Li W, Liu C, Ho HC, Shi L, Zeng Y, Yang X, Huang Q, Pei Y, Huang C, Yang L. Association between antibiotic resistance and increasing ambient temperature in China: An ecological study with nationwide panel data.
THE LANCET REGIONAL HEALTH - WESTERN PACIFIC 2023;
30:100628. [PMID:
36406382 PMCID:
PMC9672962 DOI:
10.1016/j.lanwpc.2022.100628]
[Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/20/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
Background
Antibiotic resistance leads to longer hospital stays, higher medical costs, and increased mortality. However, research into the relationship between climate change and antibiotic resistance remains inconclusive. This study aims to address the gap in the literature by exploring the association of antibiotic resistance with regional ambient temperature and its changes over time.
Methods
Data were obtained from the China Antimicrobial Surveillance Network (CHINET), monitoring the prevalence of carbapenem-resistant Acinetobacter baumannii (CRAB), Klebsiella pneumoniae (CRKP) and Pseudomonas aeruginosa (CRPA) in 28 provinces/regions over the period from 2005 to 2019. Log-linear regression models were established to determine the association between ambient temperature and antibiotic resistance after adjustment for variations in socioeconomic, health service, and environmental factors.
Findings
A 1 °C increase in average ambient temperature was associated with 1.14-fold increase (95%-CI [1.07–1.23]) in CRKP prevalence and 1.06-fold increase (95%-CI [1.03–1.08]) in CRPA prevalence. There was an accumulative effect of year-by-year changes in ambient temperature, with the four-year sum showing the greatest effect on antibiotic resistance. Higher prevalence of antibiotic resistance was also associated with higher antibiotic consumption, lower density of health facilities, higher density of hospital beds and higher level of corruption.
Interpretation
Higher prevalence of antibiotic resistance is associated with increased regional ambient temperature. The development of antibiotic resistance under rising ambient temperature differs across various strains of bacteria.
Funding
The 10.13039/501100012166National Key R&D Program of China (grant number: 2018YFA0606200), 10.13039/501100001809National Natural Science Foundation of China (grant number: 72074234), 10.13039/501100012476Fundamental Scientific Research Funds for Central Universities, P.R. China (grant number: 22qntd4201), 10.13039/100001547China Medical Board (grant number: CMB-OC-19-337).
Collapse