1
|
Jeong JH, Zhong S, Li F, Huang C, Chen X, Liu Q, Peng S, Park H, Lee YM, Dhillon J, Luo JL. Tumor-derived OBP2A promotes prostate cancer castration resistance. J Exp Med 2022; 220:213776. [PMID: 36547668 PMCID: PMC9789742 DOI: 10.1084/jem.20211546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 06/22/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
Androgen deprivation therapy (ADT) is a systemic therapy for advanced prostate cancer (PCa); although most patients initially respond to ADT, almost all cancers eventually develop castration-resistant PCa (CRPC). Currently, most research focuses on castration-resistant tumors, and the role of tumors in remission is almost completely ignored. Here, we report that odorant-binding protein (OBP2A) released from tumors in remission during ADT catches survival factors, such as CXCL15/IL8, to promote PCa cell androgen-independent growth and enhance the infiltration of myeloid-derived suppressor cells (MDSCs) into tumor microenvironment, leading to the emergence of castration resistance. OBP2A knockdown significantly inhibits CRPC and metastatic CRPC development and improves therapeutic efficacy of CTLA-4/PD-1 antibodies. Treatment with OBP2A-binding ligand α-pinene interrupts the function of OBP2A and suppresses CRPC development. Furthermore, α-pinene-conjugated doxorubicin/docetaxel can be specifically delivered to tumors, resulting in improved anticancer efficacy. Thus, our studies establish a novel concept for the emergence of PCa castration resistance and provide new therapeutic strategies for advanced PCa.
Collapse
Affiliation(s)
- Ji-Hak Jeong
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA,Vessel-Organ Interaction Research Center (VOICE, MRC), College of Pharmacy, Kyungpook National University, Daegu, South Korea
| | - Shangwei Zhong
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA,The Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Fuzhuo Li
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Changhao Huang
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Xueyan Chen
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Qingqing Liu
- The Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Shoujiao Peng
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - HaJeung Park
- X-ray Core Facility, The Scripps Research Institute, Jupiter, FL, USA
| | - You Mie Lee
- Vessel-Organ Interaction Research Center (VOICE, MRC), College of Pharmacy, Kyungpook National University, Daegu, South Korea
| | | | - Jun-Li Luo
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA,The Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China,Correspondence to Jun-Li Luo:
| |
Collapse
|
2
|
Yang J, Hu Y, Zhang B, Liang X, Li X. The JMJD Family Histone Demethylases in Crosstalk Between Inflammation and Cancer. Front Immunol 2022; 13:881396. [PMID: 35558079 PMCID: PMC9090529 DOI: 10.3389/fimmu.2022.881396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Inflammation has emerged as a key player in regulating cancer initiation, progression, and therapeutics, acting as a double edged sword either facilitating cancer progression and therapeutic resistance or inducing anti-tumor immune responses. Accumulating evidence has linked the epigenetic modifications of histones to inflammation and cancer, and histone modifications-based strategies have shown promising therapeutic potentials against cancer. The jumonji C domain-containing (JMJD) family histone demethylases have exhibited multiple regulator functions in inflammatory processes and cancer development, and a number of therapeutic strategies targeting JMJD histone demethylases to modulate inflammatory cells and their products have been successfully evaluated in clinical or preclinical tumor models. This review summarizes current understanding of the functional roles and mechanisms of JMJD histone demethylases in crosstalk between inflammation and cancer, and highlights recent clinical and preclinical progress on harnessing the JMJD histone demethylases to regulate cancer-related inflammation for future cancer therapeutics.
Collapse
Affiliation(s)
- Jia Yang
- Department of Gynecology and Obstetrics and Pediatric Nephrology Nursing, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yuan Hu
- Department of Gynecology and Obstetrics and Pediatric Nephrology Nursing, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Binjing Zhang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Liang
- Department of Gynecology and Obstetrics and Pediatric Nephrology Nursing, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xin Li
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
TRPC3 shapes the ER-mitochondria Ca 2+ transfer characterizing tumour-promoting senescence. Nat Commun 2022; 13:956. [PMID: 35177596 PMCID: PMC8854551 DOI: 10.1038/s41467-022-28597-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Cellular senescence is implicated in a great number of diseases including cancer. Although alterations in mitochondrial metabolism were reported as senescence drivers, the underlying mechanisms remain elusive. We report the mechanism altering mitochondrial function and OXPHOS in stress-induced senescent fibroblasts. We demonstrate that TRPC3 protein, acting as a controller of mitochondrial Ca2+ load via negative regulation of IP3 receptor-mediated Ca2+ release, is down regulated in senescence regardless of the type of senescence inducer. This remodelling promotes cytosolic/mitochondrial Ca2+ oscillations and elevates mitochondrial Ca2+ load, mitochondrial oxygen consumption rate and oxidative phosphorylation. Re-expression of TRPC3 in senescent cells diminishes mitochondrial Ca2+ load and promotes escape from OIS-induced senescence. Cellular senescence evoked by TRPC3 downregulation in stromal cells displays a proinflammatory and tumour-promoting secretome that encourages cancer epithelial cell proliferation and tumour growth in vivo. Altogether, our results unravel the mechanism contributing to pro-tumour behaviour of senescent cells. Mitochondrial Ca2+ homeostasis is reported to influence cellular senescence. Here the authors show that TRPC3 limits senescence by inhibiting IP3R-mediated Ca2+ release and ER mitochondria Ca2+ transfer and that the downregulation of TRPC3 in stromal cells affects SASP production and tumour progression.
Collapse
|
4
|
Schröder SK, Pinoé-Schmidt M, Weiskirchen R. Lipocalin-2 (LCN2) Deficiency Leads to Cellular Changes in Highly Metastatic Human Prostate Cancer Cell Line PC-3. Cells 2022; 11:cells11020260. [PMID: 35053376 PMCID: PMC8773519 DOI: 10.3390/cells11020260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
The transporter protein lipocalin-2 (LCN2) also termed neutrophil-gelatinase-associated lipocalin (NGAL) has pleiotropic effects in tumorigenesis in various cancers. Since the precise role of LCN2 in prostate cancer (PCa) is poorly understood, we aimed to elucidate its functions in PCa in vitro. For this purpose, LCN2 was transiently suppressed or permanently depleted in human PC-3 cells using siRNA or CRISPR/Cas9-mediated knockout. Effects of LCN2 suppression on expression of different tumorigenic markers were investigated by Western blot analysis and RT-qPCR. LCN2 knockout cells were analyzed for cellular changes and their ability to cope endoplasmic stress compared to parenteral PC-3 cells. Reduced LCN2 was accompanied by decreased expression of IL-1β and Cx43. In PC-3 cells, LCN2 deficiency leads to reduced proliferation, diminished expression of pro-inflammatory cytokines, lower adhesion, and disrupted F-actin distribution. In addition, IL-1β expression strongly correlated with LCN2 levels. LCN2 knockout cells showed enhanced and sustained activation of unfolded protein response proteins when treated with tunicamycin or cultured under glucose deprivation. Interestingly, an inverse correlation between phosphorylation of eukaryotic initiation factor 2 α subunit (p-eIF2α) and LCN2 expression was observed suggesting that LCN2 triggers protein synthesis under stress conditions. The finding that LCN2 depletion leads to significant phenotypic and cellular changes in PC-3 cells adds LCN2 as a valuable target for the treatment of PCa.
Collapse
|
5
|
Guner E, Danacioglu YO, Arikan Y, Seker KG, Polat S, Baytekin HF, Simsek A. The presence of chronic inflammation in positive prostate biopsy is associated with upgrading in radical prostatectomy. Arch Ital Urol Androl 2021; 93:280-284. [PMID: 34839632 DOI: 10.4081/aiua.2021.3.280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/07/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE This study aimed to determine the predictive effect of the presence of chronic prostatitis associated with prostate cancer (PCa) in prostate biopsy on Gleason score upgrade (GSU) in radical prostatectomy (RP) specimens. MATERIALS AND METHODS The data of 295 patients who underwent open or robotic RP with a diagnosis of localized PCa following biopsy were retrospectively analyzed. Patients were divided into two groups with and without GSU following RP. Predictive factors affecting GSU on biopsy were determined. The impact of chronic prostatitis associated with prostate cancer on GSU was examined via logistic regression analysis. RESULTS Out of 224 patients with Gleason 3+3 scores on biopsy, 145 (64.7%) had Gleason upgrade, and 79 (35.2%) had no upgrade. Whilst comparing the two groups with and without Gleason upgrade in terms of patient age, prostate-specific antigen (PSA) value, PSA density (PSAD), prostate volume (PV), neutrophil/lymphocyte (N/L) ratio, number of positive cores, percentage of positive cores, and Prostate Imaging Reporting and Data System version 2 score, no statistically significant difference was detected. The presence of chronic prostatitis associated with PCa was higher in the patient cohort with GSU in contrast to the other group (p < 0.001). According to the univariate logistic regression analysis, the presence of chronic prostatitis was identified to be an independent marker for GSU. CONCLUSIONS Pathologists and urologists should be careful regarding the possibility of a more aggressive tumor in the presence of chronic inflammation associated with PCa because inflammation within PCa was revealed to be linked with GSU after RP.
Collapse
Affiliation(s)
- Ekrem Guner
- University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Department of Urology, Istanbul.
| | - Yavuz Onur Danacioglu
- University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Department of Urology, Istanbul.
| | - Yusuf Arikan
- University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Department of Urology, Istanbul.
| | - Kamil Gokhan Seker
- University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Department of Urology, Istanbul.
| | - Salih Polat
- Amasya University Medical Faculty, Department of Urology, Amasya.
| | - Halil Firat Baytekin
- University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Department of Pathology, Istanbul.
| | - Abdulmuttalip Simsek
- University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Department of Urology, Istanbul.
| |
Collapse
|
6
|
Gallazzi M, Baci D, Mortara L, Bosi A, Buono G, Naselli A, Guarneri A, Dehò F, Capogrosso P, Albini A, Noonan DM, Bruno A. Prostate Cancer Peripheral Blood NK Cells Show Enhanced CD9, CD49a, CXCR4, CXCL8, MMP-9 Production and Secrete Monocyte-Recruiting and Polarizing Factors. Front Immunol 2021; 11:586126. [PMID: 33569050 PMCID: PMC7868409 DOI: 10.3389/fimmu.2020.586126] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells, effector lymphocytes of the innate immunity, have been shown to be altered in several cancers, both at tissue and peripheral levels. We have shown that in Non-Small Cell Lung Cancer (NSCLC) and colon cancer, tumour associated circulating NK (TA-NK) and tumour infiltrating NK (TI-NK) exhibit pro-angiogenic phenotype/functions. However, there is still a lack of knowledge concerning the phenotype of peripheral blood (PB) NK (pNK) cells in prostate cancer (PCa). Here, we phenotypically and functionally characterized pNK from PCa patients (PCa TA-NKs) and investigated their interactions with endothelial cells and monocytes/macrophages. NK cell subset distribution in PB of PCa patients was investigated, by multicolor flow cytometry, for surface antigens expression. Protein arrays were performed to characterize the secretome on FACS-sorted pNK cells. Conditioned media (CM) from FACS-sorted PCa pTA-NKs were used to determine their ability to induce pro-inflammatory/pro-angiogenic phenotype/functions in endothelial cells, monocytes, and macrophages. CM from three different PCa (PC-3, DU-145, LNCaP) cell lines, were used to assess their effects on human NK cell polarization in vitro, by multicolor flow cytometry. We found that PCa pTA-NKs acquire the CD56brightCD9+CD49a+CXCR4+ phenotype, increased the expression of markers of exhaustion (PD-1, TIM-3) and are impaired in their degranulation capabilities. Similar effects were observed on healthy donor-derived pNK cells, exposed to conditioned media of three different PCa cell lines, together with increased production of pro-inflammatory chemokines/chemokine receptors CXCR4, CXCL8, CXCL12, reduced production of TNFα, IFNγ and Granzyme-B. PCa TA-NKs released factors able to support inflammatory angiogenesis in an in vitro model and increased the expression of CXCL8, ICAM-1, and VCAM-1 mRNA in endothelial cells. Secretome analysis revealed the ability of PCa TA-NKs to release pro-inflammatory cytokines/chemokines involved in monocyte recruitment and M2-like polarization. Finally, CMs from PCa pTA-NKs recruit THP-1 and peripheral blood CD14+ monocyte and polarize THP-1 and peripheral blood CD14+ monocyte-derived macrophage towards M2-like/TAM macrophages. Our results show that PCa pTA-NKs acquire properties related to the pro-inflammatory angiogenesis in endothelial cells, recruit monocytes and polarize macrophage to an M2-like type phenotype. Our data provides a rationale for a potential use of pNK profiling in PCa patients.
Collapse
Affiliation(s)
- Matteo Gallazzi
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Denisa Baci
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Annalisa Bosi
- Laboratory of Pharmacology, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | | - Angelo Naselli
- Unit of Urology, San Giuseppe Hospital, IRCCS MultiMedica, Milan, Italy
| | - Andrea Guarneri
- Unit of Urology, San Giuseppe Hospital, IRCCS MultiMedica, Milan, Italy
| | - Federico Dehò
- S.C. of Urology, ASST Settelaghi, Ospedale di Circolo e Fondazione Macchi, Varese, Italy
| | - Paolo Capogrosso
- S.C. of Urology, ASST Settelaghi, Ospedale di Circolo e Fondazione Macchi, Varese, Italy
| | - Adriana Albini
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milano, Italy
| | - Douglas M. Noonan
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milano, Italy
| | | |
Collapse
|
7
|
Lima JD, Simoes E, de Castro G, Morais MRP, de Matos‐Neto EM, Alves MJ, Pinto NI, Figueredo RG, Zorn TM, Felipe‐Silva AS, Tokeshi F, Otoch JP, Alcantara P, Cabral FJ, Ferro ES, Laviano A, Seelaender M. Tumour-derived transforming growth factor-β signalling contributes to fibrosis in patients with cancer cachexia. J Cachexia Sarcopenia Muscle 2019; 10:1045-1059. [PMID: 31273954 PMCID: PMC6818454 DOI: 10.1002/jcsm.12441] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 04/05/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cachexia is a paraneoplastic syndrome related with poor prognosis. The tumour micro-environment contributes to systemic inflammation and increased oxidative stress as well as to fibrosis. The aim of the present study was to characterise the inflammatory circulating factors and tumour micro-environment profile, as potentially contributing to tumour fibrosis in cachectic cancer patients. METHODS 74 patients (weight stable cancer n = 31; cachectic cancer n = 43) diagnosed with colorectal cancer were recruited, and tumour biopsies were collected during surgery. Multiplex assay was performed to study inflammatory cytokines and growth factors. Immunohistochemistry analysis was carried out to study extracellular matrix components. RESULTS Higher protein expression of inflammatory cytokines and growth factors such as epidermal growth factor, granulocyte-macrophage colony-stimulating factor, interferon-α, and interleukin (IL)-8 was observed in the tumour and serum of cachectic cancer patients in comparison with weight-stable counterparts. Also, IL-8 was positively correlated with weight loss in cachectic patients (P = 0.04; r = 0.627). Immunohistochemistry staining showed intense collagen deposition (P = 0.0006) and increased presence of α-smooth muscle actin (P < 0.0001) in tumours of cachectic cancer patients, characterizing fibrosis. In addition, higher transforming growth factor (TGF)-β1, TGF-β2, and TGF-β3 expression (P = 0.003, P = 0.05, and P = 0.047, respectively) was found in the tumour of cachectic patients, parallel to p38 mitogen-activated protein kinase alteration. Hypoxia-inducible factor-1α mRNA content was significantly increased in the tumour of cachectic patients, when compared with weight-stable group (P = 0.005). CONCLUSIONS Our results demonstrate TGF-β pathway activation in the tumour in cachexia, through the (non-canonical) mitogen-activated protein kinase pathway. The results show that during cachexia, intratumoural inflammatory response contributes to the onset of fibrosis. Tumour remodelling, probably by TGF-β-induced transdifferentiation of fibroblasts to myofibroblasts, induces unbalanced inflammatory cytokine profile, angiogenesis, and elevation of extracellular matrix components (EMC). We speculate that these changes may affect tumour aggressiveness and present consequences in peripheral organs.
Collapse
Affiliation(s)
- Joanna D.C.C. Lima
- Cancer Metabolism Research Group, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | - Estefania Simoes
- Cancer Metabolism Research Group, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | - Gabriela de Castro
- Cancer Metabolism Research Group, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | - Mychel Raony P.T. Morais
- Cancer Metabolism Research Group, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | | | - Michele J. Alves
- Cancer Metabolism Research Group, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
- Department of PathologyOhio State UniversityColumbusOHUSA
| | - Nelson I. Pinto
- Department of PhysiologyFederal University of São PauloSão PauloBrazil
| | - Raquel G. Figueredo
- Cancer Metabolism Research Group, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | - Telma M.T. Zorn
- Cancer Metabolism Research Group, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | | | - Flavio Tokeshi
- Department of Clinical SurgeryUniversity of São PauloSão PauloBrazil
| | - José P. Otoch
- Department of Clinical SurgeryUniversity of São PauloSão PauloBrazil
| | - Paulo Alcantara
- Department of Clinical SurgeryUniversity of São PauloSão PauloBrazil
| | | | - Emer S. Ferro
- Department of PharmacologyUniversity of São PauloSão PauloBrazil
| | | | - Marilia Seelaender
- Cancer Metabolism Research Group, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
- Department of Clinical SurgeryUniversity of São PauloSão PauloBrazil
| |
Collapse
|
8
|
Liu B, Xu M, Guo Z, Liu J, Chu X, Jiang H. Interleukin-8 promotes prostate cancer bone metastasis through upregulation of bone sialoprotein. Oncol Lett 2019; 17:4607-4613. [PMID: 30988819 PMCID: PMC6447917 DOI: 10.3892/ol.2019.10138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 02/18/2019] [Indexed: 11/25/2022] Open
Abstract
The aim of the present study was to investigate whether interleukin-8 (IL-8) enhances the ability of prostate cancer bone metastasis by influencing the coding level of bone sialoprotein (BSP). Cultured prostate cancer cell lines LNCaP (androgen dependent) and DU145 (androgen independent) were divided into three groups: IL-8 treatment group; IL-8 receptor inhibitor (SB225002) treatment group; and control group. Western blotting and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to detect BSP protein and mRNA expression levels. Matrigel and bone adhesion experiments were used to detect the invasiveness of cancer cells and bone adhesion changes. Compared with the control group, western blotting and RT-qPCR results indicated that BSP protein and mRNA levels in LNCaP and DU145 were significantly upregulated following IL-8 treatment. Matrigel experiments indicated that following IL-8 treatment, the invasiveness of LNCaP and DU145 cells was significantly increased. The results of bone adhesion experiments indicated that following IL-8 treatment, the number of DU145 cells adhered to the surface of the bone was increased, compared with the control group. Following treatment of both cell lines with SB225002, western blotting and RT-qPCR results indicated that the expression levels of BSP protein and mRNA were significantly downregulated. Matrigel experiments indicated that following SB225002 treatment, the invasiveness of LNCaP and DU145 cells was significantly reduced. The number of DU145 cells adhered to the surface of the bone was reduced, compared with the untreated group. Therefore, IL-8 may promote prostate cancer bone metastasis by enhancing BSP regulation.
Collapse
Affiliation(s)
- Baohao Liu
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Meng Xu
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Zhongqing Guo
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Jiajie Liu
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Xu Chu
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Huamao Jiang
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
9
|
Alvim RG, Hughes C, Somma A, Nagar KK, Wong NC, La Rosa S, Monette S, Kim K, Coleman JA. The potential risk of tumor progression after use of dehydrated human amnion/chorion membrane allograft in a positive margin resection model. Ther Adv Urol 2019; 11:1756287219837771. [PMID: 30956688 PMCID: PMC6444417 DOI: 10.1177/1756287219837771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/10/2019] [Indexed: 11/16/2022] Open
Abstract
Objective: The objective of this study was to examine the impact of dehydrated human amnion/chorion membrane (dHACM) allografts on prostate and bladder cancer growth in the setting of residual disease and positive surgical margins. Materials and methods: A commercially available version of dHACM was used. Cytokines were identified and quantified, followed by comparative analysis of cell growth in two different human cell lines: prostate cancer (LNCaP) and bladder cancer (UM-UC-3), in vitro and in vivo. Tumor growth between the two groups, membrane versus no membrane implant, was compared and immunohistochemistry studies were conducted to quantify CD-31, Ki-67, and vimentin. A Student’s unpaired t-test was used to determine statistical significance. Results: The UM-UC-3 and LNCaP cells grew quicker in medium plus 10% serum and dHACM extract than in the other media (p = 0.03). A total of 28 distinct cytokines were found in the extract, 11 of which had relatively high concentrations and are associated with prostate and bladder cancer tumor progression. In vivo LNCaP model, after 10 weeks, the median tumor volume in the membrane group was almost threefold larger than the partial resection alone (p = 0.01). Two weeks after resection, in the UM-UC-3 model, the membrane group reached fourfold larger than the partial resection without membrane group (p < 0.01). In both groups, the expression of CD-31 and Ki-67 markers were similar and showed no statistical significance (p > 0.05). It was only in the LNCaP tumors that vimentin expression was significantly higher in the group without membrane compared with the membrane group (p = 0.008). Conclusion: The use of dHACM after partial tumor resection is related to faster tumor relapse and growth in prostate and urothelial cancer in vivo models, showing a potential risk of rapid local recurrence in patients at high risk of positive margins.
Collapse
Affiliation(s)
- Ricardo G Alvim
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher Hughes
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Somma
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karan K Nagar
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nathan C Wong
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen La Rosa
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sebastien Monette
- Laboratory of Comparative Pathology and the Genetically Modified Animal Phenotyping Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kwanghee Kim
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan A Coleman
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
10
|
Xu M, Jiang H, Wang H, Liu J, Liu B, Guo Z. SB225002 inhibits prostate cancer invasion and attenuates the expression of BSP, OPN and MMP‑2. Oncol Rep 2018; 40:726-736. [PMID: 29917166 PMCID: PMC6072299 DOI: 10.3892/or.2018.6504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/31/2018] [Indexed: 11/14/2022] Open
Abstract
The mechanisms of malignant cell metastasis to secondary sites are complex and multifactorial. Studies have demonstrated that small integrin-binding ligand N-linked glycoproteins (SIBLINGs), particularly bone sialoprotein (BSP) and osteopontin (OPN), are involved in neoplastic growth and metastasis. SIBLINGs promote malignant cell invasion and metastasis by enhancing matrix metalloproteinase 2 (MMP-2) and MMP-9 expression. Moreover, BSP and OPN can combine with integrin, which is located on the tumor cell surface, to further promote the malignant behavior of tumor cells. In the present study, we investigated whether SB225002, a specific CXCR2 receptor antagonist, can inhibit prostate cancer cell expression of BSP and OPN and reduce cancer cell invasion ability. A series of experiments showed that after SB225002 treatment, the proliferation, invasion and migration of two androgen-independent prostate cancer cell lines were inhibited, but this inhibitory effect was not observed on androgen-dependent prostate cancer cells. Western blotting showed that the PI3K signaling pathway could regulate the expression of SIBLING and MMP family proteins, and SB22055 could reduce the expression of BSP, OPN and MMP-2 in prostate cancer cells by inhibiting AKT/mTOR phosphorylation. Finally, in vivo experiments confirmed that SB225002 inhibited the proliferation of prostate cancer cells in vivo, and the expression levels of BSP, OPN and MMP-2 were also inhibited.
Collapse
Affiliation(s)
- Meng Xu
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Huamao Jiang
- Graduate School of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Haiguang Wang
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Jiajie Liu
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Baohao Liu
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Zhongqiang Guo
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
11
|
A prospective clinical study of the implications of IL-8 in the diagnosis, aggressiveness and prognosis of prostate cancer. Future Sci OA 2017; 4:FSO266. [PMID: 29379640 PMCID: PMC5778381 DOI: 10.4155/fsoa-2017-0084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/12/2017] [Indexed: 12/29/2022] Open
Abstract
Aim We evaluated the relationship between IL-8 and prostate cancer (PCa) with emphasis on diagnosis, aggressiveness and prognosis. Materials & methods Prostate-specific antigen (PSA) and serum IL-8 were collected from patients undergoing prostate biopsy. IL-8 expression was evaluated on immunohistochemistry with IL-8 labeling index. Complete follow-up of this cohort was achieved over a period of up to 6 years with continuous follow-up of PSA levels. Results Among 135 patients, serum IL-8 level did not correlate to the diagnosis or aggressiveness of PCa. In 52 radical prostatectomy specimens, a higher IL-8 labeling index was detected in the tumor areas (0.4 ± 0.2 vs 0.33 ± 0.2; p = 0,007) but did not correlate to any of the prognostic markers: D'Amico classification (p = 0.52), Gleason score (p = 0.45), perineural (p = 0.83) and capsular invasion (p = 0.75). No correlation was found to PSA biochemical-free failure. Conclusion IL-8 serum level was not a significant predictor of diagnosis, aggressiveness or prognosis of PCa.
Collapse
|
12
|
Neveu B, Jain P, Têtu B, Wu L, Fradet Y, Pouliot F. A PCA3 gene-based transcriptional amplification system targeting primary prostate cancer. Oncotarget 2016; 7:1300-10. [PMID: 26594800 PMCID: PMC4811461 DOI: 10.18632/oncotarget.6360] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/15/2015] [Indexed: 12/11/2022] Open
Abstract
Targeting specifically primary prostate cancer (PCa) cells for immune therapy, gene therapy or molecular imaging is of high importance. The PCA3 long non-coding RNA is a unique PCa biomarker and oncogene that has been widely studied. This gene has been mainly exploited as an accurate diagnostic urine biomarker for PCa detection. In this study, the PCA3 promoter was introduced into a new transcriptional amplification system named the 3-Step Transcriptional Amplification System (PCA3-3STA) and cloned into type 5 adenovirus. PCA3-3STA activity was highly specific for PCa cells, ranging between 98.7- and 108.0-fold higher than that for benign primary prostate epithelial or non-PCa cells, respectively. In human PCa xenografts, PCA3-3STA displayed robust bioluminescent signals at levels that are sufficient to translate to positron emission tomography (PET)-based reporter imaging. Remarkably, when freshly isolated benign or cancerous prostate biopsies were infected with PCA3-3STA, the optical signal produced from primary PCa biopsies was significantly higher than from benign prostate biopsies (4.4-fold, p < 0.0001). PCA3-3STA therefore represents a PCa-specific expression system with the potential to target, with high accuracy, primary or metastatic PCa epithelial cells for imaging, vaccines, or gene therapy.
Collapse
Affiliation(s)
- Bertrand Neveu
- Département de Chirurgie, Faculté de Médecine, Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Pallavi Jain
- Département de Chirurgie, Faculté de Médecine, Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Bernard Têtu
- Département de Biochimie et Pathologie, Faculté de Médecine, Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.,Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Yves Fradet
- Département de Chirurgie, Faculté de Médecine, Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Frédéric Pouliot
- Département de Chirurgie, Faculté de Médecine, Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Canada
| |
Collapse
|
13
|
Sciarra A, Gentilucci A, Salciccia S, Pierella F, Del Bianco F, Gentile V, Silvestri I, Cattarino S. Prognostic value of inflammation in prostate cancer progression and response to therapeutic: a critical review. J Inflamm (Lond) 2016; 13:35. [PMID: 27924136 PMCID: PMC5123292 DOI: 10.1186/s12950-016-0143-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/17/2016] [Indexed: 12/23/2022] Open
Abstract
Prostate is an immune-competent organ normally populated by inflammatory cells. Prostatic inflammation origin can be multi-factorial and there are some emerging evidences on its possible role as a factor involved in prostate cancer (PC) pathogenesis and progression. This review critically analyzes the role of inflammation as a prognostic factor for progression and aggressiveness of PC. We verified the last 10 years literature data on the association between inflammation and PC aggressiveness, or PC response to therapies. Several studies tried to correlate different inflammatory factors with the aggressiveness and metastatization of PC; all data sustain the role of inflammation in PC progression but they also produce confusion to identify a reliable clinical prognostic marker. Data on patients submitted to radical prostatectomy (RP) showed that cases with marked intraprostatic tissue inflammation are associated with higher rate of biochemical progression; systemic inflammation markers appear to have a significant prognostic value. Analyzing data on patients submitted to radiotherapy (RT) emerges a significant association between high neuthrophil to lymphocyte ratio (NLR) and decreased progression free survival and overall survival; also plateled to lymphocyte ratio (PLR) and C-reactive protein (CRP) have been proposed as significant prognostic factors for progression and overall survival. In patients submitted to androgen deprivation therapy (ADT), inflammation may drive castration resistant PC (CRPC) development by activation of STAT3 in PC cells. NLR has been proposed as independent predictor of overall survival in CRPC submitted to chemotherapy. Most of data are focused on markers related to systemic inflammation such as NLR and CRP, more than specifically to chronic prostatic inflammation. The suggestion is that these inflammatory parameters, also if not specific for prostatic inflammation and possibly influenced by several factors other than PC, can integrate with established prognostic factors.
Collapse
Affiliation(s)
- Alessandro Sciarra
- Department of Urology, University Sapienza of Rome, Rome, Italy
- Department of Urological science, University Sapienza, Viale Policlinico 155, 00161 Rome, Italy
| | | | | | | | | | | | - Ida Silvestri
- Department of Molecular Medicine, University Sapienza of Rome, Rome, Italy
| | | |
Collapse
|
14
|
Sridharan DM, Asaithamby A, Blattnig SR, Costes SV, Doetsch PW, Dynan WS, Hahnfeldt P, Hlatky L, Kidane Y, Kronenberg A, Naidu MD, Peterson LE, Plante I, Ponomarev AL, Saha J, Snijders AM, Srinivasan K, Tang J, Werner E, Pluth JM. Evaluating biomarkers to model cancer risk post cosmic ray exposure. LIFE SCIENCES IN SPACE RESEARCH 2016; 9:19-47. [PMID: 27345199 PMCID: PMC5613937 DOI: 10.1016/j.lssr.2016.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/11/2016] [Indexed: 06/06/2023]
Abstract
Robust predictive models are essential to manage the risk of radiation-induced carcinogenesis. Chronic exposure to cosmic rays in the context of the complex deep space environment may place astronauts at high cancer risk. To estimate this risk, it is critical to understand how radiation-induced cellular stress impacts cell fate decisions and how this in turn alters the risk of carcinogenesis. Exposure to the heavy ion component of cosmic rays triggers a multitude of cellular changes, depending on the rate of exposure, the type of damage incurred and individual susceptibility. Heterogeneity in dose, dose rate, radiation quality, energy and particle flux contribute to the complexity of risk assessment. To unravel the impact of each of these factors, it is critical to identify sensitive biomarkers that can serve as inputs for robust modeling of individual risk of cancer or other long-term health consequences of exposure. Limitations in sensitivity of biomarkers to dose and dose rate, and the complexity of longitudinal monitoring, are some of the factors that increase uncertainties in the output from risk prediction models. Here, we critically evaluate candidate early and late biomarkers of radiation exposure and discuss their usefulness in predicting cell fate decisions. Some of the biomarkers we have reviewed include complex clustered DNA damage, persistent DNA repair foci, reactive oxygen species, chromosome aberrations and inflammation. Other biomarkers discussed, often assayed for at longer points post exposure, include mutations, chromosome aberrations, reactive oxygen species and telomere length changes. We discuss the relationship of biomarkers to different potential cell fates, including proliferation, apoptosis, senescence, and loss of stemness, which can propagate genomic instability and alter tissue composition and the underlying mRNA signatures that contribute to cell fate decisions. Our goal is to highlight factors that are important in choosing biomarkers and to evaluate the potential for biomarkers to inform models of post exposure cancer risk. Because cellular stress response pathways to space radiation and environmental carcinogens share common nodes, biomarker-driven risk models may be broadly applicable for estimating risks for other carcinogens.
Collapse
Affiliation(s)
| | | | - Steve R Blattnig
- Langley Research Center, Langley Research Center (LaRC), VA, United States
| | - Sylvain V Costes
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | | | | | | | - Lynn Hlatky
- CCSB-Tufts School of Medicine, Boston, MA, United States
| | - Yared Kidane
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Amy Kronenberg
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Mamta D Naidu
- CCSB-Tufts School of Medicine, Boston, MA, United States
| | - Leif E Peterson
- Houston Methodist Research Institute, Houston, TX, United States
| | - Ianik Plante
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Artem L Ponomarev
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Janapriya Saha
- UT Southwestern Medical Center, Dallas, TX, United States
| | | | | | - Jonathan Tang
- Exogen Biotechnology, Inc., Berkeley, CA, United States
| | | | - Janice M Pluth
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
15
|
Abstract
The global epidemic of obesity is closely linked to the development of serious co-morbidities, including many forms of cancer. Epidemiological evidence consistently shows that obesity is associated with a similar or mildly increased incidence of prostate cancer but, more prominently, an increased risk for aggressive prostate cancer and prostate cancer-specific mortality. Studies in mice demonstrate that obesity induced by high-fat feeding increases prostate cancer progression; however, the mechanisms underpinning this relationship remain incompletely understood. Adipose tissue expansion in obesity leads to local tissue dysfunction and is associated with low-grade inflammation, alterations in endocrine function and changes in lipolysis that result in increased delivery of fatty acids to tissues of the body. The human prostate gland is covered anteriorly by the prominent peri-prostatic adipose tissue and laterally by smaller adipose tissue depots that lie directly adjacent to the prostatic surface. We discuss how the close association between dysfunctional adipose tissue and prostate epithelial cells might result in bi-directional communication to cause increased prostate cancer aggressiveness and progression. However, the literature indicates that several 'mainstream' hypotheses regarding obesity-related drivers of prostate cancer progression are not yet supported by a solid evidence base and, in particular, are not supported by experiments using human tissue. Understanding the links between obesity and prostate cancer will have major implications for the health policy for men with prostate cancer and the development of new therapeutic or preventative strategies.
Collapse
Affiliation(s)
- Renea A Taylor
- Department of PhysiologyCancer Program and Obesity and Metabolic Disease Program, Biomedicine Discovery Institute, Monash University, Wellington Road, Victoria 3800, Australia
| | - Jennifer Lo
- Department of PhysiologyCancer Program and Obesity and Metabolic Disease Program, Biomedicine Discovery Institute, Monash University, Wellington Road, Victoria 3800, Australia
| | - Natasha Ascui
- Department of PhysiologyCancer Program and Obesity and Metabolic Disease Program, Biomedicine Discovery Institute, Monash University, Wellington Road, Victoria 3800, Australia
| | - Matthew J Watt
- Department of PhysiologyCancer Program and Obesity and Metabolic Disease Program, Biomedicine Discovery Institute, Monash University, Wellington Road, Victoria 3800, Australia
| |
Collapse
|
16
|
Lee H, Jeong SJ, Hong SK, Byun SS, Lee SE, Oh JJ. High preoperative neutrophil-lymphocyte ratio predicts biochemical recurrence in patients with localized prostate cancer after radical prostatectomy. World J Urol 2015; 34:821-7. [PMID: 26449784 DOI: 10.1007/s00345-015-1701-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/24/2015] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To investigate the association between preoperative neutrophil-lymphocyte ratio (NLR) and oncological outcomes in patients with localized prostate cancer (PCa) after radical prostatectomy (RP). METHODS We retrospectively reviewed the records of 1367 patients who underwent RP between November 2003 and April 2012. Patients who underwent a concurrent biopsy/procedure in other organs, had evidence of acute infection, or had systemic inflammatory disease were excluded. We divided the patients by NLR level and analyzed their perioperative outcomes. To determine NLR significance, we performed a multivariate logistic regression analysis of the pathological adverse outcomes and a Cox proportional hazard analysis of the biochemical recurrence (BCR), which was defined as a prostate-specific antigen level ≥0.2 ng/mL on two consecutive tests. RESULTS Among the 1367 patients, 158 (11.6 %) in the high-NLR (≥2.5) group had a higher biopsy Gleason score (p < 0.001), pathological Gleason score (p < 0.001), and pathological stage (p < 0.001) than patients in the low-NLR (<2.5) group (n = 1209, 88.4 %). Multivariate analysis revealed that high NLR was significantly correlated with adverse pathological outcomes of higher pathological stage (HR 1.688; 95 % CI 1.142-2.497; p = 0.009) and extracapsular extension (HR 1.698; 95 % CI 1.146-2.516; p = 0.008). Kaplan-Meier analysis showed significantly worse BCR-free survival (p < 0.001) in patients with a high NLR. A high NLR was a significant predictor of BCR after RP (HR 1.358; 95 % CI 1.008-1.829; p = 0.044). CONCLUSIONS High NLR was significantly related to unfavorable clinicopathological outcomes and worse BCR-free survival. Further studies are needed to clarify the correlation between NLR and PCa.
Collapse
Affiliation(s)
- Hakmin Lee
- Department of Urology, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Korea
| | - Seong Jin Jeong
- Department of Urology, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Korea
| | - Sung Kyu Hong
- Department of Urology, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Korea
| | - Seok-Soo Byun
- Department of Urology, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Korea
| | - Sang Eun Lee
- Department of Urology, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Korea
| | - Jong Jin Oh
- Department of Urology, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Korea.
| |
Collapse
|