1
|
Sengupta A, Dorn A, Jamshidi M, Schwob M, Hassan W, De Maddalena LL, Hugi A, Stucki AO, Dorn P, Marti TM, Wisser O, Stucki JD, Krebs T, Hobi N, Guenat OT. A multiplex inhalation platform to model in situ like aerosol delivery in a breathing lung-on-chip. Front Pharmacol 2023; 14:1114739. [PMID: 36959848 PMCID: PMC10029733 DOI: 10.3389/fphar.2023.1114739] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Prolonged exposure to environmental respirable toxicants can lead to the development and worsening of severe respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD) and fibrosis. The limited number of FDA-approved inhaled drugs for these serious lung conditions has led to a shift from in vivo towards the use of alternative in vitro human-relevant models to better predict the toxicity of inhaled particles in preclinical research. While there are several inhalation exposure models for the upper airways, the fragile and dynamic nature of the alveolar microenvironment has limited the development of reproducible exposure models for the distal lung. Here, we present a mechanistic approach using a new generation of exposure systems, the Cloud α AX12. This novel in vitro inhalation tool consists of a cloud-based exposure chamber (VITROCELL) that integrates the breathing AXLung-on-chip system (AlveoliX). The ultrathin and porous membrane of the AX12 plate was used to create a complex multicellular model that enables key physiological culture conditions: the air-liquid interface (ALI) and the three-dimensional cyclic stretch (CS). Human-relevant cellular models were established for a) the distal alveolar-capillary interface using primary cell-derived immortalized alveolar epithelial cells (AXiAECs), macrophages (THP-1) and endothelial (HLMVEC) cells, and b) the upper-airways using Calu3 cells. Primary human alveolar epithelial cells (AXhAEpCs) were used to validate the toxicity results obtained from the immortalized cell lines. To mimic in vivo relevant aerosol exposures with the Cloud α AX12, three different models were established using: a) titanium dioxide (TiO2) and zinc oxide nanoparticles b) polyhexamethylene guanidine a toxic chemical and c) an anti-inflammatory inhaled corticosteroid, fluticasone propionate (FL). Our results suggest an important synergistic effect on the air-blood barrier sensitivity, cytotoxicity and inflammation, when air-liquid interface and cyclic stretch culture conditions are combined. To the best of our knowledge, this is the first time that an in vitro inhalation exposure system for the distal lung has been described with a breathing lung-on-chip technology. The Cloud α AX12 model thus represents a state-of-the-art pre-clinical tool to study inhalation toxicity risks, drug safety and efficacy.
Collapse
Affiliation(s)
- Arunima Sengupta
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Aurélien Dorn
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- AlveoliX AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Mohammad Jamshidi
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Magali Schwob
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Widad Hassan
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | | | - Andreas Hugi
- AlveoliX AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Andreas O. Stucki
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- *Correspondence: Andreas O. Stucki,
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Thomas M. Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | | | | | - Nina Hobi
- AlveoliX AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Olivier T. Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
2
|
Application of Acupoint Catgut Embedding Therapy Combined with Liuzijue Breathing Exercise in the Treatment of Patients with Stable Chronic Obstructive Pulmonary Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4084505. [PMID: 36248426 PMCID: PMC9560806 DOI: 10.1155/2022/4084505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
Objective To evaluate the application value of acupoint catgut embedding therapy combined with Liuzijue breathing exercise in the treatment of patients with stable chronic obstructive pulmonary disease (COPD) and its impact on immune function and quality of life. Methods A total of 100 patients with stable COPD admitted to our hospital from February 2020 to February 2021 were included and assigned to the experimental group (n = 50) and the control group (n = 50) according to the order of admission. Both groups of patients received conventional treatment. The control group was given daily inhalation of budesonide and formoterol fumarate powder for inhalation (320 ug/bottle), and the experimental group received additional acupoint catgut embedding therapy combined with Liuzijue breathing exercise. The clinical efficacy, pulmonary function indexes, activities of daily living (ADL) scores, quality of life (QOL) scores, traditional Chinese medicine (TCM) syndrome scores, the number of acute exacerbations, medical expenses, the incidence of adverse reactions, and immune indicators were compared between the two groups of patients. Results The experimental group yielded a significantly higher effective rate of treatment than the control group (P < 0.05). After the treatment, the experimental group obtained a superior outcome in terms of lung function indexes, immune function indexes, ADL and QOL scores, and the TCM syndrome scores when compared with the control group (P < 0.05). The number of acute exacerbations in the experimental group was remarkably lower than that in the control group (P < 0.05). No serious adverse reactions were observed in the two groups of patients, and no significant difference in the incidence of adverse reactions was found (P > 0.05). Conclusion Acupoint catgut embedding therapy combined with Liuzijue breathing exercise, with high safety, can improve the treatment effect and the quality of life of patients with stable COPD, which merits clinical promotion.
Collapse
|
3
|
López-Campos JL, Carrasco-Hernández L, Román Rodríguez L, Quintana-Gallego E, Carmona Bernal C, Alcázar Navarrete B. The clinical implications of triple therapy in fixed-dose combination in COPD: from the trial to the patient. Arch Bronconeumol 2020; 56:242-248. [PMID: 35373739 DOI: 10.1016/j.arbr.2020.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/02/2019] [Indexed: 11/19/2022]
Abstract
The emergence of a fixed-dose combination (FDC) of a long-acting ß2-agonist (LABA), a long-acting muscarinic antagonist (LAMA), and an inhaled corticosteroid (ICS) in a single inhalation device has changed the approach to inhaled therapy. Although clinical trials describe the efficacy and safety of these FDCs, their use in daily clinical practice can present challenges for the clinician in two specific scenarios. In patients who are already receiving triple therapy via different devices, switching to FDCs could confer benefits by reducing critical errors in the management of inhalers, improving therapeutic adherence, and lowering costs, while maintaining the same clinical efficacy. In patients who are not receiving triple therapy in different devices and who require a change in treatment, triple therapy FDC has shown benefits in clinical trials. Although methodological differences among the trials advise against direct comparison, clinical results show good efficacy, but also considerable variability, and a number of clinical outcomes have yet to be explored. In the future, trials must be developed to complete clinical efficacy data. Real-world efficacy trials are needed, and studies must be designed to determine the profile of patients who present a greater therapeutic response to each FDC in order to pave the way towards more personalized treatment.
Collapse
Affiliation(s)
- José Luis López-Campos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
| | - Laura Carrasco-Hernández
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucas Román Rodríguez
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, Spain
| | - Esther Quintana-Gallego
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Carmona Bernal
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, Spain
| | - Bernardino Alcázar Navarrete
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Neumología, Hospital de Alta Resolución de Loja, Loja, Granada, Spain
| |
Collapse
|
4
|
The Clinical Implications of Triple Therapy in Fixed-Dose Combination in COPD: From the Trial to the Patient. Arch Bronconeumol 2020. [PMID: 31983474 DOI: 10.1016/j.arbres.2019.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The emergence of a fixed-dose combination (FDC) of a long-acting β2-agonists (LABAS), a long-acting anticholinergic agent (LAMA), and an inhaled corticosteroid (ICS) in a single inhalation device has changed the approach to inhaled therapy. Although clinical trials describe the efficacy and safety of these FDCs, their use in daily clinical practice can present challenges for the clinician in two specific scenarios. In patients who are already receiving triple therapy via different devices, switching to FDCs could confer benefits by reducing critical errors in the management of inhalers, improving therapeutic adherence, and lowering costs, while maintaining the same clinical efficacy. In patients who are not receiving triple therapy in different devices and who require a change in treatment, triple therapy FDC has shown benefits in clinical trials. Although methodological differences among the trials advise against direct comparison, clinical results show good efficacy, but also considerable variability, and a number of clinical outcomes have yet to be explored. In the future, trials must be developed to complete clinical efficacy data. Real-world efficacy trials are needed, and studies must be designed to determine the profile of patients who present a greater therapeutic response to each FDC in order to pave to way towards more personalized treatment.
Collapse
|
5
|
Abstract
:
Triple inhaled therapy for Chronic Obstructive Pulmonary Disease (COPD) includes an
inhaled corticosteroid (ICS), a long-acting b2-agonist (LABA) and a long-acting muscarinic
antagonist (LAMA) taken in combination. Triple therapy is recommended by the Global Initiative for
Chronic Obstructive Lung Disease (GOLD) for patients who experience recurrent exacerbations
despite treatment with either a dual bronchodilator or LABA/ICS combination. There is consistent
evidence that the LABA/LAMA/ICS combination has significantly greater effects on trough FEV1,
symptoms, quality of life, and exercise performance compared to comparator treatments.
:
The role of triple therapy in reducing exacerbations in COPD patients is debatable, but recent trials
have revealed some intriguing insights.
:
Three pivotal studies, namely TRILOGY, TRINITY and TRIBUTE have been conducted to evaluate
the safety and efficacy of extrafine Beclomethasone/Formoterol Fumarate/Glycopyrronium Bromide
(BDP/FF/GB) versus different treatment options for COPD. Extrafine BDP/FF/GB has been
compared to an ICS/LABA (BDP/FF) combination in the TRILOGY study, to a LAMA
monotherapy (Tiotropium-TIO) and an extemporary triple combination of ICS/LABA + LAMA
(BDP/FF + TIO) in the TRINITY study, and to one inhalation of LABA/LAMA per day (Indacaterol/
Glycopyrronium - IND/GLY) in the TRIBUTE study.
:
Another triple therapy with Fluticasone Furoate/Umeclidinium/Vilanterol (FF/UMEC/VI) was
recently tested in two further studies that included patients with COPD. The FULFIL study compared
the efficacy of the triple FF/UMEC/VI therapy to the ICS/LABA association budesonide/formoterol,
while the IMPACT study compared the rate of moderate and severe exacerbations between singleinhaler
FF/UMEC/VI and single-inhaler FF/VI or UMEC/VI.
Collapse
|