1
|
Lin CH, Ho CJ, Chen SY, Lu YT, Tsai MH. Review of pharmacogenetics of antiseizure medications: focusing on genetic variants of mechanistic targets. Front Pharmacol 2024; 15:1411487. [PMID: 39228521 PMCID: PMC11368862 DOI: 10.3389/fphar.2024.1411487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024] Open
Abstract
Antiseizure medications (ASMs) play a central role in seizure management, however, unpredictability in the response to treatment persists, even among patients with similar seizure manifestations and clinical backgrounds. An objective biomarker capable of reliably predicting the response to ASMs would profoundly impact epilepsy treatment. Presently, clinicians rely on a trial-and-error approach when selecting ASMs, a time-consuming process that can result in delays in receiving alternative non-pharmacological therapies such as a ketogenetic diet, epilepsy surgery, and neuromodulation therapies. Pharmacogenetic studies investigating the correlation between ASMs and genetic variants regarding their mechanistic targets offer promise in predicting the response to treatment. Sodium channel subunit genes have been extensively studied along with other ion channels and receptors as targets, however, the results have been conflicting, possibly due to methodological disparities including inconsistent definitions of drug response, variations in ASM combinations, and diversity of genetic variants/genes studied. Nonetheless, these studies underscore the potential effect of genetic variants on the mechanism of ASMs and consequently the prediction of treatment response. Recent advances in sequencing technology have led to the generation of large genetic datasets, which may be able to enhance the predictive accuracy of the response to ASMs.
Collapse
Affiliation(s)
- Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Ying Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yan-Ting Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Zhang T, Yang Y, Sima X. No association of GABRA1 rs2279020 and GABRA6 rs3219151 polymorphisms with risk of epilepsy and antiepileptic drug responsiveness in Asian and Arabic populations: Evidence from a meta-analysis with trial sequential analysis. Front Neurol 2022; 13:996631. [PMID: 36188399 PMCID: PMC9518753 DOI: 10.3389/fneur.2022.996631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The γ-aminobutyric acid type A receptors (GABAAR) have been reported to contribute to the pathogenesis of epilepsy and the recurrence of chronic seizures. Genetic polymorphisms in GABRA1 and GABRA6 may confer a high risk of epilepsy and multiple drug resistance, but with conflicting results. We aimed to assess the association of GABRA1 rs2279020 and GABRA6 rs3219151 with epilepsy risk using a meta-analysis. The databases of Pubmed, Ovid, Web of Science, and China National Knowledge Infrastructure were searched. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were computed to evaluate the association between the polymorphisms and epilepsy risk using a fixed- or random-effect model. Trial sequential analysis (TSA) was performed to assess the results of the meta-analysis. No significant association between the GABRA1 rs2279020 and GABRA6 rs3219151 and the risk of epilepsy was found in the Asian and Arabic populations. The negative results were also observed when comparing the GABRA1 rs2279020 and GABRA6 rs3219151 polymorphism to antiepileptic drug responsiveness. The trial sequential analysis confirmed the results of the meta-analysis. This meta-analysis suggests that GABRA1 rs2279020 and GABRA6 rs3219151 are not risk factors for the etiology of epilepsy and antiepileptic drug responsiveness in the Asian and Arabic populations.
Collapse
Affiliation(s)
- Tiejun Zhang
- Department of Neurosurgery, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, China
| | - Yi Yang
- Chengdu Seventh People's Hospital, Chengdu, China
| | - Xiutian Sima
- Department of Neurosurgery, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xiutian Sima
| |
Collapse
|
3
|
Amjad M, Tabassum A, Sher K, Kumar S, Zehra S, Fatima S. Impact of GABAA receptor gene variants (rs2279020 and rs211037) on the risk of predisposition to epilepsy: a case–control study. Neurol Sci 2022; 43:4431-4438. [DOI: 10.1007/s10072-022-05947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
|
4
|
Belyaeva II, Subbotina AG, Eremenko II, Tarasov VV, Chubarev VN, Schiöth HB, Mwinyi J. Pharmacogenetics in Primary Headache Disorders. Front Pharmacol 2022; 12:820214. [PMID: 35222013 PMCID: PMC8866828 DOI: 10.3389/fphar.2021.820214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/23/2021] [Indexed: 11/09/2022] Open
Abstract
Primary headache disorders, such as migraine, tension-type headache (TTH), and cluster headache, belong to the most common neurological disorders affecting a high percentage of people worldwide. Headache induces a high burden for the affected individuals on the personal level, with a strong impact on life quality, daily life management, and causes immense costs for the healthcare systems. Although a relatively broad spectrum of different pharmacological classes for the treatment of headache disorders are available, treatment effectiveness is often limited by high variances in therapy responses. Genetic variants can influence the individual treatment success by influencing pharmacokinetics or pharmacodynamics of the therapeutic as investigated in the research field of pharmacogenetics. This review summarizes the current knowledge on important primary headache disorders, including migraine, TTH, and cluster headache. We also summarize current acute and preventive treatment options for the three headache disorders based on drug classes and compounds taking important therapy guidelines into consideration. Importantly, the work summarizes and discusses the role of genetic polymorphisms regarding their impact on metabolism safety and the effect of therapeutics that are used to treat migraine, cluster headache, and TTH exploring drug classes such as nonsteroidal anti-inflammatory drugs, triptans, antidepressants, anticonvulsants, calcium channel blockers, drugs with effect on the renin-angiotensin system, and novel headache therapeutics such as ditans, anti-calcitonin-gene-related peptide antibodies, and gepants. Genetic variants in important phase I-, II-, and III-associated genes such as cytochrome P450 genes, UGT genes, and different transporter genes are scrutinized as well as variants in genes important for pharmacodynamics and several functions outside the pharmacokinetic and pharmacodynamic spectrum. Finally, the article evaluates the potential and limitations of pharmacogenetic approaches for individual therapy adjustments in headache disorders.
Collapse
Affiliation(s)
- Irina I. Belyaeva
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anna G. Subbotina
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ivan I. Eremenko
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V. Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir N. Chubarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jessica Mwinyi
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden,*Correspondence: Jessica Mwinyi,
| |
Collapse
|