1
|
Enkhmandakh B, Robson P, Joshi P, Vijaykumar A, Shin DG, Mina M, Bayarsaihan D. Single-Cell Transcriptome Analysis Defines Expression of Kabuki Syndrome-Associated KMT2D Targets and Interacting Partners. Stem Cells Int 2022; 2022:4969441. [PMID: 35992033 PMCID: PMC9391158 DOI: 10.1155/2022/4969441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/13/2022] [Accepted: 07/30/2022] [Indexed: 11/18/2022] Open
Abstract
Objectives. Kabuki syndrome (KS) is a rare genetic disorder characterized by developmental delay, retarded growth, and cardiac, gastrointestinal, neurocognitive, renal, craniofacial, dental, and skeletal defects. KS is caused by mutations in the genes encoding histone H3 lysine 4 methyltransferase (KMT2D) and histone H3 lysine 27 demethylase (KDM6A), which are core components of the complex of proteins associated with histone H3 lysine 4 methyltransferase SET1 (SET1/COMPASS). Using single-cell RNA data, we examined the expression profiles of Kmt2d and Kdm6a in the mouse dental pulp. In the incisor pulp, Kmt2d and Kdm6a colocalize with other genes of the SET1/COMPASS complex comprised of the WD-repeat protein 5 gene (Wdr5), the retinoblastoma-binding protein 5 gene (Rbbp5), absent, small, and homeotic 2-like protein-encoding gene (Ash2l), nuclear receptor cofactor 6 gene (Ncoa6), and Pax-interacting protein 1 gene (Ptip1). In addition, we found that Kmt2d and Kdm6a coexpress with the downstream target genes of the Wingless and Integrated (WNT) and sonic hedgehog signaling pathways in mesenchymal stem/stromal cells (MSCs) at different stages of osteogenic differentiation. Taken together, our results suggest an essential role of KMT2D and KDK6A in directing lineage-specific gene expression during differentiation of MSCs.
Collapse
Affiliation(s)
- Badam Enkhmandakh
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Pujan Joshi
- Computer Science and Engineering Department, University of Connecticut, 371 Fairfield Way, Unit 4155, Storrs, CT 06269, USA
| | - Anushree Vijaykumar
- Department of Craniofacial Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Dong-Guk Shin
- Computer Science and Engineering Department, University of Connecticut, 371 Fairfield Way, Unit 4155, Storrs, CT 06269, USA
| | - Mina Mina
- Department of Craniofacial Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Dashzeveg Bayarsaihan
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
- Institute for System Genomics, University of Connecticut, Engineering Science Building Rm. 305, 67 North Eagleville Road, Storrs, CT 06269, USA
| |
Collapse
|
2
|
Li S, Liu J, Yuan Y, Lu A, Liu F, Sun L, Shen Q, Wang L. Case report: A study on the de novo KMT2D variant of Kabuki syndrome with Goodpasture's syndrome by whole exome sequencing. Front Pediatr 2022; 10:933693. [PMID: 36090579 PMCID: PMC9459111 DOI: 10.3389/fped.2022.933693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Kabuki syndrome (KS) is a rare genetic disorder characterized by dysmorphic facial features, skeletal abnormalities, and intellectual disability. KMT2D and KDM6A were identified as the main causative genes. To our knowledge, there exist no cases of KS, which were reported with pneumorrhagia. In this study, a 10-month-old male was diagnosed to have KS with typical facial features, skeletal anomalies, and serious postnatal growth retardation. Whole exome sequencing of the trio family revealed the presence of a de novo KMT2D missense variant (c.15143G > A, p. R5048H). The child was presented to the pediatric emergency department several times because of cough, hypoxemia, and anemia. After performing chest CT and fiberoptic bronchoscopy, we found that the child had a pulmonary hemorrhage. During research on the cause of pulmonary hemorrhage, the patient's anti-GBM antibodies gradually became positive, and the urine microalbumin level was elevated at the age of 12-month-old. After glucocorticoids and immunosuppressant therapy, the patient became much better. But he had recurrent pulmonary hemorrhage at the age of 16 months. Therefore, the patient underwent digital subtraction angiography (DSA). However, the DSA showed three abnormal bronchial arteries. This single case expands the phenotypes of patients with KS and Goodpasture's syndrome, which were found to have a de novo KMT2D missense variant.
Collapse
Affiliation(s)
- Shuolin Li
- Department of Respiration, Children's Hospital of Fudan University, Shanghai, China
| | - Jing Liu
- Department of Respiration, Children's Hospital of Fudan University, Shanghai, China
| | - Yuan Yuan
- Department of Respiration, Children's Hospital of Fudan University, Shanghai, China
| | - Aizhen Lu
- Department of Respiration, Children's Hospital of Fudan University, Shanghai, China
| | - Fang Liu
- Department of Cardiovascular, Children's Hospital of Fudan University, Shanghai, China
| | - Li Sun
- Department of Rheumatology, Children's Hospital of Fudan University, Shanghai, China
| | - Quanli Shen
- Department of Radiology, Children's Hospital of Fudan University, Shanghai, China
| | - Libo Wang
- Department of Respiration, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|