1
|
Reimer LJ, Pryce JD. The impact of mosquito sampling strategies on molecular xenomonitoring prevalence for filariasis: a systematic review. Bull World Health Organ 2024; 102:204-215. [PMID: 38420575 PMCID: PMC10898278 DOI: 10.2471/blt.23.290424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 03/02/2024] Open
Abstract
Objective To explore the impact of mosquito collection methods, sampling intensity and target genus on molecular xenomonitoring detection of parasites causing lymphatic filariasis. Methods We systematically searched five databases for studies that used two or more collection strategies for sampling wild mosquitoes, and employed molecular methods to assess the molecular xenomonitoring prevalence of parasites responsible for lymphatic filariasis. We performed generic inverse variance meta-analyses and explored sources of heterogeneity using subgroup analyses. We assessed methodological quality and certainty of evidence. Findings We identified 25 eligible studies, with 172 083 mosquitoes analysed. We observed significantly higher molecular xenomonitoring prevalence with collection methods that target bloodfed mosquitoes compared to methods that target unfed mosquitoes (prevalence ratio: 3.53; 95% confidence interval, CI: 1.52-8.24), but no significant difference compared with gravid collection methods (prevalence ratio: 1.54; 95% CI: 0.46-5.16). Regarding genus, we observed significantly higher molecular xenomonitoring prevalence for anopheline mosquitoes compared to culicine mosquitoes in areas where Anopheles species are the primary vector (prevalence ratio: 6.91; 95% CI: 1.73-27.52). One study provided evidence that reducing the number of sampling sites did not significantly affect molecular xenomonitoring prevalence. Evidence of differences in molecular xenomonitoring prevalence between sampling strategies was considered to be of low certainty, due partly to inherent limitations of observational studies that were not explicitly designed for these comparisons. Conclusion The choice of sampling strategy can significantly affect molecular xenomonitoring results. Further research is needed to inform the optimum strategy in light of logistical constraints and epidemiological contexts.
Collapse
Affiliation(s)
- Lisa J Reimer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England
| | - Joseph D Pryce
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England
| |
Collapse
|
2
|
Assis TMD, Rabello A, Cota G. Economic evaluations addressing diagnosis and treatment strategies for neglected tropical diseases: an overview. Rev Inst Med Trop Sao Paulo 2021; 63:e41. [PMID: 34037157 PMCID: PMC8149103 DOI: 10.1590/s1678-9946202163041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/23/2021] [Indexed: 11/22/2022] Open
Abstract
Neglected tropical diseases (NTDs) are those affecting vulnerable people and
causing additional social and economic burden. The aim of this study was to
carry out a general overview of the health economic assessments involving the
diagnosis and treatment of six NTDs: cutaneous leishmaniasis (CL), Chagas
disease, cysticercosis, filariasis, schistosomiasis and visceral leishmaniasis
(VL). The literature search was based on two of the main medical literature
databases (Medline and SciELO) and identified 46 studies. Twenty-six studies
(57%) addressed therapeutic strategies, while other 20 (43%) assessed diagnostic
or both diagnostic and therapeutic approaches. The studies were published
between 1994 and 2021, and 57% of them (26/46) were carried out in four
countries. Cost-effectiveness analyses were conducted in 59% (27/46) of the
studies. Economic studies of NTDs have timidly increased in recent years.
Despite the improvement of analytical methods, completeness and accuracy of
information, there are few new technologies applied to NTDs and public health
systems. In addition, economic studies for NTDs are concentrated in a few
countries. Thus, this review points out the need for investment in research,
development and training of human resources dedicated to the economic analysis
in health, especially on NTDs, as a strategy to reduce inequalities by
optimizing the use of health resources.
Collapse
Affiliation(s)
- Tália Machado de Assis
- Fundação Oswaldo Cruz, Instituto René Rachou, Pesquisa Clínica e Políticas Públicas em Doenças Infecciosas e Parasitárias, Belo Horizonte, Minas Gerais, Brazil.,Centro Federal de Educação Tecnológica de Minas Gerais, Contagem, Minas Gerais, Brazil
| | - Ana Rabello
- Fundação Oswaldo Cruz, Instituto René Rachou, Pesquisa Clínica e Políticas Públicas em Doenças Infecciosas e Parasitárias, Belo Horizonte, Minas Gerais, Brazil
| | - Gláucia Cota
- Fundação Oswaldo Cruz, Instituto René Rachou, Pesquisa Clínica e Políticas Públicas em Doenças Infecciosas e Parasitárias, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
3
|
Cameron MM, Ramesh A. The use of molecular xenomonitoring for surveillance of mosquito-borne diseases. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190816. [PMID: 33357052 PMCID: PMC7776931 DOI: 10.1098/rstb.2019.0816] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 11/12/2022] Open
Abstract
The scientific community recognizes that molecular xenomonitoring (MX) can allow infected mosquitoes to serve as a proxy for human infection in vector-borne disease surveillance, but developing reliable MX systems for programmatic use has been challenging. The primary aim of this article is to examine the available evidence to recommend how MX can best be used for various purposes. Although much of the literature published within the last 20 years focuses on using MX for lymphatic filariasis elimination, a growing body of evidence supports its use in early warning systems for emerging infectious diseases (EIDs). An MX system design must consider the goal and target (e.g. diseases targeted for elimination versus EIDs), mosquito and pathogen characteristics, and context (e.g. setting and health system). MX is currently used as a 'supplement' to human surveillance and will not be considered as a 'replacement' until the correlation between pathogen-infection rates in human and mosquito populations is better understood. Establishing such relationships may not be feasible in elimination scenarios, due to increasingly dwindling human infection prevalence after successful control, but may still be possible for EIDs and in integrated disease surveillance systems. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.
Collapse
Affiliation(s)
- Mary M. Cameron
- Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Anita Ramesh
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
4
|
Avendaño C, Patarroyo MA. Loop-Mediated Isothermal Amplification as Point-of-Care Diagnosis for Neglected Parasitic Infections. Int J Mol Sci 2020; 21:ijms21217981. [PMID: 33126446 PMCID: PMC7662217 DOI: 10.3390/ijms21217981] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
The World Health Organisation (WHO) has placed twenty diseases into a group known as neglected tropical diseases (NTDs), twelve of them being parasitic diseases: Chagas’ disease, cysticercosis/taeniasis, echinococcosis, food-borne trematodiasis, human African trypanosomiasis (sleeping sickness), leishmaniasis, lymphatic filariasis, onchocerciasis (river blindness), schistosomiasis, soil-transmitted helminthiasis (ascariasis, hookworm, trichuriasis), guinea-worm and scabies. Such diseases affect millions of people in developing countries where one of the main problems concerning the control of these diseases is diagnosis-based due to the most affected areas usually being far from laboratories having suitable infrastructure and/or being equipped with sophisticated equipment. Advances have been made during the last two decades regarding standardising and introducing techniques enabling diagnoses to be made in remote places, i.e., the loop-mediated isothermal amplification (LAMP) technique. This technique’s advantages include being able to perform it using simple equipment, diagnosis made directly in the field, low cost of each test and the technique’s high specificity. Using this technique could thus contribute toward neglected parasite infection (NPI) control and eradication programmes. This review describes the advances made to date regarding LAMP tests, as it has been found that even though several studies have been conducted concerning most NPI, information is scarce for others.
Collapse
Affiliation(s)
- Catalina Avendaño
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A.), Bogotá 111166, Colombia;
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia
- Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 112111, Colombia
- Correspondence: ; Tel.: +57-1-3244672
| |
Collapse
|
5
|
Pilotte N, Cook DA, Pryce J, Zulch MF, Minetti C, Reimer LJ, Williams SA. Laboratory evaluation of molecular xenomonitoring using mosquito and tsetse fly excreta/feces to amplify Plasmodium, Brugia, and Trypanosoma DNA. Gates Open Res 2020; 3:1734. [PMID: 32596646 PMCID: PMC7308644 DOI: 10.12688/gatesopenres.13093.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Results from an increasing number of studies suggest that mosquito excreta/feces (E/F) testing has considerable potential to serve as a supplement for traditional molecular xenomonitoring techniques. However, as the catalogue of possible use-cases for this methodology expands, and the list of amenable pathogens grows, a number of fundamental methods-based questions remain. Answering these questions is critical to maximizing the utility of this approach and to facilitating its successful implementation as an effective tool for molecular xenomonitoring. Methods: Utilizing E/F produced by mosquitoes or tsetse flies experimentally exposed to Brugia malayi, Plasmodium falciparum, or Trypanosoma brucei brucei, factors such as limits of detection, throughput of testing, adaptability to use with competent and incompetent vector species, and effects of additional blood feedings post parasite-exposure were evaluated. Two platforms for the detection of pathogen signal (quantitative real-time PCR and digital PCR (dPCR)) were also compared, with strengths and weaknesses examined for each. Results: Experimental results indicated that high throughput testing is possible when evaluating mosquito E/F for the presence of either B. malayi or P. falciparum from both competent and incompetent vector mosquito species. Furthermore, following exposure to pathogen, providing mosquitoes with a second, uninfected bloodmeal did not expand the temporal window for E/F collection during which pathogen detection was possible. However, this collection window did appear longer in E/F collected from tsetse flies following exposure to T. b. brucei. Testing also suggested that dPCR may facilitate detection through its increased sensitivity. Unfortunately, logistical obstacles will likely make the large-scale use of dPCR impractical for this purpose. Conclusions: By examining many E/F testing variables, expansion of this technology to a field-ready platform has become increasingly feasible. However, translation of this methodology from the lab to the field will first require field-based pilot studies aimed at assessing the efficacy of E/F screening.
Collapse
Affiliation(s)
- Nils Pilotte
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | - Darren A.N. Cook
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Joseph Pryce
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Michael F. Zulch
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
| | - Corrado Minetti
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Lisa J. Reimer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Steven A. Williams
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
6
|
Yokoly FN, Zahouli JBZ, Méite A, Opoku M, Kouassi BL, de Souza DK, Bockarie M, Koudou BG. Low transmission of Wuchereria bancrofti in cross-border districts of Côte d'Ivoire: A great step towards lymphatic filariasis elimination in West Africa. PLoS One 2020; 15:e0231541. [PMID: 32282840 PMCID: PMC7153895 DOI: 10.1371/journal.pone.0231541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/25/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Lymphatic filariasis (LF) is widely endemic in Côte d'Ivoire, and elimination as public health problem (EPHP) is based on annual mass drug administration (MDA) using ivermectin and albendazole. To guide EPHP efforts, we evaluated Wuchereria bancrofti infection indices among humans, and mosquito vectors after four rounds of MDA in four cross-border health districts of Côte d'Ivoire. METHODOLOGY We monitored people and mosquitoes for W. bancrofti infections in the cross-border health districts of Aboisso, Bloléquin, Odienné and Ouangolodougou, Côte d'Ivoire. W. bancrofti circulating filarial antigen (CFA) was identified using filariasis test strips, and antigen-positive individuals were screened for microfilaremia. Moreover, filarial mosquito vectors were sampled using window exit traps and pyrethrum sprays, and identified morphologically at species level. Anopheles gambiae s.l. and Culex quinquefasciatus females were analyzed for W. bancrofti infection using polymerase chain reaction (PCR) technique. PRINCIPAL FINDINGS Overall, we found a substantial decline in W. bancrofti infection indices after four rounds of MDA compared to pre-MDA baseline data. CFA prevalence fell from 3.38-5.50% during pre-MDA to 0.00-1.53% after MDA interventions. No subjects had detectable levels of CFA in Ouangolodougou. Moreover, post-MDA CFA prevalence was very low, and below the 1% elimination threshold in Aboisso (0.19%) and Odienné (0.49%). Conversely, CFA prevalence remained above 1% in Bloléquin (1.53%). W. bancrofti microfilariae (Mf) were not found in Aboisso, Bloléquin, and Ouangolodougou, except for Odienné with low prevalence (0.16%; n = 613) and microfilaremia of 32.0 Mf/mL. No An. gambiae s.l. and Cx. quinquefasciatus pools were infected with W. bancrofti in Bloléquin and Ouangolodougou, while they exhibited low infection rates in Aboisso (1% and 0.07%), and Odienné (0.08% and 0.08%), respectively. CONCLUSIONS In cross-border areas of Côte d'Ivoire, LF infection indices in humans and mosquito vectors substantially declined after four rounds of MDA. CFA prevalence fell under the World Health Organization (WHO)-established threshold (1%) in Aboisso, Ouangolodougou and Odienné. Moreover, W. bancrofti prevalence in mosquitoes was lower than WHO-established threshold (2%) in all areas. This might suggest the interruption of W. bancrofti transmission, and possible MDA cessation. However, a formal transmission assessment survey (TAS) and molecular xenomonitoring in mosquito vectors should be implemented before eventual MDA cessation. However, MDA should pursue in Bloléquin where W. bancrofti infection prevalence remained above 1%. Our results provided important ramifications for LF control efforts towards EPHP in Côte d'Ivoire.
Collapse
Affiliation(s)
- Firmain N. Yokoly
- Unité de Formation et de Recherche Sciences de la Nature, Université Nangui Abrogoua, Abidjan, Côte d’Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Julien B. Z. Zahouli
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
- Centre d’Entomologie Médicale et Vétérinaire, Université Alassane Ouattara, Bouaké, Côte d’Ivoire
| | - Aboulaye Méite
- Programme National de Lutte contre les Maladies Tropicales Négligées à Chimiothérapie Préventive, Ministère de la Santé, Abidjan, Côte d’Ivoire
| | - Millicent Opoku
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
- European & Developing Countries Clinical Trials Partnership, Cape Town, South Africa
| | - Bernard L. Kouassi
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Dziedzom K. de Souza
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Moses Bockarie
- European & Developing Countries Clinical Trials Partnership, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Benjamin G. Koudou
- Unité de Formation et de Recherche Sciences de la Nature, Université Nangui Abrogoua, Abidjan, Côte d’Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| |
Collapse
|
7
|
Pilotte N, Cook DA, Pryce J, Zulch MF, Minetti C, Reimer LJ, Williams SA. Laboratory evaluation of molecular xenomonitoring using mosquito excreta/feces to amplify Plasmodium, Brugia, and Trypanosoma DNA. Gates Open Res 2019; 3:1734. [PMID: 32596646 PMCID: PMC7308644 DOI: 10.12688/gatesopenres.13093.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 03/30/2024] Open
Abstract
Background: Results from an increasing number of studies suggest that mosquito excreta/feces (E/F) testing has considerable potential to serve as a supplement for traditional molecular xenomonitoring techniques. However, as the catalogue of possible use-cases for this methodology expands, and the list of amenable pathogens grows, a number of fundamental methods-based questions remain. Answering these questions is critical to maximizing the utility of this approach and to facilitating its successful implementation as an effective tool for molecular xenomonitoring. Methods: Utilizing E/F produced by mosquitoes or tsetse flies experimentally exposed to Brugia malayi, Plasmodium falciparum, or Trypanosoma brucei brucei, factors such as limits of detection, throughput of testing, adaptability to use with competent- and incompetent-vector species, and effects of additional blood feedings post parasite-exposure were evaluated. Two platforms for the detection of pathogen signal (quantitative real-time PCR and digital PCR [dPCR]) were also compared, with strengths and weaknesses examined for each. Results: Experimental results indicated that high throughput testing is possible when evaluating mosquito E/F for the presence of either B. malayi or P. falciparum from both competent- and incompetent-vector mosquito species. Furthermore, following exposure to pathogen, providing mosquitoes with a second, uninfected bloodmeal did not expand the temporal window for E/F collection during which pathogen detection was possible. However, this collection window did appear longer in E/F collected from tsetse flies following exposure to T. b. brucei. Testing also suggested that dPCR may facilitate detection through its increased sensitivity. Unfortunately, logistical obstacles will likely make the large-scale use of dPCR impractical for this purpose. Conclusions: By examining many E/F testing variables, expansion of this technology to a field-ready platform has become increasingly feasible. However, translation of this methodology from the lab to the field will first require the completion of field-based pilot studies aimed at assessing the efficacy of E/F screening.
Collapse
Affiliation(s)
- Nils Pilotte
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | - Darren A.N. Cook
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Joseph Pryce
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Michael F. Zulch
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
| | - Corrado Minetti
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Lisa J. Reimer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Steven A. Williams
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|