Liu Y, Huang W, Yang J, Yuan S, Li C, Wang W, Liang Z, Wu A. Construction of a multi-classified decision tree model for identifying malignant pleural effusion and tuberculous pleural effusion.
Clin Biochem 2023;
120:110655. [PMID:
37769933 DOI:
10.1016/j.clinbiochem.2023.110655]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE
Pleural effusion (PE) is a common clinical complication associated with various disorders. We aimed to utilize laboratory variables and their corresponding ratios in serum and PE for the differential diagnosis of multiple types of PE based on a decision tree (DT) algorithm.
METHODS
A total of 1435 untreated patients with PE admitted to The First Affiliated Hospital of Ningbo University were enrolled. The demographic and laboratory variables were collected and compared. The receiver operating characteristic curve was used to select important variables for diagnosing malignant pleural effusion (MPE) or tuberculous pleural effusion (TPE) and included in the DT model. The data were divided into the training set and the test set at a ratio of 7:3. The training data was used to develop the DT model, and the test data was for evaluating the model. Independent data was collected as external validation.
RESULTS
Three PE indicators (carcinoembryonic antigen, adenosine deaminase [ADA], and total protein), two serum indicators (neuron-specific enolase and cytokeratin 19 fragments), and two ratios [high-sensitivity C-reactive protein (hsCRP)/ PE lymphocyte and hsCRP/PE ADA] were used to construct the DT model. The area under the curve (AUC), sensitivity, and specificity for diagnosing MPE were 0.963, 84.0%, 91.6% in the training set, 0.976, 84.1%, 88.6% in the test set, and 0.955,83.3%, 86.7% in the external validation set. The AUC, sensitivity, and specificity of diagnosing TPE were 0.898, 86.8%, 92.3% in the training set, 0.888, 88.8%, 92.7% in the test set, and 0.778, 84.8%, 94.3% in the external validation set.
CONCLUSION
The DT model showed good diagnostic efficacy and could be applied for the differential diagnosis of MPE and TPE in clinical settings.
Collapse