1
|
Ammous-Boukhris N, Abdelmaksoud-Dammak R, Ben Ayed-Guerfali D, Guidara S, Jallouli O, Kamoun H, Charfi Triki C, Mokdad-Gargouri R. Case report: Compound heterozygous variants detected by next-generation sequencing in a Tunisian child with ataxia-telangiectasia. Front Neurol 2024; 15:1344018. [PMID: 38882696 PMCID: PMC11178103 DOI: 10.3389/fneur.2024.1344018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Ataxia-telangiectasia (A-T) is an autosomal recessive primary immunodeficiency disorder (PID) caused by biallelic mutations occurring in the serine/threonine protein kinase (ATM) gene. The major role of nuclear ATM is the coordination of cell signaling pathways in response to DNA double-strand breaks, oxidative stress, and cell cycle checkpoints. Defects in ATM functions lead to A-T syndrome with phenotypic heterogeneity. Our study reports the case of a Tunisian girl with A-T syndrome carrying a compound heterozygous mutation c.[3894dupT]; p.(Ala1299Cysfs3;rs587781823), with a splice acceptor variant: c.[5763-2A>C;rs876659489] in the ATM gene that was identified by next-generation sequencing (NGS). Further genetic analysis of the family showed that the mother carried the c.[5763-2A>C] splice acceptor variant, while the father harbored the c.[3894dupT] variant in the heterozygous state. Molecular analysis provides the opportunity for accurate diagnosis and timely management in A-T patients with chronic progressive disease, especially infections and the risk of malignancies. This study characterizes for the first time the identification of compound heterozygous ATM pathogenic variants by NGS in a Tunisian A-T patient. Our study outlines the importance of molecular genetic testing for A-T patients, which is required for earlier detection and reducing the burden of disease in the future, using the patients' families.
Collapse
Affiliation(s)
- Nihel Ammous-Boukhris
- Laboratory of Eukaryotes' Molecular Biotechnology, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Rania Abdelmaksoud-Dammak
- Laboratory of Eukaryotes' Molecular Biotechnology, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Dorra Ben Ayed-Guerfali
- Laboratory of Eukaryotes' Molecular Biotechnology, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Souhir Guidara
- Department of Human Genetics, Hedi Chaker Hospital, Sfax, Tunisia
| | - Olfa Jallouli
- Department of NeuroPediatry, Hedi Chaker Hospital, Sfax, Tunisia
| | - Hassen Kamoun
- Department of Human Genetics, Hedi Chaker Hospital, Sfax, Tunisia
| | | | - Raja Mokdad-Gargouri
- Laboratory of Eukaryotes' Molecular Biotechnology, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
2
|
Sun JKL, Wong GCN, Chow KHM. Cross-talk between DNA damage response and the central carbon metabolic network underlies selective vulnerability of Purkinje neurons in ataxia-telangiectasia. J Neurochem 2023; 166:654-677. [PMID: 37319113 DOI: 10.1111/jnc.15881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Cerebellar ataxia is often the first and irreversible outcome in the disease of ataxia-telangiectasia (A-T), as a consequence of selective cerebellar Purkinje neuronal degeneration. A-T is an autosomal recessive disorder resulting from the loss-of-function mutations of the ataxia-telangiectasia-mutated ATM gene. Over years of research, it now becomes clear that functional ATM-a serine/threonine kinase protein product of the ATM gene-plays critical roles in regulating both cellular DNA damage response and central carbon metabolic network in multiple subcellular locations. The key question arises is how cerebellar Purkinje neurons become selectively vulnerable when all other cell types in the brain are suffering from the very same defects in ATM function. This review intended to comprehensively elaborate the unexpected linkages between these two seemingly independent cellular functions and the regulatory roles of ATM involved, their integrated impacts on both physical and functional properties, hence the introduction of selective vulnerability to Purkinje neurons in the disease will be addressed.
Collapse
Affiliation(s)
- Jacquelyne Ka-Li Sun
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Genper Chi-Ngai Wong
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Kim Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong
- Nexus of Rare Neurodegenerative Diseases, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
3
|
Moeini Shad T, Yazdani R, Amirifar P, Delavari S, Heidarzadeh Arani M, Mahdaviani SA, Sadeghi-Shabestari M, Aghamohammadi A, Rezaei N, Abolhassani H. Atypical Ataxia Presentation in Variant Ataxia Telangiectasia: Iranian Case-Series and Review of the Literature. Front Immunol 2022; 12:779502. [PMID: 35095854 PMCID: PMC8795590 DOI: 10.3389/fimmu.2021.779502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Ataxia-telangiectasia (AT) is a rare autosomal recessive neurodegenerative multisystem disorder. A minority of AT patients can present late-onset atypical presentations due to unknown mechanisms. The demographic, clinical, immunological and genetic data were collected by direct interview and examining the Iranian AT patients with late-onset manifestations. We also conducted a systematic literature review for reported atypical AT patients. We identified three Iranian AT patients (3/249, 1.2% of total registry) with later age at ataxia onset and slower neurologic progression despite elevated alpha-fetoprotein levels, history of respiratory infections, and immunological features of the syndrome. Of note, all patients developed autoimmunity in which a decrease of naïve T cells and regulatory T cells were observed. The literature searches also summarized data from 73 variant AT patients with atypical presentation indicating biallelic mild mutations mainly lead to an atypical phenotype with an increased risk of cancer. Variant AT patients present with milder phenotype or atypical form of classical symptoms causing under- or mis- diagnosis. Although missense mutations are more frequent, an atypical presentation can be associated with deleterious mutations due to unknown modifying factors.
Collapse
Affiliation(s)
- Tannaz Moeini Shad
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Parisa Amirifar
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
4
|
Amirifar P, Mehrmohamadi M, Ranjouri MR, Akrami SM, Rezaei N, Saberi A, Yazdani R, Abolhassani H, Aghamohammadi A. Genetic Risk Variants for Class Switching Recombination Defects in Ataxia-Telangiectasia Patients. J Clin Immunol 2021; 42:72-84. [PMID: 34628594 PMCID: PMC8821084 DOI: 10.1007/s10875-021-01147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/27/2021] [Indexed: 11/04/2022]
Abstract
Background Ataxia-telangiectasia (A-T) is a rare autosomal recessive disorder caused by mutations in the ataxia telangiectasia mutated (ATM) gene. A-T patients manifest considerable variability in clinical and immunological features, suggesting the presence of genetic modifying factors. A striking heterogeneity has been observed in class switching recombination (CSR) in A-T patients which cannot be explained by the severity of ATM mutations. Methods To investigate the cause of variable CSR in A-T patients, we applied whole-exome sequencing (WES) in 20 A-T patients consisting of 10 cases with CSR defect (CSR-D) and 10 controls with normal CSR (CSR-N). Comparative analyses on modifier variants found in the exomes of these two groups of patients were performed. Results For the first time, we identified some variants in the exomes of the CSR-D group that were significantly associated with antigen processing and presentation pathway. Moreover, in this group of patients, the variants in four genes involved in DNA double-strand breaks (DSB) repair signaling, in particular, XRCC3 were observed, suggesting an association with CSR defect. Conclusion Additional impact of certain variants, along with ATM mutations, may explain the heterogeneity in CSR defect phenotype among A-T patients. It can be concluded that genetic modulators play an important role in the course of A-T disease and its clinical severity. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-021-01147-8.
Collapse
Affiliation(s)
- Parisa Amirifar
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Mahya Mehrmohamadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ranjouri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ali Saberi
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran. .,Division of Clinical Immunology, Department of Biosciences and Nutrition, NEO, Karolinska Institute, Blickagangen 16, 14157, Stockholm, Sweden. .,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran. .,Children's Medical Center Hospital, 62 Qarib St., Keshavarz Blvd, 14194, Tehran, Iran.
| |
Collapse
|
5
|
Ricci A, Orazi S, Biancucci F, Magnani M, Menotta M. The nucleoplasmic interactions among Lamin A/C-pRB-LAP2α-E2F1 are modulated by dexamethasone. Sci Rep 2021; 11:10099. [PMID: 33980953 PMCID: PMC8115688 DOI: 10.1038/s41598-021-89608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/26/2021] [Indexed: 11/09/2022] Open
Abstract
Ataxia telangiectasia (AT) is a rare genetic neurodegenerative disease. To date, there is no available cure for the illness, but the use of glucocorticoids has been shown to alleviate the neurological symptoms associated with AT. While studying the effects of dexamethasone (dex) in AT fibroblasts, by chance we observed that the nucleoplasmic Lamin A/C was affected by the drug. In addition to the structural roles of A-type lamins, Lamin A/C has been shown to play a role in the regulation of gene expression and cell cycle progression, and alterations in the LMNA gene is cause of human diseases called laminopathies. Dex was found to improve the nucleoplasmic accumulation of soluble Lamin A/C and was capable of managing the large chromatin Lamin A/C scaffolds contained complex, thus regulating epigenetics in treated cells. In addition, dex modified the interactions of Lamin A/C with its direct partners lamin associated polypeptide (LAP) 2a, Retinoblastoma 1 (pRB) and E2F Transcription Factor 1 (E2F1), regulating local gene expression dependent on E2F1. These effects were differentially observed in both AT and wild type (WT) cells. To our knowledge, this is the first reported evidence of the role of dex in Lamin A/C dynamics in AT cells, and may represent a new area of research regarding the effects of glucocorticoids on AT. Moreover, future investigations could also be extended to healthy subjects or to other pathologies such as laminopathies since glucocorticoids may have other important effects in these contexts as well.
Collapse
Affiliation(s)
- Anastasia Ricci
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via A. Saffi 2, 61029, Urbino, Italy
| | - Sara Orazi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via A. Saffi 2, 61029, Urbino, Italy
| | - Federica Biancucci
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via A. Saffi 2, 61029, Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via A. Saffi 2, 61029, Urbino, Italy
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via A. Saffi 2, 61029, Urbino, Italy.
| |
Collapse
|
6
|
Ahmadi A, De Toma I, Vilor-Tejedor N, Eftekhariyan Ghamsari MR, Sadeghi I. Transposable elements in brain health and disease. Ageing Res Rev 2020; 64:101153. [PMID: 32977057 DOI: 10.1016/j.arr.2020.101153] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 07/22/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Transposable elements (TEs) occupy a large fraction of the human genome but only a small proportion of these elements are still active today. Recent works have suggested that TEs are expressed and active in the brain, challenging the dogma that neuronal genomes are static and revealing that they are susceptible to somatic genomic alterations. These new findings have major implications for understanding the neuroplasticity of the brain, which could hypothetically have a role in behavior and cognition, and contribute to vulnerability to disease. As active TEs could induce genetic diversity and mutagenesis, their influences on human brain development and diseases are of great interest. In this review, we will focus on the active TEs in the human genome and discuss in detail their impacts on human brain development. Furthermore, the association between TEs and brain-related diseases is discussed.
Collapse
|
7
|
Cutaneous and systemic granulomatosis in ataxia-telangiectasia: a clinico-pathological study. Postepy Dermatol Alergol 2020; 37:760-765. [PMID: 33240017 PMCID: PMC7675092 DOI: 10.5114/ada.2020.100485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/25/2019] [Indexed: 12/14/2022] Open
Abstract
Introduction The development of granulomas is a well-recognized manifestation of immunodeficiency in ataxia-telangiectasia (A-T), resulting from lymphocyte developmental abnormalities, impaired immunosurveillance, and inappropriate innate immune response-driven inflammation. Aim To better understand pathological and immunological phenomena involved in development of cutaneous and visceral granulomatosis observable in patients with ataxia-telangiectasia. Material and methods We retrospectively reviewed medical records of eight A-T children, aged from 2 to 13 years, with regard to clinical, immunological and histopathological features of cutaneous and visceral granulomatosis. Results In four out of eight A-T patients studied, cutaneous granulomas clinically presented as skin nodules and ulcerated erythematous plaques disseminated on the face, and on trauma-prone areas of upper and lower extremities. Visceral granulomatosis had a severe clinical course and involved the lungs, the spleen, the liver and the larynx. Histologically, cutaneous and laryngeal granulomas showed extensive cellular infiltrations containing T lymphocytes with predominating CD8+ phenotype and with CD68+ histiocytes. The immunological profile with the hyper-IgM phenotype, markedly reduced numbers of B and naive CD4+ and CD8+ T cells with predominating IgM-only memory B cells and skewed repertoire of a T cell receptor was observable in patients with skin and visceral granulomatosis. Conclusions In the setting of combined immunodeficiency in A-T, cutaneous and systemic granulomatosis reflects a granulomatous reaction pattern, as a result of inappropriate immune regulation.
Collapse
|
8
|
Li XL, Wang YL. Ataxia-telangiectasia complicated with Hodgkin's lymphoma: A case report. World J Clin Cases 2020; 8:2387-2391. [PMID: 32548172 PMCID: PMC7281062 DOI: 10.12998/wjcc.v8.i11.2387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/09/2020] [Accepted: 05/16/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Ataxia-telangiectasia (AT) is a rare, autosomal recessive, multisystem disorder. Because most clinicians have low awareness of the disease, only scarce reports of AT exist in the literature, especially of cases with lymphoma/leukemia.
CASE SUMMARY A 7-year-old girl with a history of recurrent respiratory tract infections was referred to our department because of unstable walking for 5 years and enlarged neck nodes for 2-mo duration. Physical examination revealed scleral telangiectasia and cerebellar ataxia. Elevated alpha-fetoprotein, decreased serum immunoglobulin, and decreased T cell function were the major findings of laboratory examination. Histological analysis of cervical lymph node biopsy was suggestive of classical Hodgkin's lymphoma. Genetic examination showed heterozygous nucleotide variation of c.6679C>T and heterozygous nucleotide variation of c.5773 delG in the ATM gene; her parents were heterozygotes. The final diagnosis was AT with Hodgkin's lymphoma.
CONCLUSION Clinicians should strengthen their understanding of AT diseases. Gene diagnosis plays an important role in its diagnosis and treatment.
Collapse
Affiliation(s)
- Xiao-Ling Li
- Department of Pediatrics (III), The Linyi People’s Hospital, Linyi 276000, Shandong Province, China
| | - Yi-Lin Wang
- Department of Pediatrics (III), The Linyi People’s Hospital, Linyi 276000, Shandong Province, China
| |
Collapse
|
9
|
Accumulation of Cytoplasmic DNA Due to ATM Deficiency Activates the Microglial Viral Response System with Neurotoxic Consequences. J Neurosci 2019; 39:6378-6394. [PMID: 31189575 DOI: 10.1523/jneurosci.0774-19.2019] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 01/07/2023] Open
Abstract
ATM (ataxia-telangiectasia mutated) is a PI3K-like kinase best known for its role in the DNA damage response (DDR), especially after double-strand breaks. Mutations in the ATM gene result in a condition known as ataxia-telangiectasia (A-T) that is characterized by cancer predisposition, radiosensitivity, neurodegeneration, sterility, and acquired immune deficiency. We show here that the innate immune system is not spared in A-T. ATM-deficient microglia adopt an active phenotype that includes the overproduction of proinflammatory cytokines that are toxic to cultured neurons and likely contribute to A-T neurodegeneration. Causatively, ATM dysfunction results in the accumulation of DNA in the cytoplasm of microglia as well as a variety of other cell types. In microglia, cytoplasmic DNA primes an antiviral response via the DNA sensor, STING (stimulator of interferon genes). The importance of this response pathway is supported by our finding that inhibition of STING blocks the overproduction of neurotoxic cytokines. Cytosolic DNA also activates the AIM2 (absent in melanoma 2) containing inflammasome and induces proteolytic processing of cytokine precursors such as pro-IL-1β. Our study furthers our understanding of neurodegeneration in A-T and highlights the role of cytosolic DNA in the innate immune response.SIGNIFICANCE STATEMENT Conventionally, the immune deficiencies found in ataxia-telangiectasia (A-T) patients are viewed as defects of the B and T cells of the acquired immune system. In this study, we demonstrate the microglia of the innate immune system are also affected and uncover the mechanism by which this occurs. Loss of ATM (ataxia-telangiectasia mutated) activity leads to a slowing of DNA repair and an accumulation of cytoplasmic fragments of genomic DNA. This ectopic DNA induces the antivirus response, which triggers the production of neurotoxic cytokines. This expands our understanding of the neurodegeneration found in A-T and offers potentially new therapeutic options.
Collapse
|
10
|
Carranza D, Torres-Rusillo S, Ceballos-Pérez G, Blanco-Jimenez E, Muñoz-López M, García-Pérez JL, Molina IJ. Reconstitution of the Ataxia-Telangiectasia Cellular Phenotype With Lentiviral Vectors. Front Immunol 2018; 9:2703. [PMID: 30515174 PMCID: PMC6255946 DOI: 10.3389/fimmu.2018.02703] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/01/2018] [Indexed: 11/13/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is a complex disease arising from mutations in the ATM gene (Ataxia-Telangiectasia Mutated), which plays crucial roles in repairing double-strand DNA breaks (DSBs). Heterogeneous immunodeficiency, extreme radiosensitivity, frequent appearance of tumors and neurological degeneration are hallmarks of the disease, which carries high morbidity and mortality because only palliative treatments are currently available. Gene therapy was effective in animal models of the disease, but the large size of the ATM cDNA required the use of HSV-1 or HSV/AAV hybrid amplicon vectors, whose characteristics make them unlikely tools for treating A-T patients. Due to recent advances in vector packaging, production and biosafety, we developed a lentiviral vector containing the ATM cDNA and tested whether or not it could rescue cellular defects of A-T human mutant fibroblasts. Although the cargo capacity of lentiviral vectors is an inherent limitation in their use, and despite the large size of the transgene, we successfully transduced around 20% of ATM-mutant cells. ATM expression and phosphorylation assays indicated that the neoprotein was functional in transduced cells, further reinforced by their restored capacity to phosphorylate direct ATM substrates such as p53 and their capability to repair radiation-induced DSBs. In addition, transduced cells also restored cellular radiosensitivity and cell cycle abnormalities. Our results demonstrate that lentiviral vectors can be used to rescue the intrinsic cellular defects of ATM-mutant cells, which represent, in spite of their limitations, a proof-of-concept for A-T gene therapy.
Collapse
Affiliation(s)
- Diana Carranza
- Institute of Biopathology and Regenerative Medicine, Center for Biomedical Research, University of Granada, Granada, Spain
| | - Sara Torres-Rusillo
- Institute of Biopathology and Regenerative Medicine, Center for Biomedical Research, University of Granada, Granada, Spain
| | - Gloria Ceballos-Pérez
- Institute of Biopathology and Regenerative Medicine, Center for Biomedical Research, University of Granada, Granada, Spain
| | - Eva Blanco-Jimenez
- Genomic Medicine Department, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), Granada, Spain
| | - Martin Muñoz-López
- Genomic Medicine Department, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), Granada, Spain
| | - José L. García-Pérez
- Genomic Medicine Department, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), Granada, Spain
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Ignacio J. Molina
- Institute of Biopathology and Regenerative Medicine, Center for Biomedical Research, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada University Hospitals, University of Granada, Granada, Spain
| |
Collapse
|
11
|
Gu Y, Shi J, Qiu S, Qiao Y, Zhang X, Cheng Y, Liu Y. Association between ATM rs1801516 polymorphism and cancer susceptibility: a meta-analysis involving 12,879 cases and 18,054 controls. BMC Cancer 2018; 18:1060. [PMID: 30384829 PMCID: PMC6211574 DOI: 10.1186/s12885-018-4941-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/11/2018] [Indexed: 01/07/2023] Open
Abstract
Background Ataxia telangiectasia mutated (ATM) gene plays a key role in response to DNA lesions and is related to the invasion and metastasis of malignancy. Epidemiological studies have indicated associations between ATM rs1801516 polymorphism and different types of cancer, but their results are inconsistent. To further evaluate the effect of ATM rs1801516 polymorphism on cancer risk, we conducted this meta-analysis. Methods Studies were identified according to specific inclusion criteria by searching PubMed, Web of Science, and Embase databases. Pooled odds ratios (ORs) and corresponding 95% confidence intervals (CIs) under recessive, dominant, codominant, and overdominant models of inheritance were calculated to estimate the association between rs1801516 polymorphism and cancer risk. Results A total of 37 studies with 12,879 cases and 18,054 controls were included in our study. No significant association was found between rs1801516 polymorphism and cancer risk in overall comparisons (AA vs GG + GA: OR = 0.91, 95% CI, 0.78–1.07; AA+GA vs GG: OR = 1.00, 95% CI, 0.90–1.11; AA vs GG: OR = 0.89, 95% CI, 0.75–1.06; GA vs GG: OR = 1.01, 95% CI, 0.91–1.13; GG + AA vs GA: OR = 1.00, 95% CI, 0.88–1.10). However, after subgroup analyses by region-specified population, significant associations were found in European (AA vs GG + GA: OR = 0.79, 95% CI, 0.65–0.96, P = 0.017; AA vs GG: OR = 0.79, 95% CI, 0.65–0.96, P = 0.017), South American (AA+GA vs GG: OR = 2.15, 95% CI, 1.37–3.38, P = 0.001; GA vs GG: OR = 2.19, 95% CI, 1.38–3.47, P = 0.001; GG + AA vs GA: OR = 0.46, 95% CI, 0.29–0.72, P = 0.001), and Asian (AA vs GG + GA: OR = 7.45, 95% CI, 1.31–42.46, P = 0.024; AA vs GG: OR = 7.40, 95% CI, 1.30–42.19, P = 0.024). Subgroup analyses also revealed that compared with subjects carrying a GG genotype, those carrying a homozygote AA had a decreased risk for breast cancer (AA vs GG: OR = 0.76, 95% CI, 0.59–0.98, P = 0.035), and the homozygote AA was associated with decreased cancer risk in subjects with family history (AA vs GG: OR = 0.68, 95% CI, 0.47–0.98, P = 0.039). Conclusions ATM rs1801516 polymorphism is not associated with overall cancer risk in total population. However, for subgroup analyses, this polymorphism is especially associated with breast cancer risk; in addition, it is associated with overall cancer risk in Europeans, South Americans, Asians, and those with family history. Electronic supplementary material The online version of this article (10.1186/s12885-018-4941-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yulu Gu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jikang Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Shuang Qiu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yichun Qiao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xin Zhang
- Department of Pharmacy, First Hospital of Jilin University, Changchun, 130021, China
| | - Yi Cheng
- Department of Cardiovascular Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
12
|
Menotta M, Orazi S, Gioacchini AM, Spapperi C, Ricci A, Chessa L, Magnani M. Proteomics and transcriptomics analyses of ataxia telangiectasia cells treated with Dexamethasone. PLoS One 2018; 13:e0195388. [PMID: 29608596 PMCID: PMC5880408 DOI: 10.1371/journal.pone.0195388] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/21/2018] [Indexed: 12/21/2022] Open
Abstract
Ataxia telangiectasia (A-T) is an incurable and rare hereditary syndrome. In recent times, treatment with glucocorticoid analogues has been shown to improve the neurological symptoms that characterize this condition, but the molecular mechanism of action of these analogues remains unknown. Hence, the aim of this study was to gain insight into the molecular mechanism of action of glucocorticoid analogues in the treatment of A-T by investigating the role of Dexamethasone (Dexa) in A-T lymphoblastoid cell lines. We used 2DE and tandem MS to identify proteins that were influenced by the drug in A-T cells but not in healthy cells. Thirty-four proteins were defined out of a total of 746±63. Transcriptome analysis was performed by microarray and showed the differential expression of 599 A-T and 362 wild type (WT) genes and a healthy un-matching between protein abundance and the corresponding gene expression variation. The proteomic and transcriptomic profiles allowed the network pathway analysis to pinpoint the biological and molecular functions affected by Dexamethasone in Dexa-treated cells. The present integrated study provides evidence of the molecular mechanism of action of Dexamethasone in an A-T cellular model but also the broader effects of the drug in other tested cell lines.
Collapse
Affiliation(s)
- Michele Menotta
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Sara Orazi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | | | - Chiara Spapperi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Anastasia Ricci
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Luciana Chessa
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| |
Collapse
|
13
|
Ataxia telangiectasia in Turkey: multisystem involvement of 91 patients. World J Pediatr 2017; 13:465-471. [PMID: 28120234 DOI: 10.1007/s12519-017-0011-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/25/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Ataxia telangiectasia (AT) is a genetically based multisystemic disorder. We aimed to make a comprehensive evaluation of multisystem involvement in AT by describing clinical features and outcome of 91 patients. METHODS Medical records of the patients who were diagnosed and followed by a multidisciplinary approach during a 27-year period (1988-2015) were reviewed retrospectively. RESULTS Forty six female and 45 male patients with a mean follow-up period of 39.13±4.28 months were evaluated. The mean age at the time of symptom onset and diagnosis were 15.4±1.09 months and 73.61±4.11 months, respectively. Neurological abnormalities were progressive truncal ataxia, nystagmus, dysarthria, oculomotor apraxia and choreoathetosis. Thirty one patients (34.1%) became dependent on wheelchair at a mean age of 12.1±2.8 years. Eleven patients (12.1%) became bedridden by a mean age of 14.7±1.8 years. Cranial magnetic resonance imaging revealed pathological findings in 47/66 patients. Abnormal immunological parameters were determined in 51/91 patients: immunoglobulin (Ig)A deficiency (n=38), lymphopenia (n=30), IgG (n=15) and IgG2 (n=11) deficiency. Occurrence of recurrent sinopulmonary infections (n=45) and bronchiectasis (n=22) were found to be more common in patients with impaired immunological parameters (P=0.029 and P=0.023, respectively). Malignancy developed in 5 patients, being mostly lymphoreticular in origin and resulted in death of 4 patients. CONCLUSIONS AT is a long lasting disease with multisystem involvement necessitating multidisciplinary follow up, as described in our cohort. Early diagnosis of malignancy and supportive treatments regarding pulmonary and neurological health may prolong survival and increase the quality of life.
Collapse
|
14
|
Gao SB, Li KL, Qiu H, Zhu LY, Pan CB, Zhao Y, Wei SH, Shi S, Jin GH, Xue LX. Enhancing chemotherapy sensitivity by targeting PcG via the ATM/p53 pathway. Am J Cancer Res 2017; 7:1874-1883. [PMID: 28979810 PMCID: PMC5622222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023] Open
Abstract
Histone modification and chromatin remodeling are important events in response to DNA damage, and Polycomb group (PcG) proteins, catalyzing H3K27 methylation, are involved. However, the biological function and mechanism of PcG in DNA damage are not fully understood. Additionally, downstream effectors in hepatocellular carcinoma (HCC) remain unclear. The present study investigated the biological and mechanistic roles of PcG in the DNA damage response induced by chemotherapeutic drugs in HCC. It was found that chemotherapy drugs, such as epirubicin (EPB) and mitomycin C (MMC), effectively blocked expression of PcG in p53-wild-type HepG2 cells but not in PLC/PRF5 and Hep3B cells with p53 mutation or deletion. PcG-related target genes involved in DNA damage were identified, including p53, Ataxia telangiectasia mutated (ATM) and Forkhead box O3 (FOXO3). Moreover, targeting PcG-induced p53 expression was associated with increased drug sensitivity in HCC cells. shRNA targeting enhancer of zeste homolog 2 (EZH2) or its inhibitor GSK126 significantly promoted chemotherapeutic drug-induced genotoxicity and increased HepG2 cell chemosensitivity. Mechanistically, chromatin immunoprecipitation (ChIP) assays confirmed that PcG binds to the ATM promoter and inhibits its expression through covalent modification of H3K27me3. Herein, we establish a potential chemotherapy association with GSK126, and the findings suggest this link might represent a new strategy for increasing the sensitivity of HCC to chemotherapeutic agents.
Collapse
Affiliation(s)
- Shu-Bin Gao
- Department of Basic Medical Sciences, Medical College, Xiamen UniversityChengzhi Building 110, Xiang’an South Road, Xiamen P.R. China
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen UniversityChengzhi Building 110, Xiang’an South Road, Xiamen P.R. China
| | - Kang-Li Li
- Department of Basic Medical Sciences, Medical College, Xiamen UniversityChengzhi Building 110, Xiang’an South Road, Xiamen P.R. China
| | - Huan Qiu
- Department of Basic Medical Sciences, Medical College, Xiamen UniversityChengzhi Building 110, Xiang’an South Road, Xiamen P.R. China
| | - Ling-Yu Zhu
- Department of Basic Medical Sciences, Medical College, Xiamen UniversityChengzhi Building 110, Xiang’an South Road, Xiamen P.R. China
| | - Chang-Bao Pan
- Department of Basic Medical Sciences, Medical College, Xiamen UniversityChengzhi Building 110, Xiang’an South Road, Xiamen P.R. China
| | - Yue Zhao
- Department of Basic Medical Sciences, Medical College, Xiamen UniversityChengzhi Building 110, Xiang’an South Road, Xiamen P.R. China
| | - Shu-Hua Wei
- Medical Research Center, Department of Radiation Oncology, Peking University Third Hospital49 Huayuan North Road, Beijing 100191, P.R. China
| | - Shu Shi
- Department of Microbiology, Peking University Health Science Center38 Xue Yuan Road, Beijing 100191, P.R. China
| | - Guang-Hui Jin
- Department of Basic Medical Sciences, Medical College, Xiamen UniversityChengzhi Building 110, Xiang’an South Road, Xiamen P.R. China
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen UniversityChengzhi Building 110, Xiang’an South Road, Xiamen P.R. China
| | - Li-Xiang Xue
- Medical Research Center, Department of Radiation Oncology, Peking University Third Hospital49 Huayuan North Road, Beijing 100191, P.R. China
| |
Collapse
|
15
|
Rondon-Melo S, de Almeida IJ, Andrade CRFD, Sassi FC, Molini-Avejonas DR. Ataxia Telangiectasia in Siblings: Oral Motor and Swallowing Characterization. AMERICAN JOURNAL OF CASE REPORTS 2017; 18:783-789. [PMID: 28698541 PMCID: PMC5518845 DOI: 10.12659/ajcr.903592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Case series Patient: Male, 23 • Female, 20 Final Diagnosis: Ataxia telnagiectasia Symptoms: Gagging • coughing • hoarseness • articulatory inaccuracy Medication: — Clinical Procedure: Oral motor and swallowing assessment Specialty: Neurology
Collapse
Affiliation(s)
- Silmara Rondon-Melo
- Department of Physiotherapy, Speech-Language and Hearing Sciences and Occupational Therapy, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Isabel Junqueira de Almeida
- Department of Physiotherapy, Speech-Language and Hearing Sciences and Occupational Therapy, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Claudia Regina Furquim de Andrade
- Department of Physiotherapy, Speech-Language and Hearing Sciences and Occupational Therapy, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Fernanda Chiarion Sassi
- Department of Physiotherapy, Speech-Language and Hearing Sciences and Occupational Therapy, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Daniela Regina Molini-Avejonas
- Department of Physiotherapy, Speech-Language and Hearing Sciences and Occupational Therapy, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
16
|
Shin JG, Kim JH, Park CS, Kim BJ, Kim JW, Choi IG, Hwang J, Shin HD, Woo SI. Gender-Specific Associations between CHGB Genetic Variants and Schizophrenia in a Korean Population. Yonsei Med J 2017; 58:619-625. [PMID: 28332369 PMCID: PMC5368149 DOI: 10.3349/ymj.2017.58.3.619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/09/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Schizophrenia is a devastating mental disorder and is known to be affected by genetic factors. The chromogranin B (CHGB), a member of the chromogranin gene family, has been proposed as a candidate gene associated with the risk of schizophrenia. The secretory pathway for peptide hormones and neuropeptides in the brain is regulated by chromogranin proteins. The aim of this study was to investigate the potential associations between genetic variants of CHGB and schizophrenia susceptibility. MATERIALS AND METHODS In the current study, 15 single nucleotide polymorphisms of CHGB were genotyped in 310 schizophrenia patients and 604 healthy controls. RESULTS Statistical analysis revealed that two genetic variants (non-synonymous rs910122; rs2821 in 3'-untranslated region) were associated with schizophrenia [minimum p=0.002; odds ratio (OR)=0.72], even after correction for multiple testing (p(corr)=0.02). Since schizophrenia is known to be differentially expressed between sexes, additional analysis for sex was performed. As a result, these two genetic variants (rs910122 and rs2821) and a haplotype (ht3) showed significant associations with schizophrenia in male subjects (p(corr)=0.02; OR=0.64), whereas the significance disappeared in female subjects (p>0.05). CONCLUSION Although this study has limitations including a small number of samples and lack of functional study, our results suggest that genetic variants of CHGB may have sex-specific effects on the risk of schizophrenia and provide useful preliminary information for further study.
Collapse
Affiliation(s)
- Joong Gon Shin
- Department of Life Science, Sogang University, Seoul, Korea
- Research Institute for Basic Science, Sogang University, Seoul, Korea
| | - Jeong Hyun Kim
- Research Institute for Basic Science, Sogang University, Seoul, Korea
| | - Chul Soo Park
- Department of Psychiatry, College of Medicine, Gyeongsang National University, Jinju, Korea
| | - Bong Jo Kim
- Department of Psychiatry, College of Medicine, Gyeongsang National University, Jinju, Korea
| | - Jae Won Kim
- Division of Life Science, Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
| | - Ihn Geun Choi
- Department of Neuropsychiatry, Hallym University Hangang Sacred Heart Hospital, Seoul, Korea
| | - Jaeuk Hwang
- Department of Neuropsychiatry, Soonchunhyang University Hospital, Seoul, Korea
| | - Hyoung Doo Shin
- Department of Life Science, Sogang University, Seoul, Korea
- Research Institute for Basic Science, Sogang University, Seoul, Korea
- Department of Genetic Epidemiology, SNP Genetics, Inc., Seoul, Korea.
| | - Sung Il Woo
- Department of Neuropsychiatry, Soonchunhyang University Hospital, Seoul, Korea.
| |
Collapse
|
17
|
Oxidative stress, mitochondrial abnormalities and antioxidant defense in Ataxia-telangiectasia, Bloom syndrome and Nijmegen breakage syndrome. Redox Biol 2016; 11:375-383. [PMID: 28063379 PMCID: PMC5219618 DOI: 10.1016/j.redox.2016.12.030] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/27/2016] [Indexed: 12/31/2022] Open
Abstract
Rare pleiotropic genetic disorders, Ataxia-telangiectasia (A-T), Bloom syndrome (BS) and Nijmegen breakage syndrome (NBS) are characterised by immunodeficiency, extreme radiosensitivity, higher cancer susceptibility, premature aging, neurodegeneration and insulin resistance. Some of these functional abnormalities can be explained by aberrant DNA damage response and chromosomal instability. It has been suggested that one possible common denominator of these conditions could be chronic oxidative stress caused by endogenous ROS overproduction and impairment of mitochondrial homeostasis. Recent studies indicate new, alternative sources of oxidative stress in A-T, BS and NBS cells, including NADPH oxidase 4 (NOX4), oxidised low-density lipoprotein (ox-LDL) or Poly (ADP-ribose) polymerases (PARP). Mitochondrial abnormalities such as changes in the ultrastructure and function of mitochondria, excess mROS production as well as mitochondrial damage have also been reported in A-T, BS and NBS cells. A-T, BS and NBS cells are inextricably linked to high levels of reactive oxygen species (ROS), and thereby, chronic oxidative stress may be a major phenotypic hallmark in these diseases. Due to the presence of mitochondrial disturbances, A-T, BS and NBS may be considered mitochondrial diseases. Excess activity of antioxidant enzymes and an insufficient amount of low molecular weight antioxidants indicate new pharmacological strategies for patients suffering from the aforementioned diseases. However, at the current stage of research we are unable to ascertain if antioxidants and free radical scavengers can improve the condition or prolong the survival time of A-T, BS and NBS patients. Therefore, it is necessary to conduct experimental studies in a human model.
Collapse
|
18
|
Abstract
The ataxia-telangiectasia mutated (ATM) gene encodes a protein kinase involved in DNA repair. Heterozygotic carriers are at an increased risk of developing breast cancer. As the use of genetic testing increases, identification of at-risk patients will also increase. The aim of this study is to review two cases of heterozygous ATM mutation carriers and review the literature to clarify the cancer risks and suggested management for breast surgeons who will be intimately involved in the care of these patients.
Collapse
Affiliation(s)
- Sara A Mansfield
- Department of General Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Robert Pilarski
- Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Doreen M Agnese
- Division of Surgical Oncology, Department of Surgery, The Ohio State University College of Medicine, N908 Doan Hall, 410 W 10th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
19
|
Andreassen CN, Rosenstein BS, Kerns SL, Ostrer H, De Ruysscher D, Cesaretti JA, Barnett GC, Dunning AM, Dorling L, West CML, Burnet NG, Elliott R, Coles C, Hall E, Fachal L, Vega A, Gómez-Caamaño A, Talbot CJ, Symonds RP, De Ruyck K, Thierens H, Ost P, Chang-Claude J, Seibold P, Popanda O, Overgaard M, Dearnaley D, Sydes MR, Azria D, Koch CA, Parliament M, Blackshaw M, Sia M, Fuentes-Raspall MJ, Ramon Y Cajal T, Barnadas A, Vesprini D, Gutiérrez-Enríquez S, Mollà M, Díez O, Yarnold JR, Overgaard J, Bentzen SM, Alsner J. Individual patient data meta-analysis shows a significant association between the ATM rs1801516 SNP and toxicity after radiotherapy in 5456 breast and prostate cancer patients. Radiother Oncol 2016; 121:431-439. [PMID: 27443449 PMCID: PMC5559879 DOI: 10.1016/j.radonc.2016.06.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/18/2016] [Accepted: 06/29/2016] [Indexed: 12/31/2022]
Abstract
PURPOSE Several small studies have indicated that the ATM rs1801516 SNP is associated with risk of normal tissue toxicity after radiotherapy. However, the findings have not been consistent. In order to test this SNP in a well-powered study, an individual patient data meta-analysis was carried out by the International Radiogenomics Consortium. MATERIALS AND METHODS The analysis included 5456 patients from 17 different cohorts. 2759 patients were given radiotherapy for breast cancer and 2697 for prostate cancer. Eight toxicity scores (overall toxicity, acute toxicity, late toxicity, acute skin toxicity, acute rectal toxicity, telangiectasia, fibrosis and late rectal toxicity) were analyzed. Adjustments were made for treatment and patient related factors with potential impact on the risk of toxicity. RESULTS For all endpoints except late rectal toxicity, a significantly increased risk of toxicity was found for carriers of the minor (Asn) allele with odds ratios of approximately 1.5 for acute toxicity and 1.2 for late toxicity. The results were consistent with a co-dominant pattern of inheritance. CONCLUSION This study convincingly showed a significant association between the ATM rs1801516 Asn allele and increased risk of radiation-induced normal tissue toxicity.
Collapse
Affiliation(s)
| | - Barry S Rosenstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sarah L Kerns
- Department of Radiation Oncology, University of Rochester Medical Center, USA; Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Harry Ostrer
- Departments of Pathology and Pediatrics, Albert Einstein College of Medicine, New York, USA
| | - Dirk De Ruysscher
- Department of Radiotherapy (Maastro Clinic), Maastricht University Medical Center, The Netherlands
| | | | - Gillian C Barnett
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, UK; Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, UK
| | - Alison M Dunning
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, UK; Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, UK
| | - Leila Dorling
- Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, UK
| | - Catharine M L West
- Institute of Cancer Sciences, University of Manchester, The Christie NHS Foundation Trust, UK
| | - Neil G Burnet
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, UK
| | - Rebecca Elliott
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, UK
| | - Charlotte Coles
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, UK
| | - Emma Hall
- Clinical Trials & Statistics Unit (ICR-CTSU), The Institute of Cancer Research, London, UK
| | - Laura Fachal
- Fundacion Publica Galega de Medicina Xenomica-SERGAS, Grupo de Medicina Xenomica-USC, IDIS, CIBERER, Santiago de Compostela, Spain
| | - Ana Vega
- Fundacion Publica Galega de Medicina Xenomica-SERGAS, Grupo de Medicina Xenomica-USC, IDIS, CIBERER, Santiago de Compostela, Spain
| | - Antonio Gómez-Caamaño
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | | | - R Paul Symonds
- Department of Cancer Studies, University of Leicester, UK
| | - Kim De Ruyck
- Department of Basic Medical Sciences, Ghent University, Belgium
| | - Hubert Thierens
- Department of Basic Medical Sciences, Ghent University, Belgium
| | - Piet Ost
- Department of Radiotherapy, Ghent University Hospital, Belgium
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; University Cancer Center Hamburg, University (UCCH), University Medical Center Hamburg-Eppendorf, Germany
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Odilia Popanda
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marie Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
| | - David Dearnaley
- The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | | | - David Azria
- Department of Radiation Oncology and Medical Physics, Institut regional du Cancer Montpellier, France
| | - Christine Anne Koch
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Matthew Parliament
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Michael Blackshaw
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Michael Sia
- Department of Radiation Oncology, British Columbia Cancer Agency Abbotsford Clinic, Canada
| | | | - Teresa Ramon Y Cajal
- Medical Oncology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Agustin Barnadas
- Medical Oncology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Danny Vesprini
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Sara Gutiérrez-Enríquez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Spain
| | - Meritxell Mollà
- Department of Radiation Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Orland Díez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Area of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain
| | - John R Yarnold
- The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
| | - Søren M Bentzen
- Greenebaum Cancer Center and Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, USA
| | - Jan Alsner
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
| |
Collapse
|
20
|
Marabelli M, Cheng SC, Parmigiani G. Penetrance of ATM Gene Mutations in Breast Cancer: A Meta-Analysis of Different Measures of Risk. Genet Epidemiol 2016; 40:425-31. [PMID: 27112364 PMCID: PMC7376952 DOI: 10.1002/gepi.21971] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 01/03/2023]
Abstract
The gene responsible for ataxia-telangiectasia syndrome, ATM, is also an intermediate-risk breast cancer (BC) susceptibility gene. Numerous studies have been carried out to determine the contribution of ATM gene mutations to BC risk. Epidemiological cohorts, segregation analyses, and case-control studies reported BC risk in different forms, including penetrance, relative risk, standardized incidence ratio, and odds ratio. Because the reported estimates vary both qualitatively and quantitatively, we developed a general model allowing the integration of the different types of cancer risk available in the literature. We performed a comprehensive meta-analysis identifying 19 studies, and used our model to obtain a consensus estimate of BC penetrance. We estimated the cumulative risk of BC in heterozygous ATM mutation carriers to be 6.02% by 50 years of age (95% credible interval: 4.58-7.42%) and 32.83% by 80 years of age (95% credible interval: 24.55-40.43%). An accurate assessment of cancer penetrance is crucial to help mutation carriers make medical and lifestyle decisions that can reduce their chances of developing the disease.
Collapse
Affiliation(s)
- Monica Marabelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Su-Chun Cheng
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Giovanni Parmigiani
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Wang X, Chu H, Lv M, Zhang Z, Qiu S, Liu H, Shen X, Wang W, Cai G. Structure of the intact ATM/Tel1 kinase. Nat Commun 2016; 7:11655. [PMID: 27229179 PMCID: PMC4894967 DOI: 10.1038/ncomms11655] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 04/18/2016] [Indexed: 11/18/2022] Open
Abstract
The ataxia-telangiectasia mutated (ATM) protein is an apical kinase that orchestrates the multifaceted DNA-damage response. Normally, ATM kinase is in an inactive, homodimer form and is transformed into monomers upon activation. Besides a conserved kinase domain at the C terminus, ATM contains three other structural modules, referred to as FAT, FATC and N-terminal helical solenoid. Here we report the first cryo-EM structure of ATM kinase, which is an intact homodimeric ATM/Tel1 from Schizosaccharomyces pombe. We show that two monomers directly contact head-to-head through the FAT and kinase domains. The tandem N-terminal helical solenoid tightly packs against the FAT and kinase domains. The structure suggests that ATM/Tel1 dimer interface and the consecutive HEAT repeats inhibit the binding of kinase substrates and regulators by steric hindrance. Our study provides a structural framework for understanding the mechanisms of ATM/Tel1 regulation as well as the development of new therapeutic agents.
Collapse
Affiliation(s)
- Xuejuan Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Huanyu Chu
- School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Mengjuan Lv
- School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Zhihui Zhang
- School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Shuwan Qiu
- School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Haiyan Liu
- School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Xuetong Shen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | - Weiwu Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Gang Cai
- School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Center for Integrative Imaging, Anhui 230027, China
- Center for Biomedical Engineering, University of Science and Technology of China, Anhui 230027, China
| |
Collapse
|
22
|
ATM rs189037 (G > A) polymorphism and risk of lung cancer and head and neck cancer: A meta-analysis. Meta Gene 2015; 6:42-8. [PMID: 26504743 PMCID: PMC4564396 DOI: 10.1016/j.mgene.2015.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/12/2015] [Indexed: 11/30/2022] Open
Abstract
A number of different epidemiological studies have measured the association between the risk of different cancers and polymorphism at promoter region of 5′ untranslated region (5′-UTR) of the Ataxia-telangiectasia mutated (ATM) gene. However the results were contentious rather than conclusive. The current study was aimed at evaluating the association between the SNP (rs189037 G>A) and the risk of head and neck cancer and lung cancer by conducting a meta-analysis. A total of 9 case–control studies were considered for this quantitative analysis. Stats Direct Statistical software (version 2.7.2) was used to evaluate the crude odds ratio (OR) with their 95% confidence interval (CI). The dominant model (GG vs. GA + AA) showed no heterogeneity and the fixed effects pooled OR was found to be significant (OR = 1.14, 95% CI = 1.05–1.25) at p = 0.003. The pooled OR for fixed effects of heterozygote and homozygote mutant allele (GA vs. AA) model was significant (OR = 1.17, 95% CI = 1.04–1.30, p = 0.006) and no heterogeneity was observed for this model. The current meta-analysis manifested that ATM rs189037 G>A genetic polymorphism may contribute increased risk of head and neck and lung cancer. Moreover, the AA mutant allele was found to be related significantly with the prognosis of lung cancer and head and neck cancer.
Collapse
|
23
|
Zhou J, Ching YQ, Chng WJ. Aberrant nuclear factor-kappa B activity in acute myeloid leukemia: from molecular pathogenesis to therapeutic target. Oncotarget 2015; 6:5490-500. [PMID: 25823927 PMCID: PMC4467382 DOI: 10.18632/oncotarget.3545] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/15/2015] [Indexed: 02/07/2023] Open
Abstract
The overall survival of patients with acute myeloid leukemia (AML) has not been improved significantly over the last decade. Molecularly targeted agents hold promise to change the therapeutic landscape in AML. The nuclear factor kappa B (NF-κB) controls a plethora of biological process through switching on and off its long list of target genes. In AML, constitutive NF-κB has been detected in 40% of cases and its aberrant activity enable leukemia cells to evade apoptosis and stimulate proliferation. These facts suggest that NF-κB signaling pathway plays a fundamental role in the development of AML and it represents an attractive target for the intervention of AML. This review summarizes our current knowledge of NF-κB signaling transduction including canonical and non-canonical NF-κB pathways. Then we specifically highlight what factors contribute to the aberrant activation of NF-κB activity in AML, followed by an overview of 8 important clinical trials of the first FDA approved proteasome inhibitor, Bortezomib (Velcade), which is a NF-κB inhibitor too, in combination with other therapeutic agents in patients with AML. Finally, this review discusses the future directions of NF-κB inhibitor in treatment of AML, especially in targeting leukemia stem cells (LSCs).
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Ying Qing Ching
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), Singapore, Republic of Singapore
| |
Collapse
|