1
|
AL-Eitan L. PTPRD gene variant rs10739150: A potential game-changer in hypertension diagnosis. PLoS One 2024; 19:e0304950. [PMID: 38935682 PMCID: PMC11210811 DOI: 10.1371/journal.pone.0304950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND High blood pressure, also known as hypertension (HTN), is a complicated disorder that is controlled by a complex network of physiological processes. Untreated hypertension is associated with increased death incidence, rise the need for understanding the genetic basis affecting hypertension susceptibility and development. The current study sought to identify the genetic association between twelve single nucleotide polymorphisms (SNPs) within seven candidate genes (NOS3, NOS1AP, REN, PLA2G4A, TCF7L, ADRB1, and PTPRD). METHODS The current study included 200 Jordanian individuals diagnosed with hypertension, compared to 224 healthy controls. Whole blood samples were drawn from each individual for DNA isolation and genotyping. The SNPStats tool was used to assess haplotype, genotype, and allele frequencies by the mean of chi-square (χ2). RESULTS Except for rs10739150 of PTPRD (P = 0.0003), the genotypic and allelic distribution of the SNP was identical between patients and controls. The prevalence of the G/G genotype in healthy controls (45.5%) was lower than in hypertension patients (64.3%), suggesting that it might be a risk factor for the disease. PTPRD TTC genetic haplotypes were strongly linked with hypertension (P = 0.003, OR = 4.03). CONCLUSION This study provides a comprehensive understanding of the involvement of rs10739150 within the PTPRD gene in hypertension. This new knowledge could potentially transform the way we approach hypertension diagnosis, providing an accurate diagnostic tool for classifying individuals who are at a higher risk of developing this condition.
Collapse
Affiliation(s)
- Laith AL-Eitan
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| |
Collapse
|
2
|
AL-Eitan L, Al-Khaldi S, Ibdah RK. ACE gene polymorphism and susceptibility to hypertension in a Jordanian adult population. PLoS One 2024; 19:e0304271. [PMID: 38917192 PMCID: PMC11198757 DOI: 10.1371/journal.pone.0304271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/09/2024] [Indexed: 06/27/2024] Open
Abstract
Hypertension is one of the most common and complicated disorders associated with genetic and environmental risk factors. The angiotensin-converting enzyme (ACE) is important in the renin-angiotensin-system pathway. The gene expression of ACE has been investigated as a possible hypertension marker. This study investigates the association between polymorphisms within the ACE1 and ACE2 genes and hypertension susceptibility in a Jordanian population. The study comprised a total of 200 hypertensive patients and 180 healthy controls. A polymerase chain reaction (PCR) was performed to genotype the candidate polymorphism (rs4646994) of the ACE1gene. The Luminex DNA array technique was used for genotyping SNPs (rs4359, rs4344, rs4341, rs4343, and rs2106809) of the ACE1 and ACE2 genes. Our findings suggest no association between SNPs and hypertension regarding allelic and genotypic frequencies. However, rs4359 was significantly associated with diet (pP = 0.049), know HTN (P = 0.042), and number of years DM (P = 0.003). rs4341 was associated with diet (P = 0.032), peripheral vascular disease (P = 0.005), and chronic kidney disease (p = 0.049). While rs4343 was associated with diet (P = 0.031), diabetes mellitus (P = 0.032), and other medication (P = 0.025). Furthermore, the haplotypes of four SNPs of the ACE1 gene showed no significant association with HTN patients and healthy controls. Our findings indicate no association between the polymorphisms in the ACE gene and the risk of hypertension development in the Jordanian adult population.
Collapse
Affiliation(s)
- Laith AL-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Sara Al-Khaldi
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Rasheed k. Ibdah
- Internal Medicine Department, College of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
3
|
AL-Eitan LN, Almasri AY, Alnaamneh AH, Mihyar A. Effect of MEF2A and SLC22A3-LPAL2-LPA gene polymorphisms on warfarin sensitivity and responsiveness in Jordanian cardiovascular patients. PLoS One 2023; 18:e0294226. [PMID: 37948393 PMCID: PMC10637663 DOI: 10.1371/journal.pone.0294226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023] Open
Abstract
AIMS This study aims to investigate the influence of MEF2A and SLC22A3-LPAL2-LPA polymorphisms on cardiovascular disease susceptibility and responsiveness to warfarin medication in Jordanian patients, during the initiation and maintenance phases of treatment. BACKGROUNDS Several candidate genes have been reported to be involved in warfarin metabolism and studying such genes may help in finding an accurate way to determine the needed warfarin dose to lower the risk of adverse drug effects, resulting in more safe anticoagulant therapy. METHODS The study population included 212 cardiovascular patients and 213 healthy controls. Genotyping of MEF2A and SLC22A3-LPAL2-LPA polymorphisms was conducted to examine their effects on warfarin efficiency and cardiovascular disease susceptibility using PCR-based methods. RESULTS One SNP (SLC22A3-LPAL2-LPA rs10455872) has been associated with cardiovascular disease in the Jordanian population, whereas the other SNPs in the MEF2A gene and SLC22A3-LPAL2-LPA gene cluster did not have any significant differences between cardiovascular patients and healthy individuals. Moreover, SLC22A3-LPAL2-LPA rs10455872 was correlated with moderate warfarin sensitivity, the other SNPs examined in the current study have not shown any significant associations with warfarin sensitivity and responsiveness. CONCLUSION Our data refer to a lack of correlation between the MEF2A polymorphism and the efficacy of warfarin treatment in both phases of treatment, the initiation, and maintenance phases. However, only rs10455872 SNP was associated with sensitivity to warfarin during the initiation phase. Furthermore, rs3125050 has been found to be associated with the international normalized number treatment outcomes in the maintenance phase.
Collapse
Affiliation(s)
- Laith N. AL-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Ayah Y. Almasri
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Adan H. Alnaamneh
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmad Mihyar
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
4
|
Khorrami MS, Sadabadi F, Pasdar A, Safarian-Bana H, Amerizadeh F, Esmaeily H, Moohebati M, Heidari-Bakavoli A, Ferns G, Ghayour-Mobarhan M, Avan A. A Genetic Variant in Proline and Serine Rich Coiled-Coil 1 Gene Is Associated with the Risk of Cardiovascular Disease. Rep Biochem Mol Biol 2022; 10:653-663. [PMID: 35291603 PMCID: PMC8903358 DOI: 10.52547/rbmb.10.4.653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/06/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cardiovascular disease is one of the most common causes of morbidity and mortality worldwide. The Proline and Serine Rich Coiled-Coil 1 gene in 1p13.3 locus has been reported to be associated with low density lipoprotein cholesterol (LDL-C) and coronary artery disease (CAD). The objective of this study was to investigate the association between the rs599839 polymorphism of the Proline and Serine Rich Coiled-Coil 1 (PSRC1) gene with CVD outcomes in a population sample recruited as part of the Mashhad-Stroke and Heart-Atherosclerotic-Disorders (MASHAD) cohort. METHODS Five hundred and nine individuals who had an average follow-up period of 10 years were enrolled as part of the MASHAD cohort. DNA was extracted and genotyped using the TaqMan-real-time-PCR based method. RESULTS The study found individuals with GA/GG genotypes were at a higher risk of CVDs (OR= 4.7; 95% CI, 2.5-8.7; p< 0.001) in comparison to those with AA genotype; however, the result was not significant for GG genotype data. CONCLUSION The results suggest that the GA/GG genotypes of the PSRC1gene locus were at increased risk of CVD in a representative population-based cohort, demonstrating further functional analysis to discover the value of emerging marker as a risk stratification biomarker to recognize high risk cases.
Collapse
Affiliation(s)
- Mohammad Sadegh Khorrami
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Metabolic Syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Fatemeh Sadabadi
- Metabolic Syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hamide Safarian-Bana
- Metabolic Syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Forouzan Amerizadeh
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Habibollah Esmaeily
- Metabolic Syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Epidemiology and Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohsen Moohebati
- Metabolic Syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Gordon Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, UK.
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amir Avan
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Metabolic Syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Pęczek P, Leśniewski M, Mazurek T, Szarpak L, Filipiak KJ, Gąsecka A. Antiplatelet Effects of PCSK9 Inhibitors in Primary Hypercholesterolemia. Life (Basel) 2021; 11:466. [PMID: 34071103 PMCID: PMC8224623 DOI: 10.3390/life11060466] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
Proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors are a novel group of hypolipidemic drugs that are recommended particularly for high-risk hypercholesterolemia patients, including those with primary hypercholesterolemia (PH), where lifelong exposure to high low-density lipoprotein (LDL) cholesterol levels results in an elevated risk of atherosclerosis at an early age. The onset and progression of atherosclerosis is significantly influenced by activated platelets. Oxidized LDL influences platelet activation by interacting with their surface receptors and remodeling the composition of their cell membrane. This results in platelet aggregation, endothelial cell activation, promotion of inflammation and oxidative stress, and acceleration of lipid accumulation in atherosclerotic plaques. PCSK9 inhibitors reduce platelet activation by both significantly lowering LDL levels and reducing the LDL receptor-mediated activation of platelets by PCSK9. They also work synergistically with other hypolipidemic and antithrombotic drugs, including statins, ezetimibe, acetylsalicylic acid, clopidogrel, and ticagrelor, which enhances their antiplatelet and LDL-lowering effects. In this review, we summarize the currently available evidence on platelet hyperreactivity in PH, the effects of PCSK9 inhibitors on platelets, and their synergism with other drugs used in PH therapy.
Collapse
Affiliation(s)
- Piotr Pęczek
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 00-927 Warsaw, Poland; (P.P.); (M.L.); (T.M.); (K.J.F.)
| | - Mateusz Leśniewski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 00-927 Warsaw, Poland; (P.P.); (M.L.); (T.M.); (K.J.F.)
| | - Tomasz Mazurek
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 00-927 Warsaw, Poland; (P.P.); (M.L.); (T.M.); (K.J.F.)
| | - Lukasz Szarpak
- Department of Research Outcomes, Maria Sklodowska-Curie Medical Academy in Warsaw, 03-411 Warsaw, Poland;
- Maria Sklodowska-Curie Bialystok Oncology Center, Department of Research Outcomes, 15-027 Bialystok, Poland
| | - Krzysztof J. Filipiak
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 00-927 Warsaw, Poland; (P.P.); (M.L.); (T.M.); (K.J.F.)
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 00-927 Warsaw, Poland; (P.P.); (M.L.); (T.M.); (K.J.F.)
- Department of Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
6
|
Alghamdi MA, Al-Eitan L, Alkhatib R, Al-Assi A, Almasri A, Aljamal H, Aman H, Khasawneh R. Variants in CDHR3, CACNAC1, and LTA Genes Predisposing Sensitivity and Response to Warfarin in Patients with Cardiovascular Disease. Int J Gen Med 2021; 14:1093-1100. [PMID: 33790638 PMCID: PMC8006967 DOI: 10.2147/ijgm.s298597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/08/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Warfarin has been in use for more than 60 years; however, it has serious side effects including major bleeding. The high interpatient variability in the required dose impacts the sensitivity and responsiveness to warfarin in different patients. This study aims to assess the influence of CDHR3, CACNAC1, and LTA gene polymorphisms on the variability of warfarin dose requirements and susceptibility to coronary heart disease in the Jordanian population. Methods This study was conducted in the anti-coagulation clinic in Queen Alia Heart Institute in Amman, with 212 patients in total. Three SNPs were genotyped within CDHR3 (rs10270308), CACNAC1 (rs216013), and LTA (rs1041981) genes. Results Our findings revealed that patients with LTA polymorphism are more prone to warfarin sensitivity than others. Furthermore, carriers of the LTA polymorphism needed a lower initial dose of warfarin and are associated with less variation in doses required to achieve target INR. Conclusion The current study could help in understanding the role of genetic variability in warfarin dosing and matching patients to different treatment options. Clinical applications of these findings for warfarin treatment may also contribute to improving the efficacy and safety of warfarin treatment in Jordanian patients with cardiovascular disease.
Collapse
Affiliation(s)
- Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia.,Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia
| | - Laith Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Rami Alkhatib
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ahmad Al-Assi
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ayah Almasri
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Hanan Aljamal
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Hatem Aman
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Rame Khasawneh
- Department of Hematopathology, King Hussein Medical Center (KHMC), Royal Medical Services (RMS), Amman, 11118, Jordan
| |
Collapse
|
7
|
Al-Eitan LN, Almasri AY, Alnaamneh AH, Aman HA, Alrabadi NN, Khasawneh RH, Alghamdi MA. Influence of CYP4F2, ApoE, and CYP2A6 gene polymorphisms on the variability of Warfarin dosage requirements and susceptibility to cardiovascular disease in Jordan. Int J Med Sci 2021; 18:826-834. [PMID: 33437219 PMCID: PMC7797549 DOI: 10.7150/ijms.51546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/02/2020] [Indexed: 01/04/2023] Open
Abstract
Cardiovascular diseases are among the leading causes of death worldwide. Many of those diseases require treatment with warfarin, an anticoagulant that has a large high inter and intra-variability in the required doses. The aim of this study is to find if there are any associations between rs2108622 of CYP4F2, rs7412 and rs405509 of ApoE, and rs1801272 of CYP2A6, and CVD and warfarin dose variability. The selected genes and their polymorphisms are involved in many GWAS associated with cardiovascular disease and variability in warfarin treatment. The study sample consisted of 212 Jordanian Cardiovascular patients and 213 healthy controls. DNA was extracted and the Mass ARRAY™ system was used to genotype four selected SNPs within three genes (CYP4F2, ApoE, and CYP2A6). Only one out of the four selected SNPs (ApoE rs7412 SNP) was found to be associated with the risk of cardiovascular disease. Also, this SNP showed significant differences in warfarin initial doses. CYP2A6 rs1801272 SNP was found to be associated with warfarin sensitivity during the initiation phase of therapy and with warfarin responsiveness and INR measurement during the stabilization phase of therapy. This study improves the current understanding of the high inter and intra-variabilities in response to warfarin, including the variety of dosing requirements and the susceptibility to cardiovascular disease in the Jordanian Arab population. Further study on a larger sample and in different ethnic groups could help in improving our understanding of warfarin's pharmacogenetics and its application in personalized medicine.
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.,Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ayah Y Almasri
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Adan H Alnaamneh
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Hatem A Aman
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Nasr N Alrabadi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Rame H Khasawneh
- Department of Hematopathology, King Hussein Medical Center (KHMC), Royal Medical Services (RMS), Amman 11118, Jordan
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabi.,Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|