidelberg, Germany.,Department of Oncology, the 1st Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Quanxiang Wei
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Divisions of Molecular & Translational Radiation Oncology and Thoracic Radiation Oncology, Heidelberg Ion Therapy Center (HIT), Heidelberg Institute of Radiation Oncology (HIRO), University of Heidelberg Medical School and National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 450, 69120, Heidelberg, Germany
| | - Christian Schwager
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Divisions of Molecular & Translational Radiation Oncology and Thoracic Radiation Oncology, Heidelberg Ion Therapy Center (HIT), Heidelberg Institute of Radiation Oncology (HIRO), University of Heidelberg Medical School and National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 450, 69120, Heidelberg, Germany
| | - Janina Hanne
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Divisions of Molecular & Translational Radiation Oncology and Thoracic Radiation Oncology, Heidelberg Ion Therapy Center (HIT), Heidelberg Institute of Radiation Oncology (HIRO), University of Heidelberg Medical School and National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 450, 69120, Heidelberg, Germany
| | - Cheng Zhou
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Divisions of Molecular & Translational Radiation Oncology and Thoracic Radiation Oncology, Heidelberg Ion Therapy Center (HIT), Heidelberg Institute of Radiation Oncology (HIRO), University of Heidelberg Medical School and National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 450, 69120, Heidelberg, Germany
| | - Klaus Herfarth
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Divisions of Molecular & Translational Radiation Oncology and Thoracic Radiation Oncology, Heidelberg Ion Therapy Center (HIT), Heidelberg Institute of Radiation Oncology (HIRO), University of Heidelberg Medical School and National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 450, 69120, Heidelberg, Germany
| | - Stefan Rieken
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Divisions of Molecular & Translational Radiation Oncology and Thoracic Radiation Oncology, Heidelberg Ion Therapy Center (HIT), Heidelberg Institute of Radiation Oncology (HIRO), University of Heidelberg Medical School and National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 450, 69120, Heidelberg, Germany
| | | | - Jürgen Debus
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Divisions of Molecular & Translational Radiation Oncology and Thoracic Radiation Oncology, Heidelberg Ion Therapy Center (HIT), Heidelberg Institute of Radiation Oncology (HIRO), University of Heidelberg Medical School and National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 450, 69120, Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK), Heidelberg, Germany. .,Divisions of Molecular & Translational Radiation Oncology and Thoracic Radiation Oncology, Heidelberg Ion Therapy Center (HIT), Heidelberg Institute of Radiation Oncology (HIRO), University of Heidelberg Medical School and National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 450, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Kim K, Chae J, Lee S. The Role of Heart Rate Variability in Advanced Non-Small-Cell Lung Cancer Patients. J Palliat Care 2017. [DOI: 10.1177/082585971503100206] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aim Several recent studies have suggested that assessing heart rate variability (HRV) is an easy method for obtaining prognostic information on cancer patients; however, these studies had limitations such as uncontrolled confounders and small numbers in a heterogeneous group. The intention of our study was to explore and validate the role of HRV variables in patients with advanced non-small-cell lung cancer (NSCLC). Method A total of 167 patients who were eligible for HRV testing were consecutively enrolled from a regional hospital in South Korea. Demographic and clinical variables, including the Eastern Cooperative Oncology Group (ECOG) performance status grade, NSCLC stage, therapeutic intervention, and other data were also recorded. The effects of time-domain and frequency-domain indices of HRV were compared with other clinical factors to determine overall survival. Results Among the HRV parameters, standard deviation of all normal-to-normal intervals (SDNN) significantly predicted poor survival by univariate analysis. However, multivariate analysis revealed that it was not an independent prognosticator for survival in NSCLC patients, as the HRV parameters significantly correlated with the ECOG performance status grade. Conclusion HRV variables should be used to monitor advanced NSCLC patients’ general well-being and ability to perform the activities of daily living rather than to predict their overall survival.
Collapse
Affiliation(s)
- Kyungsuk Kim
- Department of Medical Consilience, Graduate School, Dankook University, Yongin, Republic of Korea
| | - Jean Chae
- Department of Clinical Oncology, Integrative Cancer Center, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, Republic of Korea
| | - Sanghun Lee
- Department of Medical Consilience, Graduate School, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, #448-701 Republic of Korea
| |
Collapse
|
5
|
Li J, Zhang W, Guo N, Yu J, Zhao Y, Li S. Expression of Molecular Markers in Primary Sites and Metastatic Lymph Nodes of Lung Cancer Patients. Med Sci Monit 2017; 23:513-520. [PMID: 28130961 PMCID: PMC5292990 DOI: 10.12659/msm.898688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Recently, there is an increasing interest in developing specific treatments while managing lung cancer cases. We tested the expressions of six molecular markers in the primary tumor and the metastatic lymph nodes of lung cancer patients at a single institution in China. Material/Methods A total of 48 patients with lung cancer who were admitted to the Department of Cardiothoracic Surgery, the First Affiliated Hospital of General Hospital of the Chinese People’s Liberation Army, from September 2010 to February 2011 were retrospectively reviewed. Results One of the six biomarkers’ expressions, excision repair cross-complementation group 1 (ERCC-1), was found to be significantly different in primary tumors and metastatic sites in different cancer subtypes. Conclusions The onset and pathogenesis of small-cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC) are not completely understood, and the predictions of prognosis are not very reliable. The use of molecular markers to guide treatment of these cancers is currently in its initial stages.
Collapse
Affiliation(s)
- Jie Li
- Department of Thoracic Surgery, The General Hospital of Chinese People's Liberation Army, Beijing, China (mainland)
| | - Wen Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of General Hospital of the Chinese People's Liberation Army, Beijing, China (mainland)
| | - Nannan Guo
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of General Hospital of the Chinese People's Liberation Army, Beijing, China (mainland)
| | - Jiangqi Yu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of General Hospital of the Chinese People's Liberation Army, Beijing, China (mainland)
| | - Yingnan Zhao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of General Hospital of the Chinese People's Liberation Army, Beijing, China (mainland)
| | - Shaojun Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of General Hospital of the Chinese People's Liberation Army, Beijing, China (mainland)
| |
Collapse
|
6
|
Guo N, Zhang W, Zhang B, Li Y, Tang J, Li S, Zhao Y, Zhao Y, Xia H, Yu C. EGFR and K-RAS mutations and ERCC1, TUBB3, TYMS, RRM1 and EGFR mRNA expression in non-small cell lung cancer: Correlation with clinical response to gefitinib or chemotherapy. Mol Clin Oncol 2015; 3:1123-1128. [PMID: 26623063 DOI: 10.3892/mco.2015.611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/15/2015] [Indexed: 12/12/2022] Open
Abstract
Personalizing medicines has refined the traditional treatments for non-small-cell lung cancer (NSCLC). In the present study, efforts towards personalizing delivery of care based on the status of EGFR and K-RAS mutations, and mRNA expression levels of ERCC1, TUBB3, TYMS, RRM1 and EGFR by choosing appropriate treatments for 52 patients with NSCLC were discussed. Among these 52 NSCLC patients, there were 14 patients treated with gefitinib. Ten patients with EGFR exon 21 point mutations or exon 19 deletions had better treatment outcomes following gefitinib treatment (71.4%). There were 38 patients treated with platinum-based chemotherapy. Docetaxel-platinum based chemotherapy was chosen as the first-line treatment when the patients had low or median ERCC1/TUBB3 expression and gemcitabine-platinum based chemotherapy was chosen when the patients had low or median ERCC1/RRM1 expression. In total, 26 cases had mRNA expression levels of ERCC1/TUBB3 or ERCC1/RRM1 that could be used to predict the treatment outcomes of chemotherapy (68.4%). The present results indicated that the mutation status of EGFR, as well as the mRNA expression levels of ERCC1, TUBB3 and RRM1, could be used as predictors of the response to gefitinib or chemotherapy.
Collapse
Affiliation(s)
- Nannan Guo
- Medical School of Chinese PLA General Hospital, Beijing 100853, P.R. China ; Department of Thoracic-Cardio Surgery, First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Wen Zhang
- Department of Thoracic-Cardio Surgery, First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Baoshi Zhang
- Department of Thoracic-Cardio Surgery, First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Yingjie Li
- Department of Thoracic-Cardio Surgery, First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Jian Tang
- Department of Thoracic-Cardio Surgery, First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Shaojun Li
- Department of Thoracic-Cardio Surgery, First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Yingnan Zhao
- Department of Thoracic-Cardio Surgery, First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Yunlong Zhao
- Department of Thoracic-Cardio Surgery, First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Hui Xia
- Department of Thoracic-Cardio Surgery, First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Changhai Yu
- Department of Thoracic-Cardio Surgery, First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
7
|
Revannasiddaiah S, Thakur P, Bhardwaj B, Susheela SP, Madabhavi I. Pulmonary adenocarcinoma: implications of the recent advances in molecular biology, treatment and the IASLC/ATS/ERS classification. J Thorac Dis 2014; 6:S502-25. [PMID: 25349702 DOI: 10.3978/j.issn.2072-1439.2014.05.19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 05/16/2014] [Indexed: 12/13/2022]
Abstract
A decade ago, lung cancer could conveniently be classified into two broad categories-either the small cell lung carcinoma (SCLC), or the non-small cell lung carcinoma (NSCLC), mainly to assist in further treatment related decision making. However, the understanding regarding the eligibility of adenocarcinoma histology for treatments with agents such as pemetrexed and bevacizumab made it a necessity for NSCLC to be classified into more specific sub-groups. Then, the availability of molecular targeted therapy with oral tyrosine kinase inhibitors (TKIs) such as gefitinib and erlotinib not only further emphasized the need for accurate sub-classification of lung cancer, but also heralded the important role of molecular profiling of lung adenocarcinomas. Given the remarkable advances in molecular biology, oncology and radiology, a need for felt for a revised classification for lung adenocarcinoma, since the existing World Health Organization (WHO) classification of lung cancer, published in the year 2004 was mainly a pathological system of classification. Thus, there was a combined effort by the International Association for the Study of Lung Cancer (IASLC), the American Thoracic Society (ATS) and the European Respiratory Society (ERS) with an effort to inculcate newly established perspectives from clinical, molecular and radiological aspects in evolving a modern classification for lung adenocarcinomas. This review provides a summary of the recent advances in molecular biology and molecular targeted therapy with respect to lung adenocarcinoma. Also, a brief summation of the salient recommendations provided in the IASLC/ATS/ERS classification of lung adenocarcinomas is provided. Lastly, a discussion regarding the future prospects with lung adenocarcinoma is included.
Collapse
Affiliation(s)
- Swaroop Revannasiddaiah
- 1 Department of Radiation Oncology, Swami Rama Cancer, Hospital & Research Institute, Government Medical College-Haldwani, Nainital, Uttarakhand, India ; 2 Department of Radiotherapy, Regional Cancer Centre, Shimla, India, 3 Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, India ; 4 Department of Radiation Oncology, HealthCare Global-Bangalore Institute of Oncology, Bengaluru, Karnataka, India ; 5 Department of Medical, Oncology, Gujarat Cancer Research Institute, Ahmedabad, Gujarat, India
| | - Priyanka Thakur
- 1 Department of Radiation Oncology, Swami Rama Cancer, Hospital & Research Institute, Government Medical College-Haldwani, Nainital, Uttarakhand, India ; 2 Department of Radiotherapy, Regional Cancer Centre, Shimla, India, 3 Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, India ; 4 Department of Radiation Oncology, HealthCare Global-Bangalore Institute of Oncology, Bengaluru, Karnataka, India ; 5 Department of Medical, Oncology, Gujarat Cancer Research Institute, Ahmedabad, Gujarat, India
| | - Bhaskar Bhardwaj
- 1 Department of Radiation Oncology, Swami Rama Cancer, Hospital & Research Institute, Government Medical College-Haldwani, Nainital, Uttarakhand, India ; 2 Department of Radiotherapy, Regional Cancer Centre, Shimla, India, 3 Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, India ; 4 Department of Radiation Oncology, HealthCare Global-Bangalore Institute of Oncology, Bengaluru, Karnataka, India ; 5 Department of Medical, Oncology, Gujarat Cancer Research Institute, Ahmedabad, Gujarat, India
| | - Sridhar Papaiah Susheela
- 1 Department of Radiation Oncology, Swami Rama Cancer, Hospital & Research Institute, Government Medical College-Haldwani, Nainital, Uttarakhand, India ; 2 Department of Radiotherapy, Regional Cancer Centre, Shimla, India, 3 Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, India ; 4 Department of Radiation Oncology, HealthCare Global-Bangalore Institute of Oncology, Bengaluru, Karnataka, India ; 5 Department of Medical, Oncology, Gujarat Cancer Research Institute, Ahmedabad, Gujarat, India
| | - Irappa Madabhavi
- 1 Department of Radiation Oncology, Swami Rama Cancer, Hospital & Research Institute, Government Medical College-Haldwani, Nainital, Uttarakhand, India ; 2 Department of Radiotherapy, Regional Cancer Centre, Shimla, India, 3 Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, India ; 4 Department of Radiation Oncology, HealthCare Global-Bangalore Institute of Oncology, Bengaluru, Karnataka, India ; 5 Department of Medical, Oncology, Gujarat Cancer Research Institute, Ahmedabad, Gujarat, India
| |
Collapse
|
8
|
Crizotinib: a review of its use in the treatment of anaplastic lymphoma kinase-positive, advanced non-small cell lung cancer. Drugs 2014; 73:2031-51. [PMID: 24288180 DOI: 10.1007/s40265-013-0142-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Crizotinib (Xalkori(®)) is an orally active, small molecule inhibitor of multiple receptor tyrosine kinases, including anaplastic lymphoma kinase (ALK), c-Met/hepatocyte growth factor receptor and c-ros oncogene 1. In the EU, crizotinib has been conditionally approved for the treatment of adults with previously treated, ALK-positive, advanced non-small cell lung cancer (NSCLC). This approval has been based on objective response rate and tolerability data from two ongoing phase I/II studies (PROFILE 1001 and PROFILE 1005); these results have been substantiated and extended by findings from an ongoing phase III study (PROFILE 1007) in patients with ALK-positive, advanced NSCLC who had received one prior platinum-based regimen. Those treated with crizotinib experienced significant improvements in progression-free survival, objective response rate, lung cancer symptoms and global quality of life, as compared with those treated with standard second-line chemotherapy (pemetrexed or docetaxel). The relative survival benefit with crizotinib is unclear, however, as the data are still immature and likely to be confounded by the high cross-over rate among chemotherapy recipients. Crizotinib treatment was generally well tolerated in the three PROFILE studies, with liver transaminase elevations and neutropenia being the most common grade 3 or 4 adverse events. Crizotinib is the standard of care in terms of the treatment of patients with ALK-positive, advanced NSCLC; while the current EU approval is for second (or subsequent)-line use only, the first-line use of the drug is being evaluated in ongoing phase III studies. Key issues relating to the use of crizotinib in clinical practice include identifying the small subset of eligible patients, the almost inevitable development of resistance and the high cost of treatment.
Collapse
|
9
|
Mutations of EGFR or KRAS and expression of chemotherapy-related genes based on small biopsy samples in stage IIIB and IV inoperable non-small cell lung cancer. J Cancer Res Clin Oncol 2014; 140:2097-105. [PMID: 24994038 DOI: 10.1007/s00432-014-1751-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/19/2014] [Indexed: 01/19/2023]
Abstract
PURPOSES Epidermal growth factor receptor (EGFR) and KRAS mutations may predict the outcome of targeted drug therapy and also may be associated with the efficacy of chemotherapy in patients with non-small cell lung cancer (NSCLC). This report investigated the relation of EGFR or KRAS mutation and expression of chemotherapy-related genes, including excision repair cross-complementing 1 (ERCC1), thymidylate synthetase (TYMS), ribonucleotide reductase subunit M1 (RRM1) and class III β-tubulin (TUBB3), as a potential explanation for these observations. METHODS A total of 143 patients with stage IIIB and IV NSCLC from bronchoscopy or percutaneous lung biopsy obtained tumor samples were analyzed concurrently for EGFR or KRAS mutations, and mRNA expression of ERCC1, TYMS, RRM1 and TUBB3. EGFR or KRAS mutations were detected with xTAG liquidchip technology (xTAG-LCT), and mRNA expression levels of four genes were detected by branched DNA-liquidchip technology (bDNA-LCT). RESULTS Of 143 patients, 63 tumors were positive for EGFR-activating mutations, and 16 tumors were positive for KRAS mutations. EGFR-activating mutations are more frequent in females, adenocarcinoma and non-smokers patients, and KRAS mutations are more frequent in smoking patients. ERCC1 mRNA levels were significantly associated with histological type and tumor differentiation, whereas TYMS levels were significantly associated with age. NSCLC specimens that harboring EGFR-activating mutations are more likely to express low ERCC1 and high TUBB3 mRNA levels, whereas tumors from patients with NSCLC harboring KRAS mutation are more likely to express high ERCC1 mRNA levels. CONCLUSIONS Mutations and expression of chemotherapy-related genes may provide a basis for the selection of suitable molecular markers for individual treatment in a population with stage IIIB and IV NSCLC.
Collapse
|
10
|
Modjtahedi H, Cho BC, Michel MC, Solca F. A comprehensive review of the preclinical efficacy profile of the ErbB family blocker afatinib in cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2014; 387:505-21. [PMID: 24643470 PMCID: PMC4019832 DOI: 10.1007/s00210-014-0967-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/19/2014] [Indexed: 01/07/2023]
Abstract
Afatinib (also known as BIBW 2992) has recently been approved in several countries for the treatment of a distinct type of epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer. This manuscript comprehensively reviews the preclinical data on afatinib, an irreversible inhibitor of the tyrosine kinase activity of members of the epidermal growth factor receptor family (ErbB) including EGFR, HER2 and ErbB4. Afatinib covalently binds to cysteine 797 of the EGFR and the corresponding cysteines 805 and 803 in HER2 and ErbB4, respectively. Such covalent binding irreversibly inhibits the tyrosine kinase activity of these receptors, resulting in reduced auto- and transphosphorylation within the ErbB dimers and inhibition of important steps in the signal transduction of all ErbB receptor family members. Afatinib inhibits cellular growth and induces apoptosis in a wide range of cells representative for non-small cell lung cancer, breast cancer, pancreatic cancer, colorectal cancer, head and neck squamous cell cancer and several other cancer types exhibiting abnormalities of the ErbB network. This translates into tumour shrinkage in a variety of in vivo rodent models of such cancers. Afatinib retains inhibitory effects on signal transduction and in vitro and in vivo cancer cell growth in tumours resistant to reversible EGFR inhibitors, such as those exhibiting the T790M mutations. Several combination treatments have been explored to prevent and/or overcome development of resistance to afatinib, the most promising being those with EGFR- or HER2-targeted antibodies, other tyrosine kinase inhibitors or inhibitors of downstream signalling molecules.
Collapse
Affiliation(s)
- Helmout Modjtahedi
- School of Life Science, Faculty of Science, Engineering and Computing, Kingston University London, Kingston upon Thames, UK
| | - Byoung Chul Cho
- Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Martin C. Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
- Department of Regional Medicine and Scientific Affairs, Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | - Flavio Solca
- Department of Pharmacology, Boehringer Ingelheim RCV GmbH & Co. KG, Doktor-Böhringer Gasse 5-11, 1120 Vienna, Austria
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW In this review, we explore current questions regarding risk factors contributing to frequent and early onset of lung cancer among populations with HIV infection, treatment, and outcomes of lung cancer in HIV-infected patients as well as challenges in a newly evolving era of lung cancer screening. RECENT FINDINGS Lung cancer, seen in three-fold excess in HIV-infected populations, has become the most common non-AIDS defining malignancy in the highly active antiretroviral therapy era. HIV-associated lung cancer appears to be associated with young age at diagnosis, cigarette smoking, advanced stage at presentation, and a more aggressive clinical course. There is no unified explanation for these observations, and aside from traditional risk factors, HIV-related immunosuppression and biological differences might play a role. In addition to smoking cessation interventions, screening and early cancer detection in HIV-infected populations are of high clinical importance, although evidence supporting lung cancer screening in this particularly high-risk subset is currently lacking, as are prospective studies of lung cancer therapy. SUMMARY There is an urgent need for prospective clinical trials in HIV-associated lung cancer to improve understanding of lung cancer pathogenesis and to optimize patient care. Several clinical trials are in progress to address questions in cancer biology, screening, and treatment for this significant cause of mortality in persons with HIV infection.
Collapse
|
12
|
Wrangle J, Machida EO, Danilova L, Hulbert A, Franco N, Zhang W, Glöckner SC, Tessema M, Van Neste L, Easwaran H, Schuebel KE, Licchesi J, Hooker CM, Ahuja N, Amano J, Belinsky SA, Baylin SB, Herman JG, Brock MV. Functional identification of cancer-specific methylation of CDO1, HOXA9, and TAC1 for the diagnosis of lung cancer. Clin Cancer Res 2014; 20:1856-64. [PMID: 24486589 DOI: 10.1158/1078-0432.ccr-13-2109] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Non-small cell lung cancer (NSCLC) is the leading cause of cancer mortality in the world. Novel diagnostic biomarkers may augment both existing NSCLC screening methods as well as molecular diagnostic tests of surgical specimens to more accurately stratify and stage candidates for adjuvant chemotherapy. Hypermethylation of CpG islands is a common and important alteration in the transition from normal tissue to cancer. EXPERIMENTAL DESIGN Following previously validated methods for the discovery of cancer-specific hypermethylation changes, we treated eight NSCLC cell lines with the hypomethylating agent deoxyazacitidine or trichostatin A. We validated the findings using a large publicly available database and two independent cohorts of primary samples. RESULTS We identified >300 candidate genes. Using The Cancer Genome Atlas (TCGA) and extensive filtering to refine our candidate genes for the greatest ability to distinguish tumor from normal, we define a three-gene panel, CDO1, HOXA9, and TAC1, which we subsequently validate in two independent cohorts of primary NSCLC samples. This three-gene panel is 100% specific, showing no methylation in 75 TCGA normal and seven primary normal samples and is 83% to 99% sensitive for NSCLC depending on the cohort. CONCLUSION This degree of sensitivity and specificity may be of high value to diagnose the earliest stages of NSCLC. Addition of this three-gene panel to other previously validated methylation biomarkers holds great promise in both early diagnosis and molecular staging of NSCLC.
Collapse
Affiliation(s)
- John Wrangle
- Authors' Affiliations: The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland; Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; MDxHealth Inc, Irvine, California; Shinshu University School of Medicine, Asahi, Matsumoto, Nagano, Japan; and Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Domvri K, Zarogoulidis P, Darwiche K, Browning RF, Li Q, Turner JF, Kioumis I, Spyratos D, Porpodis K, Papaiwannou A, Tsiouda T, Freitag L, Zarogoulidis K. Molecular Targeted Drugs and Biomarkers in NSCLC, the Evolving Role of Individualized Therapy. J Cancer 2013; 4:736-54. [PMID: 24312144 PMCID: PMC3842443 DOI: 10.7150/jca.7734] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/12/2013] [Indexed: 01/08/2023] Open
Abstract
Lung cancer first line treatment has been directed from the non-specific cytotoxic doublet chemotherapy to the molecular targeted. The major limitation of the targeted therapies still remains the small number of patients positive to gene mutations. Furthermore, the differentiation between second line and maintenance therapy has not been fully clarified and differs in the clinical practice between cancer centers. The authors present a segregation between maintenance treatment and second line and present a possible definition for the term “maintenance” treatment. In addition, cancer cell evolution induces mutations and therefore either targeted therapies or non-specific chemotherapy drugs in many patients become ineffective. In the present work pathways such as epidermal growth factor, anaplastic lymphoma kinase, met proto-oncogene and PI3K are extensively presented and correlated with current chemotherapy treatment. Future, perspectives for targeted treatment are presented based on the current publications and ongoing clinical trials.
Collapse
Affiliation(s)
- Kalliopi Domvri
- 1. Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
The correlation between cell-free DNA and tumour burden was estimated by PET/CT in patients with advanced NSCLC. Br J Cancer 2013; 110:363-8. [PMID: 24231948 PMCID: PMC3899755 DOI: 10.1038/bjc.2013.705] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/11/2013] [Indexed: 02/08/2023] Open
Abstract
Background: Cell-free DNA (cfDNA) circulating in the blood holds a possible prognostic value in malignant diseases. Under malignant conditions, the level of cfDNA increases but the biological mechanism remains to be fully understood. We aimed to examine the correlation between cfDNA and total tumour burden defined by positron emission tomography (PET) parameters. Methods: Patients with advanced non-small cell lung cancer (NSCLC) were enrolled into a prospective biomarker trial. Before treatment, plasma was extracted and the level of cfDNA was determined by qPCR. An 18F-fluorodeoxyglucose (18F-FDG) PET/computed tomography (CT) scan was performed and evaluated in terms of metabolic tumour volume (MTV) and total lesion glycolysis (TLG). Tumour contours were delineated semi-automatically by a threshold standardised uptake value (SUV) of 2.5. The primary end point was correlation among cfDNA, MTV and TLG. The secondary end point was overall survival (OS) according to cfDNA, MTV and TLG. Results: Fifty-three patients were included. There were no correlations between cfDNA and MTV (r=0.1) or TLG (r=0.1). cfDNA >75th percentile was correlated with shorter OS (P=0.02), confirmed in a multivariate analysis. MTV>the median was associated with a significantly shorter OS (P=0.02). There was no significant difference in OS according to TLG (P=0.08). Conclusion: Cell-free DNA may not be a simple measure of tumour burden, but seems to reflect more complex mechanisms of tumour biology, making it attractive as an independent prognostic marker.
Collapse
|
15
|
Wrangle J, Wang W, Koch A, Easwaran H, Mohammad HP, Vendetti F, VanCriekinge W, DeMeyer T, Du Z, Parsana P, Rodgers K, Yen RW, Zahnow CA, Taube JM, Brahmer JR, Tykodi SS, Easton K, Carvajal RD, Jones PA, Laird PW, Weisenberger DJ, Tsai S, Juergens RA, Topalian SL, Rudin CM, Brock MV, Pardoll D, Baylin SB. Alterations of immune response of Non-Small Cell Lung Cancer with Azacytidine. Oncotarget 2013; 4:2067-79. [PMID: 24162015 PMCID: PMC3875770 DOI: 10.18632/oncotarget.1542] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 10/25/2013] [Indexed: 12/14/2022] Open
Abstract
Innovative therapies are needed for advanced Non-Small Cell Lung Cancer (NSCLC). We have undertaken a genomics based, hypothesis driving, approach to query an emerging potential that epigenetic therapy may sensitize to immune checkpoint therapy targeting PD-L1/PD-1 interaction. NSCLC cell lines were treated with the DNA hypomethylating agent azacytidine (AZA - Vidaza) and genes and pathways altered were mapped by genome-wide expression and DNA methylation analyses. AZA-induced pathways were analyzed in The Cancer Genome Atlas (TCGA) project by mapping the derived gene signatures in hundreds of lung adeno (LUAD) and squamous cell carcinoma (LUSC) samples. AZA up-regulates genes and pathways related to both innate and adaptive immunity and genes related to immune evasion in a several NSCLC lines. DNA hypermethylation and low expression of IRF7, an interferon transcription factor, tracks with this signature particularly in LUSC. In concert with these events, AZA up-regulates PD-L1 transcripts and protein, a key ligand-mediator of immune tolerance. Analysis of TCGA samples demonstrates that a significant proportion of primary NSCLC have low expression of AZA-induced immune genes, including PD-L1. We hypothesize that epigenetic therapy combined with blockade of immune checkpoints - in particular the PD-1/PD-L1 pathway - may augment response of NSCLC by shifting the balance between immune activation and immune inhibition, particularly in a subset of NSCLC with low expression of these pathways. Our studies define a biomarker strategy for response in a recently initiated trial to examine the potential of epigenetic therapy to sensitize patients with NSCLC to PD-1 immune checkpoint blockade.
Collapse
Affiliation(s)
- John Wrangle
- The Johns Hopkins University, School of Medicine, Oncology Center-Hematology/Medical Oncology, Baltimore, Maryland
| | - Wei Wang
- The Johns Hopkins University, School of Medicine, Human Genetics Graduate Program, Baltimore, Maryland
| | - Alexander Koch
- Departments of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Hariharan Easwaran
- The Johns Hopkins University, School of Medicine, Oncology, Baltimore, Maryland
| | - Helai P. Mohammad
- GlaxoSmithKline Pharmaceuticals, Cancer Epigenetics and Oncology, Collegeville, Pennsylvania
| | - Frank Vendetti
- The Johns Hopkins University, School of Medicine, Oncology, Baltimore, Maryland
| | - Wim VanCriekinge
- Departments of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Tim DeMeyer
- Departments of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Zhengzong Du
- The Johns Hopkins University, School of Medicine, Oncology, Baltimore, Maryland
| | - Princy Parsana
- The Johns Hopkins University, Advanced Academic Bioinformatics, Baltimore, Maryland
| | - Kristen Rodgers
- The Johns Hopkins University, School of Medicine, Oncology, Baltimore, Maryland
| | - Ray-Whay Yen
- The Johns Hopkins University, School of Medicine, Oncology, Baltimore, Maryland
| | - Cynthia A. Zahnow
- The Johns Hopkins University, School of Medicine, Oncology, Baltimore, Maryland
| | - Janis M. Taube
- The Johns Hopkins University, School of Medicine, Dermatology and Oral Pathology, Baltimore, Maryland
| | - Julie R. Brahmer
- The Johns Hopkins University, School of Medicine, Oncology, Baltimore, Maryland
| | - Scott S. Tykodi
- University of Washington and Fred Hutchison Cancer Research Center, Seattle Cancer Care Alliance, Seattle, Washington
| | - Keith Easton
- University of Washington and Fred Hutchison Cancer Research Center, Seattle Cancer Care Alliance, Seattle, Washington
| | | | - Peter A. Jones
- USC Epigenome Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Peter W. Laird
- USC Epigenome Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Daniel J. Weisenberger
- USC Epigenome Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Salina Tsai
- The Johns Hopkins University, School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland
| | - Rosalyn A. Juergens
- The Johns Hopkins University, School of Medicine, Oncology, Baltimore, Maryland
| | - Suzanne L. Topalian
- The Johns Hopkins University, School of Medicine, Surgery, Baltimore, Maryland
| | - Charles M. Rudin
- The Johns Hopkins University, School of Medicine, Oncology, Baltimore, Maryland
| | - Malcolm V. Brock
- The Johns Hopkins University, School of Medicine, Oncology, Baltimore, Maryland
| | - Drew Pardoll
- The Johns Hopkins University, School of Medicine, Oncology, Baltimore, Maryland
| | - Stephen B. Baylin
- The Johns Hopkins University, School of Medicine, Oncology, Baltimore, Maryland
| |
Collapse
|
16
|
Luo SY, Lam DC. Oncogenic driver mutations in lung cancer. TRANSLATIONAL RESPIRATORY MEDICINE 2013; 1:6. [PMID: 27234388 PMCID: PMC6733434 DOI: 10.1186/2213-0802-1-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/19/2013] [Indexed: 12/12/2022]
Abstract
Lung cancer is a heterogeneous and complex disease. Genomic and transcriptomic profiling of lung cancer not only further our knowledge about cancer initiation and progression, but could also provide guidance on treatment decisions. The fact that targeted treatment is most successful in a subset of tumors indicates the need for better classification of clinically related molecular tumor phenotypes based on better understanding of the mutations in relevant genes, especially in those oncogenic driver mutations. EGFR gene mutations, KRAS gene mutations, EML4-ALK rearrangements and altered MET signaling are widely recognized alterations that play important roles in both the biological mechanisms and the clinical sensitivity to treatment in lung cancer. In this article, we reviewed the discovery of the clinical values of these oncogenic driver mutations and the clinical studies revealing the prognostic and predictive values of these biomarkers for clinical sensitivity and resistance to anti-EGFR therapy or other targeted therapies. These form the basis of personalized treatment in lung cancer based on biomarker profiles of individual tumor, leading to therapeutic advancement and betterment.
Collapse
Affiliation(s)
- Susan Y Luo
- Department of Medicine, University of Hong Kong, 102 Pokfulam Road, Hong Kong, SAR, China
| | - David Cl Lam
- Department of Medicine, University of Hong Kong, 102 Pokfulam Road, Hong Kong, SAR, China.
| |
Collapse
|