1
|
Polymeric Nanoparticles as Tunable Nanocarriers for Targeted Delivery of Drugs to Skin Tissues for Treatment of Topical Skin Diseases. Pharmaceutics 2023; 15:pharmaceutics15020657. [PMID: 36839979 PMCID: PMC9964857 DOI: 10.3390/pharmaceutics15020657] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
The topical route is the most appropriate route for the targeted delivery of drugs to skin tissues for the treatment of local skin diseases; however, the stratum corneum (SC), the foremost layer of the skin, acts as a major barrier. Numerous passive and active drug delivery techniques have been exploited to overcome this barrier; however, these modalities are associated with several detrimental effects which restrict their clinical applicability. Alternatively, nanotechnology-aided interventions have been extensively investigated for the topical administration of a wide range of therapeutics. In this review, we have mainly focused on the biopharmaceutical significance of polymeric nanoparticles (PNPs) (made from natural polymers) for the treatment of various topical skin diseases such as psoriasis, atopic dermatitis (AD), skin infection, skin cancer, acute-to-chronic wounds, and acne. The encapsulation of drug(s) into the inner core or adsorption onto the shell of PNPs has shown a marked improvement in their physicochemical properties, avoiding premature degradation and controlling the release kinetics, permeation through the SC, and retention in the skin layers. Furthermore, functionalization techniques such as PEGylation, conjugation with targeting ligand, and pH/thermo-responsiveness have shown further success in optimizing the therapeutic efficacy of PNPs for the treatment of skin diseases. Despite enormous progress in the development of PNPs, their clinical translation is still lacking, which could be a potential future perspective for researchers working in this field.
Collapse
|
2
|
Ghamrawi R, Bell KA, Balogh EA, Strowd LC, Feldman SR. Current and emerging biologics for the treatment of pediatric atopic dermatitis. Expert Opin Biol Ther 2020; 20:1435-1445. [PMID: 33078990 DOI: 10.1080/14712598.2021.1840548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Atopic dermatitis (AD) is a chronic inflammatory skin condition characterized by erythematous lesions, pruritus, and a skin barrier defect. Long-term treatment in children is challenging, as there is only one Food and Drug Administration-approved systemic medication. Current treatments may have limited efficacy or serious side effects in children. With a deeper understanding of AD pathogenesis and the advent of target-specific medications, several biologics are undergoing clinical trials for future use in pediatric AD. AREAS COVERED This article reviews the current and emerging biologic therapies for treatment of pediatric AD. It allows for comprehensive comparison of medications and their clinical trials to help providers optimize patient treatment plans while providing expert insight into upcoming advancements in the treatment of pediatric AD. EXPERT OPINION Treating pediatric AD is complicated given the variety of disease severity, psychosocial impact, and relative lack of approved medications for severe disease. Given the safety data on dupilumab, newer biologics will likely be second-line. We do not yet understand the long-term impact of newer biologics on an immature immune system, nor do we fully understand their risks and toxicities. We should proceed optimistically, yet cautiously, with the study of biologics in children.
Collapse
Affiliation(s)
- Rima Ghamrawi
- Center for Dermatology Research, Department of Dermatology, Wake Forest School of Medicine , Winston-Salem, NC, USA
| | - Katheryn A Bell
- Center for Dermatology Research, Department of Dermatology, Wake Forest School of Medicine , Winston-Salem, NC, USA
| | - Esther A Balogh
- Center for Dermatology Research, Department of Dermatology, Wake Forest School of Medicine , Winston-Salem, NC, USA
| | - Lindsay C Strowd
- Center for Dermatology Research, Department of Dermatology, Wake Forest School of Medicine , Winston-Salem, NC, USA
| | - Steven R Feldman
- Center for Dermatology Research, Department of Dermatology, Wake Forest School of Medicine , Winston-Salem, NC, USA.,Department of Pathology, Wake Forest School of Medicine , Winston-Salem, NC, USA.,Department of Social Sciences & Health Policy, Wake Forest School of Medicine , Winston-Salem, NC, USA.,Department of Dermatology, University of Southern Denmark , Odense, Denmark
| |
Collapse
|
3
|
Jorge MT, María OSJ, Valenzuela-Oñate, Marí-Cornejo Pedro C, Altea EM, Amparo PF. Comparison of Phototherapy in Pediatric and Adult Patients. ACTAS DERMO-SIFILIOGRAFICAS 2020. [DOI: 10.1016/j.adengl.2019.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
4
|
Souto EB, Dias-Ferreira J, Oliveira J, Sanchez-Lopez E, Lopez-Machado A, Espina M, Garcia ML, Souto SB, Martins-Gomes C, Silva AM. Trends in Atopic Dermatitis-From Standard Pharmacotherapy to Novel Drug Delivery Systems. Int J Mol Sci 2019; 20:ijms20225659. [PMID: 31726723 PMCID: PMC6888057 DOI: 10.3390/ijms20225659] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
Atopic dermatitis (AD) is a predominant and deteriorating chronic inflammation of the skin, categorized by robust burning and eczematous lacerations in diverse portions of the body. AD affects about 20% of both offspring and adults worldwide. The pathophysiology of AD combines environmental, hereditary, and immunological aspects, together with skin barrier dysfunction. The procedures used to prevent the disease are the everyday usage of creams to support the restoration of the epidermal barrier. The classical treatments include the use of topical corticosteroids as a first-line therapy, but also calcineurin inhibitors, antihistamines, antibiotics, phototherapy, and also immunosuppressant drugs in severe cases of AD. Topical drug delivery to deeper skin layers is a difficult task due to the skin anatomic barrier, which limits deeper penetration of drugs. Groundbreaking drug delivery systems, based on nanoparticles (NPs), have received much attention due to their ability to improve solubility, bioavailability, diffusion, targeting to specific types of cells, and limiting the secondary effects of the drugs employed in the treatment of AD. Even so, additional studies are still required to recognize the toxicological characteristics and long-term safety of NPs. This review discusses the current classical pharmacotherapy of AD against new nanoparticle skin delivery systems and their toxicologic risks.
Collapse
Affiliation(s)
- Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (J.D.-F.); (J.O.); (E.S.-L.); (A.L.-M.)
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- Correspondence: ; Tel.: +351-239-488-400
| | - João Dias-Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (J.D.-F.); (J.O.); (E.S.-L.); (A.L.-M.)
| | - Jéssica Oliveira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (J.D.-F.); (J.O.); (E.S.-L.); (A.L.-M.)
| | - Elena Sanchez-Lopez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (J.D.-F.); (J.O.); (E.S.-L.); (A.L.-M.)
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Ave. Joan XXIII, 08028 Barcelona, Spain; (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Ana Lopez-Machado
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (J.D.-F.); (J.O.); (E.S.-L.); (A.L.-M.)
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Ave. Joan XXIII, 08028 Barcelona, Spain; (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Ave. Joan XXIII, 08028 Barcelona, Spain; (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Maria L. Garcia
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Ave. Joan XXIII, 08028 Barcelona, Spain; (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Selma B. Souto
- Department of Endocrinology, Hospital de São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| | - Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (A.M.S.)
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (A.M.S.)
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| |
Collapse
|