1
|
Kaya U, Yildiz A, Colak A. Post-Infarction Left Ventricular Aneurysm Repair. Braz J Cardiovasc Surg 2025; 40:e20230449. [PMID: 39960385 PMCID: PMC11831806 DOI: 10.21470/1678-9741-2023-0449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Affiliation(s)
- Ugur Kaya
- Department of Cardiovascular Surgery, Faculty of Medicine, Ataturk University, Erzurum, Turkey. E-mail:
| | - Alperen Yildiz
- Department of Cardiovascular Surgery, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Abdurrahim Colak
- Department of Cardiovascular Surgery, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
2
|
Jia Y, Wei Z, Feng J, Lei M, Yang Y, Liu J, Ma Y, Chen W, Huang G, Genin GM, Guo X, Li Y, Xu F. A Heart Rate Matched Patch for Mechano-Chemical Treatment of Myocardial Infarction: Optimal Design and Transspecies Application. RESEARCH (WASHINGTON, D.C.) 2024; 7:0517. [PMID: 39582687 PMCID: PMC11582187 DOI: 10.34133/research.0517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 11/26/2024]
Abstract
After myocardial infarction (MI), ventricular dilation and the microscopic passive stretching of the infarcted border zone is the meaning contributor to the continuous expansion of myocardial fibrosis. Epicardial hydrogel patches have been demonstrated to alleviate this sequela of MI in small-animal models. However, these have not been successfully translated to humans or even large animals, in part because of challenges in attaining both the greater stiffness and slower viscoelastic relaxation that mathematical models predict to be optimal for application to larger, slower-beating hearts. Here, using borate-based dynamic covalent chemistry, we develop an injectable "heart rate matched" viscoelastic gelatin (VGtn) hydrogel with a gel point tunable across the stiffnesses and frequencies that are predicted to transspecies and cross-scale cardiac repair after MI. Small-animal experiments demonstrated that, compared to heart rate mismatched patches, the heart rate matched VGtn patches inhibited ventricular bulging and attenuated stress concentrations in the myocardium after MI. In particular, the viscoelastic patch can coordinate the microscopic strain at the infarction boundary. VGtn loaded with anti-fibrotic agents further reduced myocardial damage and promoted angiogenesis in the myocardium. The tuned heart rate matched patches demonstrated similar benefits in a larger-scale and lower heart rate porcine MI model. Results suggest that heart rate matched VGtn patches may hold potential for clinical translation.
Collapse
Affiliation(s)
- Yuanbo Jia
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, P.R. China
- Key Laboratory of Surgical Critical Care and Life Support (Xi’an Jiaotong University), Ministry of Education, Xi’an, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Zhao Wei
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
- MOE Key Laboratory of Biomedical Information Engineering,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Jinteng Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Meng Lei
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
- MOE Key Laboratory of Biomedical Information Engineering,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Yanshen Yang
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
- MOE Key Laboratory of Biomedical Information Engineering,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Jingyi Liu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
- MOE Key Laboratory of Biomedical Information Engineering,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Yufei Ma
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
- MOE Key Laboratory of Biomedical Information Engineering,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Weiguo Chen
- Department of Cardiology, Tangdu Hospital,
the Air Force Military Medical University, Xi’an, Shaanxi 710038, P.R. China
| | - Guoyou Huang
- Department of Engineering Mechanics, School of Civil Engineering,
Wuhan University, Wuhan 430072, P.R. China
| | - Guy M. Genin
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
- MOE Key Laboratory of Biomedical Information Engineering,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Department of Mechanical Engineering & Materials Science,
Washington University in St. Louis, St. Louis, MO 63130, USA
- NSF Science and Technology Center for Engineering Mechanobiology,
Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Xiaogang Guo
- Department of Cardiology, the First Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310003, P.R. China
| | - Yan Li
- Department of Cardiology, Tangdu Hospital,
the Air Force Military Medical University, Xi’an, Shaanxi 710038, P.R. China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
- MOE Key Laboratory of Biomedical Information Engineering,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| |
Collapse
|
3
|
Radner C, Hagl C, Juchem G, Dashkevich A. Coronary Sparing Aneurysmectomy. Thorac Cardiovasc Surg Rep 2023; 12:e41-e43. [PMID: 37342790 PMCID: PMC10287503 DOI: 10.1055/s-0043-1769929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/06/2023] [Indexed: 06/23/2023] Open
Abstract
Repairing left ventricular aneurysms that form after myocardial infarction may be challenging, especially if located close to the important native coronary arteries. Here, we describe a rare case of anterolateral aneurysm of the basal LV wall and a safe, efficient approach for a patch plasty sparing the native left anterior descending.
Collapse
Affiliation(s)
- Caroline Radner
- Department of Cardiac Surgery, Ludwig Maximilian University of Munich, Munchen, Bavaria, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, Ludwig Maximilian University of Munich, Munchen, Bavaria, Germany
| | - Gerd Juchem
- Department of Cardiac Surgery, Ludwig Maximilian University of Munich, Munchen, Bavaria, Germany
| | - Alexey Dashkevich
- Department of Cardiac Surgery, Ludwig Maximilian University of Munich, Munchen, Bavaria, Germany
| |
Collapse
|